Table 1: Some low-level functions of the package OREMODULES

DefineOreAlgebra	Set up an Ore algebra D in OreModules
Involution	Apply an involution to a matrix over D
Factorize(Rat)	Right-divide a matrix over D by another one
Mult	Multiply two or more matrices over D
ApplyMatrix	Apply (matrices of) operators in D to (vectors
	of) functions
KroneckerProduct	Compute the Kronecker product of two matrices

Table 2: Main functions for the treatment module theory over Ore algebras D

TorsionElements(Rat)	Compute the torsion left D-submodule of a
	finitely presented left <i>D</i> -module
Exti(Rat)	Given a finitely presented left D -module M and
	a positive integer i , compute the left D -module
	$\operatorname{ext}_D^i(M,D)_{\theta}$
Extn(Rat)	Given a finitely presented left D -module M and
	a positive integer m , compute the left D -modules
	$\operatorname{ext}_D^i(M,D)_{\theta}$, for $i=0,\ldots,m$
Quotient(Rat)	Compute the quotient module of two left D-
	modules generated by the rows of two matrices
SyzygyModule(Rat)	Compute the first syzygy module of a finitely presented left D -module M
Resolution(Rat)	Given a positive i integer, compute the first i^{th}
	terms of a free resolution of a finitely presented
	left D -module M
FreeResolution(Rat)	Compute a free resolution of a finitely presented
	left D -module M
ShorterFreeResolution(Rat)	Compute a shorter free resolution of a finitely pre-
	sented left D-module M
ShortestFreeResolution(Rat)	Compute the shortest free resolution of a finitely presented left D -module M
OreRank(Rat)	Compute the rank of a finitely presented left D - module M
ProjectiveDimension(Rat)	Compute the left projective dimension of a
	finitely presented left D -module M
HilbertSeries(Rat)	Compute the Hilbert series of a finitely presented
	left D -module M
<pre>HilbertPolynomial(Rat)</pre>	Compute the Hilbert polynomial of a finitely pre-
	sented left D -module M
Dimension(Rat)	Compute the index of the last non-zero Cartan
	character of a finitely presented left <i>D</i> -module <i>M</i>
Complement(Rat)	Compute the matrices $X \in D^{p \times q'}$ and $Y \in D^{q' \times p}$
	satisfying the equation $R' X R' - R' = Y R$, where the matrices $R \in D^{q \times p}$ and $R' \in D^{q' \times p}$ are given
	\perp the matrices $K \subseteq IM \cap V$ and $K' \subseteq IM \cap V$ are given

Table 3: Main functions for the treatment of linear systems over Ore algebras D

Parametrization(Rat)	Find parametrization of the system
MinimalParametrization(s)(Rat)	Find minimal parametrization(s) of the system
AutonomousElements(Rat)	Find a generating set of autonomous elements of
	the system (i.e., solve the system of equations for
	the torsion elements) in case of PDEs
LeftInverse(Rat)	Compute a left-inverse for a matrix over D
LocalLeftInverse	Given a $0 \neq \pi \in k[x_1, \ldots, x_n]$, compute a left
	inverse for a matrix over $k[x_1, \ldots, x_n, \pi^{-1}]$
RightInverse(Rat)	Compute a right-inverse for a matrix over D
GeneralizedInverse(Rat)	Compute a generalized inverse matrix over D
Elimination	Eliminate certain unknowns from a linear system
	over D
PiPolynomial	Given a system matrix over a commutative poly-
	nomial ring D and a variable $x_i \in D$, compute
	the ideal of all π -polynomials in x_i for the given
	system
Connection	Compute the matrices defining a connection for
	a given D -finite left D -module
FirstIntegral	In the case of ODEs, find first integrals of motion
LQEquations	Compute the Euler-Lagrange equations for a lin-
	ear quadratic problem and a controllable OD sys-
	tem