Morphisms(ConstCoeff,Rat)	Compute matrices <i>P</i> 's which define elements of
-	$\hom_D(M, M')$, i.e., which are such that there ex-
	ist matrices Q 's satisfying $R P = Q R'$
<pre>Idempotents(ConstCoeff,Rat)</pre>	Compute matrices P's defining idempotent ele-
	ments of $\operatorname{end}_D(M)$, i.e., which are such that there
	exist three matrices Q 's, Z 's and Z' 's satisfying
	$RP = QR, P^2 = P + ZR, Q^2 = Q + RZ + Z'R_2,$
	where $\ker_D(.R) = D^{1 \times r} R_2$
<pre>IdempotentsMat(ConstCoeff,Rat)</pre>	Compute idempotent matrices <i>P</i> 's defining idem-
	potent elements of $\operatorname{end}_D(M)$, i.e., which are such
	that there exist matrices Q 's satisfying $RP =$
	$QR, P^2 = P, Q^2 = Q$ (<i>R</i> has full row rank)
Riccati(ConstCoeff,Rat)	Find solutions Λ 's of the algebraic Riccati equa-
	tion $\Lambda R \Lambda + (P - I_p) \Lambda + \Lambda Q + Z = 0$, where
	the pair (P,Q) defines an idempotent element of
	end _D (M), i.e., satisfies the relations $RP = QR$,
	$P^{2} = P + ZR, Q^{2} = Q + RZ, \text{ with } Z \in D^{p \times q} (R)$
	has full row rank)
KerMorphism(Rat)	Compute the kernel of $f \in \hom_D(M, M')$, i.e.,
	compute $S \in D^{r \times p}$ and $X \in D^{s \times r}$ such that:
	$\ker f = (D^{1 \times r} S) / (D^{1 \times q} R) \cong D^{1 \times r} / (D^{1 \times s} X).$
ImMorphism(Rat)	Compute the image of $f \in \hom_D(M, M')$ defined
	by a pair of matrices (P,Q) , i.e.,
	im $f = (D^{1 \times (p+q')} (P^T R'^T)^T) / (D^{1 \times q'} R'),$
	by reducing the rows of the matrix $(P^T \ R'^T)^T$
	modulo the left <i>D</i> -module $D^{1 \times q'} R'$
CoimMorphism(Rat)	Compute the coimage of $f \in \hom_D(M, M')$, i.e.,
	compute a matrix $S \in D^{r \times p}$ such that $\operatorname{coim} f =$
	$D^{1 \times p} / (D^{1 \times r} S)$
CokerMorphism(Rat)	Compute the cokernel of $f \in \hom_D(M, M')$ de-
	fined by a pair of matrices (P,Q) , i.e., coker $f =$
	$D^{1 \times p'} / (D^{1 \times (p+q')} (P^T R'^T)^T)$
TestInj(Rat)	Test whether or not $f \in \hom_D(M, M')$ is injec-
	tive
TestSurj(Rat)	Test whether or not $f \in \hom_D(M, M')$ is surjec-
	tive
TestIso(Rat)	Test whether or not $f \in \hom_D(M, M')$ is a <i>D</i> -
	isomorphism

Table 1: List of the main functions of the package OREMORPHISMS

HeuristicReduction(Rat)	Compute a reduction of the matrix R , i.e., com-
	pute an equivalent matrix with a block-triangular
	form. Bases of the different free left D -modules
	are computed using heuristic methods
HeuristicDecomposition(Rat)	Compute a decomposition of the matrix R , i.e.,
	compute an equivalent matrix with a block-
	diagonal form. Bases of the different free left D -
	modules are computed using heuristic methods