Table 1: Some low-level functions of the package OREMODULES | DefineOreAlgebra | Set up an Ore algebra D in OreModules | |------------------|--| | Involution | Apply an involution to a matrix over D | | Factorize(Rat) | Right-divide a matrix over D by another one | | Mult | Multiply two or more matrices over D | | ApplyMatrix | Apply (matrices of) operators in D to (vectors | | | of) functions | | KroneckerProduct | Compute the Kronecker product of two matrices | Table 2: Main functions for the treatment module theory over Ore algebras D | TorsionElements(Rat) | Compute the torsion left D-submodule of a | |-----------------------------------|---| | | finitely presented left <i>D</i> -module | | Exti(Rat) | Given a finitely presented left D -module M and | | | a positive integer i , compute the left D -module | | | $\operatorname{ext}_D^i(M,D)_{\theta}$ | | Extn(Rat) | Given a finitely presented left D -module M and | | | a positive integer m , compute the left D -modules | | | $\operatorname{ext}_D^i(M,D)_{\theta}$, for $i=0,\ldots,m$ | | Quotient(Rat) | Compute the quotient module of two left D- | | | modules generated by the rows of two matrices | | SyzygyModule(Rat) | Compute the first syzygy module of a finitely presented left D -module M | | Resolution(Rat) | Given a positive i integer, compute the first i^{th} | | | terms of a free resolution of a finitely presented | | | left D -module M | | FreeResolution(Rat) | Compute a free resolution of a finitely presented | | | left D -module M | | ShorterFreeResolution(Rat) | Compute a shorter free resolution of a finitely pre- | | | sented left D-module M | | ShortestFreeResolution(Rat) | Compute the shortest free resolution of a finitely presented left D -module M | | OreRank(Rat) | Compute the rank of a finitely presented left D - module M | | ProjectiveDimension(Rat) | Compute the left projective dimension of a | | | finitely presented left D -module M | | HilbertSeries(Rat) | Compute the Hilbert series of a finitely presented | | | left D -module M | | <pre>HilbertPolynomial(Rat)</pre> | Compute the Hilbert polynomial of a finitely pre- | | | sented left D -module M | | Dimension(Rat) | Compute the index of the last non-zero Cartan | | | character of a finitely presented left <i>D</i> -module <i>M</i> | | Complement(Rat) | Compute the matrices $X \in D^{p \times q'}$ and $Y \in D^{q' \times p}$ | | | satisfying the equation $R' X R' - R' = Y R$, where the matrices $R \in D^{q \times p}$ and $R' \in D^{q' \times p}$ are given | | | \perp the matrices $K \subseteq IM \cap V$ and $K' \subseteq IM \cap V$ are given | Table 3: Main functions for the treatment of linear systems over Ore algebras D | Parametrization(Rat) | Find parametrization of the system | |--------------------------------|---| | MinimalParametrization(s)(Rat) | Find minimal parametrization(s) of the system | | AutonomousElements(Rat) | Find a generating set of autonomous elements of | | | the system (i.e., solve the system of equations for | | | the torsion elements) in case of PDEs | | LeftInverse(Rat) | Compute a left-inverse for a matrix over D | | LocalLeftInverse | Given a $0 \neq \pi \in k[x_1, \ldots, x_n]$, compute a left | | | inverse for a matrix over $k[x_1, \ldots, x_n, \pi^{-1}]$ | | RightInverse(Rat) | Compute a right-inverse for a matrix over D | | GeneralizedInverse(Rat) | Compute a generalized inverse matrix over D | | Elimination | Eliminate certain unknowns from a linear system | | | over D | | PiPolynomial | Given a system matrix over a commutative poly- | | | nomial ring D and a variable $x_i \in D$, compute | | | the ideal of all π -polynomials in x_i for the given | | | system | | Connection | Compute the matrices defining a connection for | | | a given D -finite left D -module | | FirstIntegral | In the case of ODEs, find first integrals of motion | | LQEquations | Compute the Euler-Lagrange equations for a lin- | | | ear quadratic problem and a controllable OD sys- | | | tem |