Table 1: Some low-level functions of the package OreModules

DefineOreAlgebra	Set up an Ore algebra D in OreMODULES
Involution	Apply an involution to a matrix over D
Factorize(Rat)	Right-divide a matrix over D by another one
Mult	Multiply two or more matrices over D
ApplyMatrix	Apply (matrices of) operators in D to (vectors of) functions
KroneckerProduct	Compute the Kronecker product of two matrices

Table 2: Main functions for the treatment module theory over Ore algebras D

TorsionElements(Rat)	Compute the torsion left D-submodule of a finitely presented left D-module
Exti(Rat)	Given a finitely presented left D-module M and a positive integer i, compute the left D-module ext ${ }_{D}(M, D)_{\theta}$
Extn(Rat)	Given a finitely presented left D-module M and a positive integer m, compute the left D-modules ext ${ }_{D}^{i}(M, D)_{\theta}$, for $i=0, \ldots, m$
Quotient(Rat)	Compute the quotient module of two left D - modules generated by the rows of two matrices
SyzygyModule(Rat)	Compute the first syzygy module of a finitely pre- sented left D-module M
Resolution(Rat)	Given a positive i integer, compute the first $i^{\text {th }}$ terms of a free resolution of a finitely presented left D-module M
FreeResolution(Rat)	Compute a free resolution of a finitely presented left D-module M
ShorterFreeResolution(Rat)	Compute a shorter free resolution of a finitely pre- sented left D-module M
ShortestFreeResolution(Rat)	Compute the shortest free resolution of a finitely presented left D-module M
OreRank(Rat)	Compute the rank of a finitely presented left D - module M
ProjectiveDimension(Rat)	Compute the left projective dimension of a finitely presented left D-module M
HilbertSeries(Rat)	Compute the Hilbert series of a finitely presented left D-module M
HilbertPolynomial(Rat)	Compute the Hilbert polynomial of a finitely pre- sented left D-module M
Dimension(Rat)	Compute the index of the last non-zero Cartan character of a finitely presented left D-module M
Complement(Rat)	Compute the matrices $X \in D^{p \times q^{\prime}}$ and $Y \in D^{q^{\prime} \times p}$ satisfying the equation $R^{\prime} X R^{\prime}-R^{\prime}=Y R$, where the matrices $R \in D^{q \times p}$ and $R^{\prime} \in D^{q^{\prime} \times p}$ are given

Table 3: Main functions for the treatment of linear systems over Ore algebras D

Parametrization(Rat)	Find parametrization of the system
MinimalParametrization(s) (Rat)	Find minimal parametrization(s) of the system
AutonomousElements(Rat)	Find a generating set of autonomous elements of the system (i.e., solve the system of equations for the torsion elements) in case of PDEs
LeftInverse(Rat)	Compute a left-inverse for a matrix over D LocalLeftInverse Given a $0 \neq \pi \in k\left[x_{1}, \ldots, x_{n}\right]$, compute a left inverse for a matrix over $k\left[x_{1}, \ldots, x_{n}, \pi^{-1}\right]$
RightInverse(Rat)	Compute a right-inverse for a matrix over D
GeneralizedInverse(Rat)	Compute a generalized inverse matrix over D EliminationEliminate certain unknowns from a linear system over D
PiPolynomial	Given a system matrix over a commutative poly- nomial ring D and a variable $x_{i} \in D$, compute the ideal of all π-polynomials in x_{i} for the given system
Connection	Compute the matrices defining a connection for a given D-finite left D-module
FirstIntegral	In the case of ODEs, find first integrals of motion
LQEquations	Compute the Euler-Lagrange equations for a lin- ear quadratic problem and a controllable OD sys- tem

