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The present chapter contains the material taught within the module P2 of FAP 2004. The purpose of this
intensive course is first to provide an introduction to “algebraic analysis”. This fashionable though quite difficult
domain of pure mathematics today has been pioneered by V.P. Palamodov, M. Kashiwara and B. Malgrange
around 1970, after the work of D.C. Spencer on the formal theory of systems of partial differential equations. We
shall then focus on its application to control theory in order to study linear control systems defined by partial
differential equations with constant or variable coefficients, also called multidimensional control systems, by means
of new methods from module theory and homological algebra. We shall revisit a few basic concepts and prove,
in particular, that controllability, contrary to a well established engineering tradition or intuition, is an intrinsic
structural property of a control system, not depending on the choice of inputs and outputs among the control
variables or even on the presentation of the control system. Our exposition will be rather elementary as we shall
insist on the main ideas and methods while illustrating them through explicit examples. Meanwhile, we want to
stress out the fact that these new techniques bring striking results even on classical control systems of Kalman
type !.
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I.1 INTRODUCTION

We start recalling and revisiting the important controllability concept in classical control theory. For this,
we shall adopt standard notations for the input u = (u1, ..., up), the state x = (x1, ..., xn) and the output
y = (y1, ..., ym), the dot indicating time derivative.
A control system with coefficients in a constant field k (say Q,R,C in general) is said to be in “Kalman form” if
it can be written as ẋ = Ax + Bu, where A is a constant n × n matrix and B is a constant n × p matrix with
maximum rank p, where we understand that A and B have coefficients in k. If we should like to characterize such
a system of ordinary differential (OD) equations, we could say that it is linear, first order, with no equation of
order zero and with no derivative of u appearing in the OD equations.

Definition 1.1: The above control system is said to be controllable if, starting from any initial point x0 at time
t = 0, it is possible to find an input such that the corresponding trajectory is passing through an arbitrary final
point xT at a final time T .

The following celebrated test has been given by E.R. Kalman in 1963 [6]:

Theorem 1.2: The above control system is controllable if and only if the controllability matrix (B,AB,A2B, ..., An−1B)
has maximum rank n.

Of course, in general, starting with rk(B) = l0 = p, the rank will increase successively and we may set
rk(B,AB) = l0 + l1, ..., rk(B,AB, ..., A

n−1B) = l0 + ... + ln−1 as the rank will not increase anymore because of
the Cayley-Hamilton theorem saying that An is a linear combination of the previous lower powers of A.
In order to provide a preview of the type of techniques that will be used in the sequel, we provide a new short



homological proof of the following technical result [25]:

Proposition 1.3: p = l0 ≥ l1 ≥ ... ≥ ln−1 ≥ 0.

Proof: Denoting also by B the vector space over k generated by the column vectors (b1, ..., bp) of B, we may
introduce the vector spaces Si = B + AB + ...+ AiB over k for i = 0, 1, ..., n− 1 and obtain dim(Si/Si−1) = li.
Denoting also by A the multiplication by A, we get ASi = AB+A2B+ ...+Ai+1B ⊆ Si+1 and Si+1 = ASi +B. In
this very elementary situation that will be generalized in the sequel, we shall say that a square is “commutative”
if the composition of the maps (matrices) along two sides of the square is equal to the composition of the maps
along the two other opposite sides, in a standard way. Similarly, a chain of maps will be called a sequence if the
composition of two successive maps (matrices) is zero. Accordingly, a sequence (line or column) will be said to be
“exact” if the kernel of any map is equal to the image of the preceding map, a “0” on the left meaning injectivity
(monomorphism) and a “0” on the right meaning surjectivity (epimorphism). We have the following commuta-
tive and exact diagram, namely a diagram where all squares are commutative while all lines and columns are exact:

0 0
↓ ↓

0 −→ ASi−1 ∩B −→ ASi ∩B
↓ ↓

0 −→ B = B −→ 0
↓ ↓

B/(ASi−1 ∩B) −→ B/(ASi ∩B) −→ 0
↓ ↓
0 0

Using the snake theorem (see subsection on homological algebra) or counting the dimensions, we notice that the
cokernel (ASi ∩B)/(ASi−1 ∩B) of the upper map is isomorphic to the kernel of the lower map. We use the lower
line of this diagram as the right column of the following commutative and exact diagram:

0 0 0
↓ ↓ ↓

0 −→ Si−1 ∩ ker(A) −→ Si−1
A
−→ Si −→ B/(ASi−1 ∩B) −→ 0

↓ ↓ ↓ ↓

0 −→ Si ∩ ker(A) −→ Si
A
−→ Si+1 −→ B/(ASi ∩B) −→ 0

↓ ↓ ↓ ↓
0 −→ Ki −→ Si/Si−1 −→ Si+1/Si −→ 0

↓ ↓
0 0

where Ki is the kernel of the induced lower central map and we have used the relation Si+1/ASi ' B/(ASi ∩B).
Counting the dimensions, we get li = li+1 + dim(Ki) ≥ li+1. Finally, again using the snake theorem, we get the
long exact sequence:

0→ Si−1 ∩ ker(A)→ Si ∩ ker(A)→ Ki → B/(ASi−1 ∩B)→ B/(ASi ∩B)→ 0

and thus the short exact sequence:

0→ (Si ∩ ker(A))/(Si−1 ∩ ker(A))→ Ki → (ASi ∩B)/(ASi−1 ∩B)→ 0

where we have used the previous isomorphism, as a way to compute dim(Ki).
Q.E.D.

The reader will have noticed how tricky is such a proof that could be quite tedious otherwise, though we advise
the reader to draw pictures of the various spaces involved and their inclusions in order to understand the meaning
of the respective quotients.

Surprisingly, through this engineering setting, if we understand that the li, called “controllability indices”, can
be determined by means of elementary computer algebra (rank of matrices), it seems that we are very far from
being able to extend these indices to a more general framework. Indeed, not a single of the previous results can



be extended to systems of partial differential (PD) equations, or even to systems of OD equations containing the
derivatives of the inputs or having variable coefficients. Also, it seems strange that controllability, defined in a
purely functional way, could be tested in a purely formal way. Finally, it seems that controllability is highly
depending on the choice of inputs and outputs among the control variables, according to a well established engi-
neering tradition.

In order to provide a first feeling that the proper concept of controllability must be revisited, we provide a
short but illuminating example:

Example 1.4: Let us consider the system of two OD equations:

ẏ1 − ay2 − ẏ3 = 0 , y1 − ẏ2 + ẏ3 = 0

depending on a constant parameter a.
First choosing the control variables to be y1 = x1, y2 = x2, y3 = u and setting x̄1 = x1 − u, x̄2 = x2 − u, we get
the Kalman form:

˙̄x
1

= ax̄2 + au , ˙̄x
2

= x̄1 + u

and the system is controllable, with controlability indices (1, 1), if and only if a 6= 0, a 6= 1.
Now choosing the control variables to be y1 = x1, y2 = u, y3 = x2, and setting anew x̄1 = x1 − u, x̄2 = x2 − u,
though with a totally different meaning, we get the totally different Kalman form:

˙̄x
1

= −x̄1 + (a− 1)u , ˙̄x
2

= −x̄1 − u

and this new system is controllable, with the same controllability indices, if and only if a 6= 0, a 6= 1 too.

It follows from this example that controllability must be a structural property of a control sysem, neither de-
pending on the choice of inputs and outputs among the control variables, nor even on the presentation of the
control sytem (change of the control variables eventually leading to change the order of the system). The next
definition is crucial for revisiting controllability and extending it to systems of PD equations [16,18,19]. It stems
from the fact that, in engineering sciences, a measurement apparatus (thermometer, manometer,...) is always
measuring a scalar quantity (temperature, pressure,...).

Definition 1.5: An autonomous (or torsion) element is an observable, that is to say a linear combination of the
control variables and their derivatives, which satisfies at least one (and thus only one of minimum order when there
is only one independent variable) OD or PD equation by itself. An observable satisfying no OD or PD equation
for itself will be said to be “free”.

This leads to the following formal definition:

Definition 1.6: A control system is controllable if it has no nontrivial autonomous element, that is any observable
is free.

Example 1.7: In the preceding example, if a = 0, setting z = y1 − y3, we get ż = 0. Also, if a = 1, setting now
z = y1 − y2 and adding the first OD equation to the second, we get ż + z = 0.

Though it does not seem evident at first sight, we have:

Proposition 1.8: The preceding Definition is coherent with the Kalman test.

Proof: Using the given OD equations and their derivatives in order to compute ẋ, ẍ, ... from the arbitrary/parametric
x, u, u̇, ü, ... we could for simplicity imagine that z = λx+µ0u+µ1u̇ does satisfy the single OD equation ż+νz = 0.
Differentiating z and substituting, we obtain at once the necessary conditions µ1 = 0 → µ0 = 0. However, we
notice that, if z is an autonomous element, then of course ż, z̈, ... are again autonomous elements. Hence, from
z = λx we successively get ż = λAx + λBu → λB = 0, z̈ = λA2x + λABu → λABu = 0, .... It follows that
there are as many autonomous elements linearly independent over k as the corank of the controllability matrix.
Conversely, we notice that, if there exists at least one autonomous element, the control system is surely not con-
trollable in any sense as there is no way to control the OD equation satisfied by this autonomous element.



Q.E.D.

However, if a control system is given by high order input/output OD equations, the search for autonomous
elements is no longer simple as one cannot use the above computation which is essentially based on the fact that
no derivative of the input does appear in the OD equations of the Kalman form.
We now raise another problem.
Ordinary differential (OD) control theory studies input/output relations defined by systems of ordinary differen-
tial (OD) equations. In this case, with standard notations, if a control system is defined by input/state/output
relations:

ẋ = Ax+Bu , y = Cx+Du

with dim(x) = n, this system is “controllable” if rk(B,AB, ..., An−1B) = n, as we already said, and “observable” if
rk(C̃, ÃC̃, ..., Ãn−1C̃) = n where the tilde sign indicates the transpose of a matrix [25]. Accordingly, the so-called
“dual system”:

ẋa = −Ãxa − C̃ua , ya = B̃xa + D̃ua

is controllable (observable) if and only if the given system is observable (controllable). However, and despite many
attempts, such a dual definition still seems purely artificial as one cannot avoid introducing the state. The same
method could be applied to delay systems with constant coefficients. One must nevertheless notice that, if we
do not want to define observability as a property “dual” to controllability, the standard meaning, namely the
possibility to recover the state from the input and the output is clear. Indeed, by differentiation, we successively
get y = Cx + ..., ẏ = CAX + ..., ÿ = CA2x + ..., and so on, where the missing terms only involve the input and
its derivatives.

Hence, if the derivatives of the inputs do appear in the control system, for example in the SISO system ẋ−u̇ = 0,
not a word is left from the original functional definition of controllability which is only valid for systems in “Kalman
form” and the same comment can be made for the corresponding duality.

More generally, “partial differential (PD) control theory” will study input/output relations defined by systems
of partial differential (PD) equations. At first sight, we have no longer a way to generalize the Kalman form and
not a word of the preceding approach is left as, in most cases, the number of arbitrary parametric derivatives
playing the rôle of state could be infinite. However, even if the definition of autonomous elements is still meaning-
ful though we have no longer any way to test it, we also understand that a good definition of controllability and
duality should also be valid for control systems with variable coefficients. A similar comment can be made for the
definition of the transfer matrix.

Example 1.9: Denoting by yk
i = diy

k for i = 1, 2 and k = 1, 2, 3 the formal derivatives of the three differential
indeterminates y1, y2, y3, we consider the system of three PD equations for 3 unknowns and 2 independent vari-
ables [5,18]:







y2
2 +y3

2 −y3
1 −y2

1 = 0
y1
2 −y3

2 −y3
1 −y2

1 = 0
y1
1 −2y3

1 −y2
1 = 0

One can check that one among (y1, y2, y3) can be given arbitrarily like in the preceding example. Also, setting
z = y1 − y2 − 2y3, we get both z1 = 0, z2 = 0 and z is an autonomous element. Then one can prove that any
other autonomous element can be expressible by means of a differential operator acting on z which is therefore
a generator (exercise). Accordingly, in the present situation, any autonomous element is a constant multiple of z
but no other analogy can be exhibited.

Keeping aside these problems for the moment, let us now turn for a few pages to the formal theory of systems
of OD or PD equations.

In 1920, M. Janet provided an effective algorithm for looking at the formal (power series) solutions of systems
of ordinary differential (OD) or partial differential (PD) equations [5]. The interesting point is that this algorithm
also allows to determine the compatibility conditions D1η = 0 for solving (formally again but this word will not be
repeated) inhomogeneous systems of the form Dξ = η when D is an OD or PD operator and ξ, η certain functions.



Similarly, one can also determine the compatibility conditions D2ζ = 0 for solving D1η = ζ, and so on. With
no loss of generality, this construction of a “differential sequence” can be done in such a canonical way that we
successively obtain D1,D2, ...,Dn from D and Dn is surjective when n is the number of independent variables.

With no reference to the above work, D.C. Spencer developed, from 1965 to 1975, the formal theory of systems
of PD equations by relating the preceding results to homological algebra and jet theory [24]. However, this tool
has been largely ignored by mathematicians and, “a fortiori”, by engineers or even physicists. Therefore, the
module theoretic counterpart, today known as “algebraic analysis”, which has been pioneered around 1970 by
V.P. Palamodov for the constant coefficient case [14], then by M. Kashiwara [7] and B. Malgrange [11] for the
variable coefficient case, as it heavily depends on the previous difficult work and looks like even more abstract,
has been totally ignored within the range of any application before 1990, when U. Oberst revealed its importance
for control theory, in the constant coefficient case only [13].

The purpose of this lecture will essentially be to repare this gap by explaining, in a self-contained way on
a few explicit examples, what is the powerfulness of this new approach for understanding both the structural
and input/output properties of linear PD control systems, also called multidimensional or simply n-dimensional.
Meanwhile, the reader will evaluate the price to pay for such a better understanding. Needless to say that many
results obtained could not even be imagined without this new approach, dating back to 1986 when we gave for
the first time the formal definition of controllability of a control system [16] but now largely acknowledged by the
control community [26,27].

I.2 MOTIVATING EXAMPLES

As we always use to say, the difficulty in studying systems of PD equations is not only of a functional nature
(unicity and existence of solutions,...) but also of a formal nature (integrability and compatibility conditions,...).
This is the reason for which the study of algebraic analysis is at once touching delicate points of differential
geometry, the main one being formal integrability. Hence, forgetting about control theory for a few pages, we
now explain this concept and other related ones on a few tricky motivating examples. It will therefore be a first
striking challenge for the reader to wonder what certain of these academic/engineering examples have to do with
controllability !.

Motivating Example 2.1: With two independent variables (x1, x2), one unknown y and standard notations for
PD equations and computer algebra (MACSYMA, MAPLE, MATHEMATICA,...), we consider the following third
order system of PD equations with second member (u, v):

{

Py ≡ d222y + x2y = u
Qy ≡ d2y + d1y = v

where P and Q are PD operators with coefficients in the (differential) field K = Q(x1, x2) of rational functions in
x1 and x2. We check the identity QP − PQ ≡ 1 and obtain easily:

y = Qu− Pv = d2u+ d1u− d222v − x
2v

Substituting in the previous PD equations, we therefore obtain the two generating 6th-order compatibility condi-
tions for (u, v) in the form:

{

A ≡ PQu− P 2v − u = 0
B ≡ Q2u−QPv − v = 0

These two compatibility conditions are not differentially independent as we check at once:

QA ≡ QPQu−QP 2v −Qu
≡ (1 + PQ)Qu− (1 + PQ)Pv −Qu
≡ PQ2u− PQPv − Pv
≡ PB

Finally, setting u = 0, v = 0, we notice that the preceding homogeneous system can be written in the form Dy = 0
and admits the only solution y = 0.



Motivating Example 2.2: Again with two independent variables (x1, x2) and one unknown y, let us consider
the following second order system with constant coefficients:

{

Py ≡ d22y = u
Qy ≡ d12y − y = v

where now P and Q are PD operators with coefficients in the subfield k = Q of constants of K. We obtain at
once:

y = d11u− d12v − v

and could hope to obtain the 4th-order generating compatibility conditions by substitution, that is to say:
{

A ≡ d1122u− d1222v − d22v − u = 0
B ≡ d1112u− d11u− d1122v = 0

However, in this particular case, we notice that there is an unexpected unique second order generating compatibility
condition of the form:

C ≡ d12u− u− d22v = 0

as we now have indeed PQ − QP = 0 both with A ≡ d12C + C and B ≡ d11C, a result leading to C ≡
d22B − d12A+A. Accordingly, the systems A = 0, B = 0 on one side and C = 0 on the other side are completely
different though they have the same solutions in u, v.
Finally, setting u = 0, v = 0, we notice that the preceding homogeneous system can be written in the form Dy = 0
and admits the only solution y = 0, like the preceding example.

Remark 2.3: It is only in the last section of this chapter that we shall understand why such a specific result
could only happen for systems of PD equations with constant coefficients. Indeed, this result will be shown to be
a straightforward consequence of the famous Quillen-Suslin theorem which can be considered as one of the most
difficult theorems of mathematics [23].

Motivating Example 2.4: (See [18] for more details on this interesting example first provided by M. Janet in
[5]). With n = 3, let us consider the second order system:

{

Py ≡ d33y − x2d11y = u
Qy ≡ d22y = v

where now P and Q are PD operators with coefficients in the (differential) field K = Q(x1, x2, x3). Introducing
as before:

d112y =
1

2
(d33v − x

2d11v − d22u) = w

we finally get the two following compatibility conditions:
{

A ≡ d233v − x2d112v − 3d11v − d222u = 0
B ≡ d3333w − 2x2d1133w + (x2)2d1111w − d11233u+ x2d11112u− d1111u = 0

These two compatibility conditions of respective orders 3 and 6 are differentially dependent as one checks at once
through computer algebra:

d3333A− 2x2d1133A+ (x2)2d1111A− 2d2B = 0

However, and contrary to the two preceding motivating examples, we now have no way to know whether A and B
are the only two generating compatibility conditions.
Finally, in the present situation, the space of solutions of the system Dy = 0 can be seen to be expressible by
polynomials in (x1, x2, x3) and has dimension 12 over the constants.

Having in mind the preceding examples and a computer algebra framework, we are in a position to explain in
a simple manner how systems of PD equations can be divided into two classes, namely the “good” ones and the
“bad” ones. This terminology will lead, in the next section, to an intrinsic/coordinate-free formulation where the
good systems will be called “formally integrable” systems.
For understanding the difference, let us plug a given system of order q and use computer algebra to have all
possible information about the various derivatives of the unknowns at the orders q + 1, q + 2, ..., by differen-
tiating the given PD equations successively once, twice, ... and so on. In the case of the first example with



q = 3, differentiating once we get the two new second order PD equation d12y + d11y = 0, d22y + d12y = 0.
Similarly, differentiating twice we get four linearly independent PD equations of strict order three, namely
d222y + x2y = 0, d122y − x2y = 0, d112y + x2y = 0, d111y − x2y = 0 though we had only one initially. Fi-
nally, differentiating three times, we even get the zero order equation y = 0, that we need again to differentiate
once in order to get separately d1y = 0, d2y = 0, and so on. In the case of the second example, the things are
similar and we understand that, in general, we have to differentiate r+ s(r) times in order to know all the possible
information on all the derivatives up to order q + r. The situation is even more tricky in the case of the third
example as, differentiating once with respect to x1, x2, x3 respectively, we get 6 linearly independent PD equations
of strict order 3, with no information “backwards” on the order 2 as in the preceding situations. However, we are
not finished with the order 3 as indeed, differentiating twice, that is once more, we get the new equation d112y = 0
but we are not sure that,differentiating 100 times will not produce new equations. In fact, in order to be convinced
about the difficulty of this problem and how highly it depends on the coefficients, we ask the reader, as an exercise,
to work out this example with (x2)r in place of x2 for r = 1, 2, 3, ... successively.
It is essential to notice that, contrary to the use of Gröbner bases, the preceding results do not depend on any
change of both the independent or the dependent variables among them as the order is unchanged.
Contrary to the previous (very) bad examples, in the case of good examples, differentiating just r times will provide
all information on the derivatives up to order q + r.

Example 2.5: With all indices ranging from 1 to n, let us consider the so-called Killing system:

1

2
(L(ξ)ω)ij ≡

1

2
(ωrj∂iξ

r + ωir∂jξ
r + ξr∂rωij) = εij

where ωij = 1 if i = j and 0 if i 6= j and we have used the standard Einstein implicit summation on the up
and down indices. This system is used in continuum mechanics to define the (small) strain tensor ε from the
displacement vector ξ by using the Lie derivative of the euclidean metric ω along the vector field ξ. If we look for
a displacement providing no strain, we have just to set ε = 0 and to notice (tricky exercise !) that differentiating
once provides the n2(n + 1)/2 second order PD equations dijξ

k = 0 that can be easily integrated. Hence we get
ξk = Ak

rx
r + Bk with A an arbitrary skew-symmetric constant matrix and B an arbitrary vector, that is to say

we recognize an arbitrary infinitesimal rigid motion. This is a good system indeed as the n+ 1 derivatives up to
order one are arbitrary, the n(n+1)/2 given equations provide all information on the n2 derivatives of strict order
one and all the other derivatives of order ≥ 2 vanish.
More generally, any linear system with constant coefficients having only derivatives of the same order appearing
in it is automatically good.
In order to look for the compatibility conditions for ε, we notice that the compatibilty conditions of order r are
obtained by Cramer’s rule through the elimination of the n(n+ r)!/(n− 1)!(r+ 1)! derivatives of strict order r+ 1
of the ξ from the n(n + 1)(n + r − 1)!/2(n − 1)!r! derivatives of strict order r of the ε. Accordingly, we get no
compatibility condition of order one and n2(n+1)2/4−n2(n+1)(n+2)/6 = n2(n2−1)/12 compatibility conditions
of order two. For the case n = 2 of 2-dimensional plane elasticity, we get the only second order compatibility
condition :

∂11ε22 + ∂22ε11 − 2∂12ε12 = 0

that will be used in the sequel.

We now explain the close relationship existing between the search for compatibility conditions and the study
of autonomous elements. Indeed, in order to look for the self-governing PD equations of a given autonomous
element, we just need to write out the system of PD equations with zero second member, add the expression of
the autonomous element as a left member/operator, keeping the autonomous element as a right member and look
for the set of compatibility conditions of the total system thus obtained.

Examp 2.6: With respect to the system:

d22y = 0 , d12y = 0

if we add d1y = z we get d2z = 0 while if we add d2y = z, we get d2z = 0, d1z = 0.

This result proves that, contrary to the OD case where a given autonomous element always satisfies a single
generating OD equation, in the PD case the situation can be far more complicate. In fact, there is a way to classify
autonomous elements according to the type of system they satisfy. This result, leading to the concept of “purity”,



involves a lot of delicate homological algebra and is out of the scope of this chapter. For more details, we invite
the interested reader to look at [19, section V.1.3]

In view of the importance of autonomous elements in differential algebra [16,18], we first notice that the cor-
responding concept can be easily extended to nonlinear systems and we have the following proposition:

Proposition 2.7: The sum, product, quotient and derivatives of two autonomous elements are again autonomous
elements.

Proof: We only prove this result for the sum as the other proofs are similar. As an autonomous element satisfies
at least one OD or PD equation of order q for itself, the number of its arbitrary/parametric derivatives up to order
q + r is at most equal to:

(n+ q + r)!/n!(q + r)!− (n+ r)!/n!r! =
q

(n− 1)!
rn−1 + ...

and this number is multiplied by 2 in the sum while the number of derivatives of the sum up to order r is
(n + r)!/n!r! = 1

n!r
n + .... Accordingly, when r is large enough, this last number is greater than the preceding

number and the sum cannot be free.
Q.E.D.

We end this section presenting two examples where any observable is autonomous.

Example 2.8: (More details concerning the Bénard problem can be found in [18,p 366]). When a viscous liquid is
in between two horizontal parallel plates with distance L between them, the lower heated one being at temperature
T0 while the upper one is at temperature T1 with T0−T1 = AgL > 0 where ~g is the vertical gravity, its stationary
evolution is governed by the following linear Boussinesq system of five PD equations:

~∇ · ~v = 0

η∆~v − ~∇π − αaθ~g = 0

λ∆θ −
A

g
~g · ~v = 0

describing successively the continuity equation, the three Navier-Stokes equations and the heat equation. In this
system, the mass per unit volume is ρ = a(1 − α(T − T0)) with a = ρ(T0), η is the viscosity coefficient, π and θ
are the respective perturbations of the pressure and temperarure around an equilibrium state and λ = κac where
κ is the thermal conductivity and c is the heating coefficient at constant pressure and temperature T0.
We prove that θ is an autonomous element.
Taking into account the continuity equation while remembering a well known vector identity, we obtain at once:

~∇∧ ~∇ ∧ ~v = ~∇(~∇ · ~v)−∆~v = −∆~v

Now, applying twice the curl operator to the Navier-Stokes equations for eliminating π and projecting onto the
vertical axis x3, we get:

η∆∆v3 + αag(d11 + d22)θ = 0

Using the heat equation in the form λ∆θ = Av3 and introducing the dimensionless Rayleigh number R =
gαAL4a2c/ηκ, we finally obtain the following sixth order PD equation:

∆∆∆θ −
R

L4
(d11 + d22)θ = 0

The same equation is satisfied by v3 but we notice that the vertical component ζ = d1v
2−d2v

1 only satisfies ∆ζ = 0.

Example 2.9: The Euler equations for an incompressible fluid with speed ~v, pressure p and mass per unit volume
set to 1, are made by the nonlinear system:

~∇ · ~v = 0 , dt~v + (~v · ~∇)~v + ~∇p = 0



For a 1-dimensional flow, we get dxv = 0, dtv + vdxv + dxp = 0 and thus both v and p are autonomous because
dxv = 0, dxxp = 0. For a 2-dimensional flow, v1 is autonomous but its highly nonlinear fifth order decoupling PD
equation is covering one full page of book [19,p 40].
We end this section with a nonlinear example, showing out that the study of linear systems can be of some help
for studying the structural properties of nonlinear systems by means of linearization, only if we are able to deal
with linear systems with variable coefficients.

Example 2.10: Let us consider the single input/single output (SISO) system uẏ− u̇ = a = cst and ask about its
controllability (See [18] for more details). Of course, if a = 0, setting z = y − logu, we get ż = 0 and the system
cannot be controlled as there is one autonomous element. Introducing the variations U = δu, Y = δy, the generic
linearization (not to be confused with the linearization at a specific solution) becomes:

uẎ − U̇ + ẏU = 0

as the constant parameter a is untouched. It seems that this system is no longer depending on a but the reader
must not forget that u = u(t) and y = y(t) are solutions of the given nonlinear system which definitively depends
on a. According to the previous comments, it just remains to study under what condition on a the above linear
system with variable coefficients is controllable. The use of such a study is as follows. If the linearized system is
controlabe, the nonlinear system is surely controllable because, otherwise, it should have at least one autonomous
element , the linearization of which should satisfy the corresponding linearized decoupling equation. The converse
is not evident as an autonomous element for the linearized system may not necessarily come from the linearization
of an autonomous element for the nonlinear system. In fact, one can prove that that this converse is only true for
OD systems but false in general for PD systems as counterexamples may exist [19].
In the present example, when a = 0, we easily check that δz = Z = Y − 1

uU satisfies Ż = 0 and the problem is
thus to obtain this critical value a = 0 directly from the linear system, a result highly not evident at first sight,
even on this elementary example.

I.3 ALGEBRAIC ANALYSIS

It becomes clear from the examples of the second section that there is a need for classifying the properties of
systems of PD equations in a way that does not depend on their presentations and this is the purpose of algebraic
analysis.

I.3.1 Module Theory

Before entering the heart of this chapter, we need a few technical definitions and results from commutative
algebra [4,8,12,23].
First of all, we start defining rings and modules.

Definition 3.1.1: A ring A is a non-empty set with two associative binary operations called addition and multipli-
cation, respectively sending a, b ∈ A to a+b ∈ A and ab ∈ A in such a way that A becomes an abelian group for the
multiplication, so that A has a zero element denoted by 0, every a ∈ A has an additive inverse denoted by −a and
the multiplication is distributive over the addition, that is to say a(b+ c) = ab+ ac, (a+ b)c= ac+ bc, ∀a, b, c ∈ A.
A ring A is said to be unitary if it has a (unique) element 1 ∈ A such that 1a = a1 = a, ∀a ∈ A and commutative
if ab = ba, ∀a, b ∈ A.
A non-zero element a ∈ A is called a zero-divisor if one can find a non-zero b ∈ A such that ab = 0 and a ring is
called an integral domain if it has no zero-divisor.

Definition 3.1.2: A ring K is called a field if every non-zero element a ∈ K is a unit, that is one can find an
element b ∈ K such that ab = 1 ∈ K.

Definition 3.1.3: A module M over a ring A or simply an A-module is a set of elements x, y, z, ... which is an
abelian group for an addition (x, y)→ x+ y with an action A×M →M : (a, x)→ ax satisfying:
• a(x+ y) = ax+ ay, ∀a ∈ A, ∀x, y ∈M
• a(bx) = (ab)x, ∀a, b ∈ A, ∀x ∈M
• (a+ b)x = ax+ bx, ∀a, b ∈ A, ∀x ∈M
• 1x = x, ∀x ∈M



The set of modules over a ring A will be denoted by mod(A). A module over a field is called a vector space.

Definition 3.1.4: A map f : M → N between two A-modules is called a homomorphism over A if f(x + y) =
f(x) + f(y), ∀x, y ∈M and f(ax) = af(x), ∀a ∈ A, ∀x ∈M . We successively define:
• ker(f) = {x ∈M |f(x) = 0}
• im(f) = {y ∈ N |∃x ∈M, f(x) = y}
• coker(f) = N/im(f)

Definition 3.1.5: We say that a chain of modules and homomorphisms is a sequence if the composition of two
successive such homomorphisms is zero. A sequence is said to be exact if the kernel of each map is equal to the
image of the map preceding it. An injective homomorphism is called a monomorphism, a surjective homomorphism
is called an epimorphism and a bijective homomorphism is called an isomorphism. A short exact sequence is an
exact sequence made by a monomorphism followed by an epimorphism.

The proof of the following proposition is left to the reader as an exercise:

Proposition 3.1.6: If one has a short exact sequence:

0 −→M ′ f
−→M

g
−→M ′′ −→ 0

then the following conditions are equivalent:
• There exists a monomorphism v : M ′′ →M such that g ◦ v = idM ′′ .
• There exists an epimorphism u : M →M ′ such that u ◦ f = idM ′ .
• There exist isomorphisms ϕ = (u, g) : M →M ′ ⊕M ′′ and ψ = f + v : M ′ ⊕M ′′ →M that are inverse to each
other and provide an isomorphism M 'M ′ ⊕M ′′

Definition 3.1.7: In the above situation, we say that the short exact sequence splits and u(v) is called a lift for
f(g). In particular we have the relation: f ◦ u+ v ◦ g = idM .

Definition 3.1.8: A left (right) ideal a in a ring A is a submodule of A considered as a left (right) module over
itself. When the inclusion a ⊂ A is strict, we say that a is a proper ideal of A.

Lemma 3.1.9: If a is an ideal in a ring A, the set of elements rad(a) = {a ∈ A|∃n ∈ N, an ∈ a} is an ideal of A
containing a and called the radical of a. An ideal is called perfect or radical if it is equal to its radical.

Definition 3.1.10: For any subset S ⊂ A, the smallest ideal containing S is called the ideal generated by S. An
ideal generated by a single element is called a principal ideal and a ring is called a principal ideal ring if any ideal
is principal. The simplest example is that of polynomial rings in one indeterminate over a field. When a and b are
two ideals of A, we shall denote by a+b (ab) the ideal generated by all the sums a+b (products ab) with a ∈ a, b ∈ b.

Definition 3.1.11: An ideal p of a ring A is called a prime ideal if, whenever ab ∈ p (aAb ∈ p in the non-
commutative case) then either a ∈ p or b ∈ p. The set of proper prime ideals of A is denoted by spec(A) and
called the spectrum of A.

Definition 3.1.12: The annihilator of a module M in A is the ideal annA(M) of A made by all the elements
a ∈ A such that ax = 0, ∀x ∈M .

From now on, all rings considered will be unitary integral domains, that is rings containing 1 and having no
zero-divisor. For the sake of clarity, as a few results will also be valid for modules over non-commutative rings, we
shall denote by AMB a module M which is a left module for A with operation (a, x)→ ax and a right module for B
with operation (x, b)→ xb. In the commutative case, lower indices are not needed. If M = AM and N = AN are
two left A-modules, the set of A-linear maps f : M → N will be denoted by homA(M,N) or simply hom(M,N)
when there will be no confusion and there is a canonical isomorphism hom(A,M) ' M : f → f(1) with inverse
x→ (a→ ax). When A is commutative, hom(M,N) is again an A-module for the law (bf)(x) = f(bx) as we have
indeed:

(bf)(ax) = f(bax) = f(abx) = af(bx) = a(bf)(x).



In the non-commutative case, things are much more complicate and we have:

Lemma 3.1.13: Given AMB and AN , then homA(M,N) becomes a left module overB for the law (bf)(x) = f(xb).

Proof: We just need to check the two relations:

(bf)(ax) = f(axb) = af(xb) = a(bf)(x),

(b′(b′′f))(x) = (b′′f)(xb′) = f(xb′b′′) = ((b′b′′)f)(x).

Q.E.D.

A similar result can be obtained (exercise) with AM and ANB, where homA(M,N) now becomes a right B-
module for the law (fb)(x) = f(x)b.

Now we recall that a sequence of modules and maps is exact if the kernel of any map is equal to the image of
the map preceding it and we have:

Theorem 3.1.14: If M,M ′,M ′′ are A-modules, the sequence:

M ′ f
→M

g
→M ′′ → 0

is exact if and only if the sequence:

0→ hom(M ′′, N)→ hom(M,N)→ hom(M ′, N)

is exact for any A-module N .

Proof: Let us consider homomorphisms h : M → N , h′ : M ′ → N , h′′ : M ′′ → N such that h′′ ◦ g = h, h ◦ f = h′.
If h = 0, then h′′ ◦ g = 0 implies h′′(x′′) = 0, ∀x′′ ∈ M ′′ because g is surjective and we can find x ∈ M such that
x′′ = g(x). Then h′′(x′′) = h′′(g(x)) = h′′ ◦ g(x) = 0. Now, if h′ = 0, we have h ◦ f = 0 and h factors through
g because the initial sequence is exact. Hence there exists h′′ : M ′′ → N such that h = h′′ ◦ g and the second
sequence is exact.
We let the reader prove the converse as an exercise.

Q.E.D.

Similarly, one can prove (exercise):

Corollary 3.1.15: The short exact sequence:

0→M ′ →M →M ′′ → 0

splits if and only if the short exact sequence:

0→ hom(M ′′, N)→ hom(M,N)→ hom(M ′, N)→ 0

is exact for any module N .

Definition 3.1.16: If M is a module over a ring A, a system of generators of M over A is a family {xi}i∈I of
elements of M such that any element of M can be written x =

∑

i∈I aixi with only a finite number of nonzero ai.

Definition 3.1.17: An A-module is called noetherian if every submodule of M (and thus M itself) is finitely
generated.

One has the following technical lemma (exercise):

Lemma 3.1.18: In a short exact sequence of modules, the central module is noetherian if and only if the two
other modules are noetherian.



We obtain in particular:

Proposition 3.1.19: If A is a noetherian ring and M is a finitely generated module over A, then M is noetherian.

Proof: Applying the lemma to the short exact sequence 0→ Ar−1 → Ar → A→ 0 where the epimorphism on the
right is the projection onto the first factor, we deduce by induction that Ar is noetherian. Now, if M is generated
by {x1, ..., xr}, there is an epimorphism Ar → M : (1, 0, ..., 0) → x1, ..., {0, ..., 0, 1} → xr and M is noetherian
because of the lemma.

Q.E.D.

In the preceding situation, the kernel of the epimorphism Ar →M is also finitely generated, say by {y1, ..., ys}
and we therefore obtain the exact sequence As → Ar →M → 0 that can be extended inductively to the left.

Definition 3.1.20: In this case, we say that M is finitely presented.

We now present the technique of localization that will play a central part and is used to introduce rings and
modules of fractions. We shall define the procedure in the non-commutative case but the reader will discover that,
in the commutative case, localization is just the formal counterpart superseding Laplace transform as there is no
longer any technical assumption on the initial data. Indeed, it is well known that, if the Laplace transform is
f(t)→ f̂(s) =

∫ ∞

0
e−stf(t)dt, then df(t)/dt→ sf̂(s) only if we suppose that f(0) = 0. Of course, the achievement

of introducing rational functions through the transfer matrix is the heart of the procedure which is also valid in the
multidimensional (PD) case. However, it is essential to notice that only the localization technique can be applied
to systems with variable coefficients.
We start with a basic definition:

Definition 3.1.21: A subset S of a ring A is said to be multiplicatively closed if ∀s, t ∈ S ⇒ st ∈ S and 1 ∈ S.

Example 3.1.22: We provide a few useful cases:
• ∀a ∈ A, we may consider Sa = {1, a, a2, ...}.
• ∀p ∈ spec(A), we may consider S = A− p.
• For any ideal a ∈ A, we may consider S = {1 + a|a ∈ a}.
• We may consider the set S of non-zerodivisors of A. In particular, if A is an integral domain, we may consider
S = A− {0}.

In a general way, whenever A is a non-commutative ring, that is ab 6= ba when a, b ∈ A, we shall set the
following definition:

Definition 3.1.23: By a left ring of fractions or left localization of a noncommutative ring A with respect to a
multiplicatively closed subset S of A, we mean a ring denoted by S−1A and a homomorphism θ = θS : A→ S−1A
such that:
1) θ(s) is invertible in S−1A, ∀s ∈ S.

2) Each element of S−1A or fraction has the form θ(s)
−1
θ(a) for some s ∈ S, a ∈ A.

3) ker(θ) = {a ∈ A|∃s ∈ S, sa = 0}.
A right ring of fractions or right localization can be similarly defined.

In actual practice, a fraction will be simply written s−1a and we have to distinguish carefully s−1a from as−1.
We shall recover the standard notation a/s of the commutative case when two fractions a/s and b/t can be reduced
to the same denominator st = ts. The following proposition is essential and will be completed by two technical
lemmas that will be used for constructing localizations.

Proposition 3.1.24: If there exists a left localization of A with respect to S, then we must have:
1) Sa ∩As 6= 0, ∀a ∈ A, ∀s ∈ S.
2) If s ∈ S and a ∈ A are such that as = 0, then there exists t ∈ S such that ta = 0.

Proof: The element θ(a)θ(s)−1 in S−1A must be of the form θ(t)−1θ(b) for some t ∈ S, b ∈ A. Accordingly,
θ(a)θ(s)−1 = θ(t)−1θ(b) ⇒ θ(t)θ(a) = θ(b)θ(s) and thus θ(ta − bs) = 0⇒ ∃u ∈ S, uta = ubs with ut ∈ S, ub ∈ A.



Finally, as = 0⇒ θ(a)θ(s) = 0⇒ θ(a) = 0 because θ(s) is invertible in S−1A. Hence ∃t ∈ S such that ta = 0.
Q.E.D.

Definition 3.1.25: A set S satisfying the condition 1) is called a left Ore set.

Lemma 3.1.26: If S is a left Ore set in a noetherian ring, then S also satisfies the condition 2) of the preceding
lemma.

Proof: Let s ∈ S and a ∈ A be such that as = 0. Denoting the left annihilator by lann, we have lann(sn) ⊆
lann(sn+1) for each integer n. As A is noetherian, lann(sn) = lann(sn+1) for n� 0. Using the left Ore condition,
we can find t ∈ S, b ∈ A such that ta = bsn and thus bsn+1 = tas = 0 ⇒ b ∈ lann(sn+1) = lann(sn) ⇒ ta = 0.
We notice that S−1A is the zero ring if and only if 0 ∈ S and the second condition is not needed when A is an
integral domain.

Q.E.D.

Lemma 3.1.27: If S is a left Ore set in a ring A, then As∩At∩S 6= 0, ∀s, t ∈ S and two fractions can be brought
to the same denominator.

Proof: From the left Ore condition, we can find u ∈ S and a ∈ A such that us = at ∈ S. More generally, we can
find u, v ∈ A such that us = vt ∈ S and we successively get:

θ(us)−1θ(ua) = θ(s)−1θ(u)−1θ(u)θ(a) = θ(s)−1θ(a), ∀a ∈ A

θ(vt)−1θ(vb) = θ(t)−1θ(v)−1θ(v)θ(b) = θ(t)−1θ(b)

so that the two fractions θ(s)−1θ(a) and θ(t)−1θ(b) can be brought to the same denominator θ(us) = θ(vt).
Q.E.D.

We are now in position to construct the ring of fractions S−1A whenever S satifies the two conditions of
the last proposition. For this, using the preceding lemmas, let us define an equivalence relation on S × A by
saying that (s, a) ∼ (t, b) if one can find u, v ∈ S such that us = vt ∈ S and ua = vb. Such a relation is
clearly reflexive and symmetric, thus we only need to prove that it is transitive. So let (s1, a1) ∼ (s2, a2) and
(s2, a2) ∼ (s3, a3). Then we can find u1, u2 ∈ A such that u1s1 = u2s2 ∈ S and u1a1 = u2a2. Also we can find
v2, v3 ∈ A such that v2s2 = v3s3 ∈ S and v2a = v3a3. Now, from the Ore condition, one can find w1, w3 ∈ A
such that w1u1s1 = w3v3s3 ∈ S and thus w1u2s2 = w3v2s2 ∈ S, that is to say (w1u2 − w3v2)s2 = 0. Hence,
unless A is an integral domain, using the second condition of the last proposition, we can find t ∈ S such that
t(w1u2 − w3v2) = 0 ⇒ tw1u2 = tw3v2. Hence, changing w1 and w3 if necessary, we may finally assume that
w1u2 = w3v2 ⇒ w1u1a1 = w1u2a2 = w3v2a2 = w3v3a3 as wished. We finally define S−1A to be the quotient of
S ×A by the above equivalence relation with θ : A→ S−1A : a→ 1−1a.
The sum (s, a) + (t, b) will be defined to be (us = vt, ua+ vb) and the product (s, a)× (t, b) will be defined to be
(st, ab).
A similar approach can be used in order to define and construct modules of fractions whenever S satifies the two
conditions of the last proposition. For this we need a preliminary lemma:

Lemma 3.1.28: If S is a left Ore set in a ring A and M is a left module over A, the set:

tS(M) = {x ∈M |∃s ∈ S, sx = 0}

is a submodule of M called the S-torsion submodule of M .

Proof: If x, y ∈ tS(M), we may find s, t ∈ S such that sx = 0, ty = 0. Now, we can find u, v ∈ A such that
us = vt ∈ S and we successively get us(x + y) = usx + vty = 0 ⇒ x + y ∈ tS(M). Also, ∀a ∈ A, using the Ore
condition for S, we can find b ∈ A, t ∈ S such that ta = bs and we get tax = bsx = 0⇒ ax ∈ tS(M).

Q.E.D.

Definition 3.1.29: By a left module of fractions or left localization of M with respect to S, we mean a left module
S−1M over S−1A both with a homomorphism θ = θS : M → S−1M : x→ 1−1x such that:
1) Each element of S−1M has the form s−1θ(x) for s ∈ S, x ∈M .



2) ker(θS) = tS(M).

In order to construct S−1M , we shall define an equivalence relation on S ×M by saying that (s, x) ∼ (t, y) if
there exists u, v ∈ A such that us = vt ∈ S and ux = vy. Checking that this relation is reflexive, symmetric and
transitive can be done as before (exercise) and we define S−1M to be the quotient of S ×M by this equivalence
relation.
The main property of localization is expressed by the following theorem:

Theorem 3.1.30: If one has an exact sequence:

M ′ f
−→M

g
−→M ′′

then one also has the exact sequence:

S−1M ′ S−1f
−→ S−1M

S−1g
−→ S−1M ′′

where S−1f(s−1x) = s−1f(x).

Proof: As g ◦ f = 0, we also have S−1g ◦ S−1f = 0 and thus im(S−1f) ⊆ ker(S−1g).
In order to prove the reverse inclusion, let s−1x ∈ ker(S−1g). We have therefore s−1g(x) = 0 in S−1M ′′ and there
exists t ∈ S such that tg(x) = g(tx) = 0 in M ′′. As the initial sequence is exact, we can find x′ ∈ M ′ such that
tx = f(x′). Accordingly, in S−1M we have s−1x = s−1t−1tx = (ts)−1tx = (ts)−1f(x′) = S−1f((ts)−1x′) and thus
ker(S−1g) ⊆ im(S−1f).

Q.E.D.

The proof of the following corollary is left to the reader as an exercise:

Corollary 3.1.31: If M ′ and M ′′ are submodules of an A-module M and S is a multiplicatively closed subset of
A, we have the relations:
• S−1(M ′ ∩M ′′) = (S−1M ′) ∩ (S−1M ′′).
• S−1(M ′ +M ′′) = (S−1M ′) + (S−1M ′′).
• S−1(M ′ ⊕M ′′) = (S−1M ′)⊕ (S−1M ′′).
• S−1(M/M ′) = (S−1M)/(S−1M ′).

We now turn to the definition and brief study of tensor products of modules over rings that will not be neces-
sarily commutative unless stated explicitly.
Let M = MA be a right A-module and N = AN be a left A-module. We may introduce the free Z-module made
by finite formal linear combinations of elements of M ×N with coefficients in Z.

Definition 3.1.32: The tensor product of M and N over A is the Z-module M⊗AN obtained by quotienting the
above Z-module by the submodule generated by the elements of the form:

(x + x′, y)− (x, y)− (x′, y), (x, y + y′)− (x, y)− (x, y′), (xa, y)− (x, ay)

and the image of (x, y) will be denoted by x⊗ y.

It follows from the definition that we have the relations:

(x+ x′)⊗ y = x⊗ y + x′ ⊗ y, x⊗ (y + y′) = x⊗ y + x⊗ y′, xa⊗ y = x⊗ ay

and there is a canonical isomorphism M⊗AA ' M,A⊗AN ' N . When A is commutative, we may use left
modules only and M⊗AN becomes a left A-module.

Example 3.1.33: If A = Z,M = Z/2Z and N = Z/3Z, we have (Z/2Z)⊗Z(Z/3Z) = 0 because x ⊗ y =
3(x⊗ y)− 2(x⊗ y) = x⊗ 3y − 2x⊗ y = 0− 0 = 0.

As a link with localization, we let the reader prove that the multiplication map S−1A×M → S−1M given by
(s−1a, x)→ s−1ax induces an isomorphism S−1A⊗AM → S−1M of modules over S−1A whenS−1A is considered



as a right module over A and M as a left module over A.
When A is a commutative integral domain and S = A − {0}, the field K = Q(A) = S−1A is called the field of
fractions of A and we have the short exact sequence:

0 −→ A −→ K −→ K/A −→ 0

If now M is a left A-module, we may tensor this sequence by M on the right with A ⊗M = M but we do not
get in general an exact sequence. The defect of exactness on the left is nothing else but the torsion submodule
t(M) = {m ∈M |∃0 6= a ∈ A, am = 0} ⊆M and we have the long exact sequence:

0 −→ t(M) −→M −→ K⊗AM −→ K/A⊗AM −→ 0

as we may describe the central map as follows:

m −→ 1⊗m =
a

a
⊗m =

1

a
⊗ am , ∀0 6= a ∈ A

Such a result, based on the localization technique, allows to understand why controllability has to do with the
so-called “simplification” of the transfer matrix. In particular, a module M is said to be a torsion module if
t(M) = M and a torsion-free module if t(M) = 0.

Definition 3.1.34: A module in mod(A) is called a free module if it has a basis, that is a system of generators
linearly independent over A. When a module F is free, the number of generators in a basis, and thus in any basis
(exercise), is called the rank of F over A and is denoted by rankA(F ). In particular, if F is free of finite rank r,
then F ' Ar.

More generally, if M is any module over a ring A and F is a maximum free submodule of M , then M/F = T
is a torsion module. Indeed, if x ∈ M,x /∈ F , then one can find a ∈ A such that ax ∈ F because, otherwise,
F ⊂ {F, x} should be free submodules of M with a strict inclusion. In that case, the rank of M is by definition
the rank of F over A and one has equivalently :

Lemma 3.1.35: rkA(M) = dimK(K⊗AM).

Proof: Taking the tensor product by K over A of the short exact sequence 0 → F → M → T → 0, we get an
isomorphism K⊗AF ' K⊗AM because K⊗AT = 0 (exercise) and the lemma follows from the definition of the
rank.

Q.E.D.

We now provide two proofs of the additivity property of the rank, the second one being also valid for non-
commutative rings.

Proposition 3.1.36: If 0 → M ′ f
→ M

g
→ M ′′ → 0 is a short exact sequence of modules over a ring A, then we

have rkA(M) = rkA(M ′) + rkA(M ′′).

Proof 1: Using localization with respect to the multiplicatively closed subset S = A−{0}, this proposition is just
a straight consequence of the definition of rank and the fact that localization preserves exactness.
Proof 2: Let us consider the following diagram with exact left/right columns and central row:

0 0 0
↓ ↓ ↓

0→ F ′ → F ′ ⊕ F ′′ → F ′′ → 0
↓ i′ ↓ i ↓ i′′

0→ M ′ f
→ M

g
→ M ′′ → 0

↓ p′ ↓ p ↓ p′′

0→ T ′ → T → T ′′ → 0
↓ ↓ ↓
0 0 0

where F ′(F ′′) is a maximum free submodule of M ′(M ′′) and T ′ = M ′/F ′(T ′′ = M ′′/F ′′) is a torsion module.
Pulling back by g the image under i′′ of a basis of F ′′, we may obtain by linearity a map σ : F ′′ → M and we



define i = f ◦ i′ ◦π′ +σ ◦π′′ where π′ : F ′⊕F ′′ → F ′ and π′′ : F ′⊕F ′′ → F ′′ are the canonical projections on each
factor of the direct sum. We have i|F ′ = f ◦ i′ and g ◦ i = g ◦ σ ◦ π′′ = i′′ ◦ π′′. Hence, the diagram is commutative
and thus exact with rkA(F ′ ⊕ F ′′) = rkA(F ′) + rkA(F ′′) trivially. Finally, if T ′ and T ′′ are torsion modules, it is
easy to check that T is a torsion module too and F ′ ⊕ F ′′ is thus a maximum free submodule of M .

Q.E.D.

Definition 3.1.37: If f : M → N is any morphism, the rank of f will be defined to be rkA(f) = rkA(im(f)).

We provide a few additional properties of the rank that will be used in the sequel. For this we shall set
M∗ = homA(M,A) and, for any moprphism f : M → N we shall denote by f∗ : N∗ → M∗ the corresponding
morphism which is such that f∗(h) = h ◦ f, ∀h ∈ homA(N,A).

Proposition 3.1.38: When A is a commutative integral domain and M is a finitely presented module over A,
then rkA(M) = rkA(M∗).

Proof: Applying homA(•, A) to the short exact sequence in the proof of the preceding lemma while taking into
account T ∗ = 0, we get a monomorphism 0 → M∗ → F ∗ and obtain therefore rkA(M∗) ≤ rkA(F ∗). However,
as F ' Ar with r < ∞ because M is finitely generated, we get F ∗ ' Ar too because A∗ ' A. It follows that
rkA(M∗) ≤ rkA(F ∗) = rkA(F ) = rkA(M) and thus rkA(M∗) ≤ rkA(M).

Now, if F1
d
→ F0 → M → 0 is a finite presentation of M , applying homA(•, A) to this presentation, we get the

ker/coker exact sequence:

0← N ← F ∗
1

d∗

← F ∗
0 ←M∗ ← 0

Applying homA(•, A) to this sequence while taking into account the isomorphisms F ∗∗
0 ' F0, F

∗∗
1 ' F1, we get

the ker/coker exact sequence:

0→ N∗ → F1
d
→ F0 →M → 0

Counting the ranks, we obtain:

rkA(N)− rkA(M∗) = rkA(F ∗
1 )− rkA(F ∗

0 ) = rkA(F1)− rkA(F0) = rkA(N∗)− rkA(M)

and thus:

(rkA(M)− rkA(M∗)) + (rkA(N)− rkA(N∗)) = 0

As both two numbers in this sum are non-negative, they must be zero and we finally get rkA(M) = rkA(M∗), rkA(N) =
rkA(N∗).

Q.E.D.

Corollary 3.1.39: Under the condition of the proposition, we have rkA(f) = rkA(f∗).

Proof: Introducing the ker/coker exact sequence:

0→ K →M
f
→ N → Q→ 0

we have: rkA(f)+ rkA(Q) = rkA(N). Applying homA(•, A) and taking into account Theorem 3.1.14, we have the
exact sequence:

0→ Q∗ → N∗ f∗

→M∗

and thus : rkA(f∗) + rkA(Q∗) = rkA(N∗). Using the preceding proposition, we get rkA(Q) = rkA(Q∗) and
rkA(N) = rkA(N∗), that is to say rkA(f) = rkA(f∗).

Q.E.D.

I.3.2 Homological Algebra

Having in mind the introductory section, we now need a few definittions and results from homological algebra
[4,12,23]. In all that follows, A,B,C, ... are modules over a ring A or vector spaces over a field k and the linear



maps are making the diagrams commutative.
We start recalling the well known Cramer’s rule for linear systems through the exactness of the ker/coker sequence
for modules. We introduce the notations rk = rank, nb = number, dim = dimension, ker = kernel, im = image,
coker = cokernel. When Φ : A→ B is a linear map (homomorphism), we introduce the so-called ker/coker exact
sequence:

0 −→ ker(Φ) −→ A
Φ
−→ B −→ coker(Φ) −→ 0

where coker(Φ) = B/im(Φ).
In the case of vector spaces over a field k, we successively have rk(Φ) = dim(im(Φ)), dim(ker(Φ)) = dim(A) −
rk(Φ), dim(coker(Φ)) = dim(B)− rk(Φ) = nb of compatibility conditions, and obtain by substraction:

dim(ker(Φ)) − dim(A) + dim(B)− dim(coker(Φ)) = 0

In the case of modules, using localization, we may replace the dimension by the rank and obtain the same relations
because of the additive property of the rank. The following theorem is essential:

Snake Theorem 3.2.1: When one has the following commutative diagram resulting from the the two central
vertical short exact sequences by exhibiting the three corresponding horizontal ker/coker exact sequences:

0 0 0
↓ ↓ ↓

0 −→ K −→ A −→ A′ −→ Q −→ 0
↓ ↓Φ ↓Φ′ ↓

0 −→ L −→ B −→ B′ −→ R −→ 0
↓ ↓Ψ ↓Ψ′ ↓

0 −→ M −→ C −→ C′ −→ S −→ 0
↓ ↓ ↓
0 0 0

then there exists a connecting map M −→ Q both with a long exact sequence:

0 −→ K −→ L −→M −→ Q −→ R −→ S −→ 0.

Proof: We start constructing the connecting map by using the following succession of elements:

a · · · a′ −→ q
... ↓
b −→ b′

↓
...

m −→ c · · · 0

Indeed, starting with m ∈ M , we may identify it with c ∈ C in the kernel of the next horizontal map. As Ψ is
an epimorphism, we may find b ∈ B such that c = Ψ(b) and apply the next horizontal map to get b′ ∈ B′ in the
kernel of Ψ′ by the commutativity of the lower square. Accordingly, there is a unique a′ ∈ A′ such that b′ = Φ′(a′)
and we may finally project a′ to q ∈ Q. The map is well defined bacause, if we take another lift for c in B, it will
differ from b by the image under Φ of a certain a ∈ A having zero image in Q by composition. The remaining of
the proof is similar and left to the reader as an exercise. The above explicit procedure will not be repeated.

Q.E.D.

We may now introduce cohomology theory through the following definition:

Definition 3.2.2: If one has a sequence A
Φ
−→ B

Ψ
−→ C, then one may introduce with coboundary = im(Φ) ⊆

ker(Ψ) = cocycle ⊆ B and define the cohomology at B to be the quotient cocycle/coboundary.



Theorem 3.2.3: The following commutative diagram where the two central vertical sequences are long exact
sequences and the horizontal lines are ker/coker exact sequences:

0 0 0
↓ ↓ ↓

0 −→ K −→ A −→ A′ −→ Q −→ 0
↓ ↓Φ ↓Φ′ ↓

0 −→ L −→ B −→ B′ −→ R −→ 0
· · · · · · ↓ · · · ↓Ψ · · · ↓Ψ′ · · · ↓ · · · · · · · · · cut
0 −→ M −→ C −→ C′ −→ S −→ 0

↓ ↓Ω ↓Ω′ ↓
0 −→ N −→ D −→ D′ −→ T −→ 0

↓ ↓ ↓
0 0 0

induces an isomorphism between the cohomology at M in the left vertical column and the kernel of the morphism
Q→ R in the right vertical column.

Proof: Let us “cut” the preceding diagram into the following two commutative and exact diagrams by taking into
account the relations im(Ψ) = ker(Ω), im(Ψ′) = ker(Ω′):

0 0 0
↓ ↓ ↓

0 −→ K −→ A −→ A′ −→ Q −→ 0
↓ ↓Φ ↓Φ′ ↓

0 −→ L −→ B −→ B′ −→ R −→ 0
↓ ↓Ψ ↓Ψ′

0 −→ cocycle −→ imΨ −→ imΨ′

↓ ↓
0 0

0 0 0
↓ ↓ ↓

0 −→ cocycle −→ kerΩ −→ kerΩ′

↓ ↓ ↓
0 −→ M −→ C −→ C′

↓ ↓Ω ↓Ω′

0 −→ N −→ D −→ D′

↓ ↓
0 0

Finally, using the snake theorem, we successively obtain:

=⇒ ∃ 0 −→ K −→ L
Ψ
−→ cocycle −→ Q −→ R exact

=⇒ ∃ 0 −→ coboundary −→ cocycle −→ ker (Q −→ R) −→ 0 exact
=⇒ cohomology atM ' ker (Q −→ R)

Q.E.D.

We now introduce the extension functor in an elementary manner, using the standard notation homA(M,A) =
M∗. First of all, by a free resolution of an A-module M , we understand a long exact sequence:

...
d2−→ F1

d1−→ F0 −→M −→ 0

where F0, F1, ...are free modules, that is to say modules isomorphic to powers ofA andM = coker(d1) = F0/im(d1).
We may take out M and obtain the deleted sequence:

...
d2−→ F1

d1−→ F0 −→ 0



which is of course no longer exact. If N is any other A-module, we may apply the functor homA(•, N) and obtain
the sequence:

...
d∗

2←− homA(F1, N)
d∗

1←− homA(F0, N)←− 0

in order to state:

Definition 3.2.4: ext0A(M,N) = ker(d∗1) = homA(M,N), extiA(M,N) = ker(d∗i+1)/im(d∗i ), ∀i ≥ 1

One can prove that the extension modules do not depend on the resolution of M chosen and have the following
two main properties, the first of which only is classical [19,23].

Proposition 3.2.5: If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of A-modules, then we have the
following connecting long exact sequence:

0→ homA(M ′′, N)→ homA(M,N)
→ homA(M ′, N)→ ext1A(M ′′, N)→ ...

of extension modules.

We provide two different proofs of the following proposition:

Proposition 3.2.6: extiA(M,A) is a torsion module, ∀i ≥ 1.

Proof 1: Let F be a maximal free submodule of M . From the short exact sequence:

0 −→ F −→M −→M/F −→ 0

where M/F is a torsion module, we obtain the long exact sequence:

...→ exti−1
A (F,A)→ extiA(M/F,A)

→ extiA(M,A)→ extiA(F,A)→ ...

From the definitions, we obtain extiA(F,A) = 0, ∀i ≥ 1 and thus extiA(M,A) ' extiA(M/F,A), ∀i ≥ 2. Now it is
known that the tensor by the field K of any exact sequence is again an exact sequence. Accordingly, we have from
the definition:

K⊗Aext
i
A(M/F,A) ' extiA(M/F,K)

' extiK(K⊗AM/F,K) = 0, ∀i ≥ 1

and we finally obtain from the above sequence K⊗Aext
i
A(M,A) = 0⇒ extiA(M,A) torsion, ∀i ≥ 1.

Proof 2: Having in mind that Bi = im(d∗i ) and Zi = ker(d∗i+1), we obtain rk(Bi) = rk(d∗i ) = rk(di) and
rk(Zi) = rk(F ∗

i )− rk(d∗i+1) = rk(Fi)− rk(di+1). However, we started from a resolution, that is an exact sequence
in which rk(di)+ rk(di+1) = rk(Fi). It follows that rk(Bi) = rk(Zi) and thus rk(Hi) = rk(Zi)− rk(Bi) = 0, that
is to say extiA(M,A) is a torsion module for i ≥ 1, ∀M ∈ mod(A).

Q.E.D.

As we have seen in the Motivating Examples, the same module may have many very different presentations.
In particular, we have [5,14]:

Schanuel Lemma 3.2.7: If F ′
1

d′

1−→ F ′
0 → M → 0 and F ′′

1

d′′

1−→ F ′′
0 → M → 0 are two presentations of M , there

exists a presentation F1
d1−→ F0 →M → 0 of M projecting onto the preceding ones.

Definition 3.2.8: An A-module P is projective if there exists a free module F and another (thus projective)
module Q such that P ⊕Q ' F . Any free module is projective.

Proposition 3.2.9: The short exact sequence:

0 −→M ′ f
−→M

g
−→M ′′ −→ 0



splits whenever M ′′ is projective.

Proposition 3.2.10: When P is a projective module and N is any module, we have extiA(P,N) = 0, ∀i ≥ 1.

Proposition 3.2.11: When P is a projective module, applying homA(P, •) to any short exact sequence gives a
short exact sequence.

I.3.3 System Theory

We recall a few basic facts from jet theory and system theory [11,18,24].

Let X be a manifold of dimension n with local coordinates x = (x1, ..., xn) and E be a vector bundle over
X with local coordinates (xi, yk), where i = 1, ..., n for the independent variables, k = 1, ...,m for the dependent
variables, and projection (x, y)→ x. A (local) section ξ : X → E : x→ (x, ξ(x)) is defined locally by yk = ξk(x).
Under any change of local coordinates (x, y)→ (x̄ = ϕ(x), ȳ = A(x)y) the section changes according to ȳl = ξ̄l(x̄)
in such a way that ξ̄l(ϕ(x)) ≡ Al

k(x)ξk(x) and we may differentiate successively each member in order to obtain,
though in a more and more tedious way, the transition rules for the derivatives ξk(x), ∂iξ

k(x), ∂ijξ
k(x), ... up to

order q. As usual, we shall denote by Jq(E) and call q-jet bundle the vector bundle over X with the same transi-
tion rules and local jet coordinates (x, yq) with yq = (yk, yk

i , y
k
ij , ...) or, more generally yk

µ with 1 ≤ |µ |≤ q where
µ = (µ1, ..., µn) is a multi-index of length |µ| = µ1 + ... + µn and µ + 1i = (µ1, ..., µi−1, µi + 1, µi+1, ..., µn). The
reader must not forget that the above definiions are standard ones in physics or mechanics because of the use of
tensors in electromagnetism or elasticity.

Definition 3.3.1: A system of PD equations on E is a vector sub-bundle Rq ⊂ Jq(E) locally defined by a constant
rank system of linear equations Aτµ

k (x)yk
µ = 0.

Substituting the derivatives of a section in place of the corresponding jet coordinates, then differentiating once
with respect to xi and substituting the jet coordinates, we get the first prolongation Rq+1 ⊂ Jq+1(E), defined
by the previous equations and by the new equations Aτµ

k (x)yk
µ+1i

+ ∂iA
τµ
k (x)yk

µ = 0, and, more generally, the
r-prolongations Rq+r ⊂ Jq+r(E) which need not be vector bundles (xyx − y = 0 =⇒ xyxx = 0).

Definition 3.3.2: Rq is said to be formally integrable if the Rq+r are vector bundles and all the generating PD
equations of order q + r are obtained by prolonging Rq exactly r-times only, ∀r ≥ 0.

The modern way to deal with a linear system of PDE is to use jet coordinates instead of derivatives in or-
der to define a vector subbundle Rq ⊂ Jq(E) by a system of local (nondifferential) equations Aτµ

k (x)yk
µ = 0

where we have used Einstein summation. The r-prolongation ρr(Rq) = Jr(Rq) ∩ Jq+r(E) ⊂ Jr(Jq(E)) or sim-
ply Rq+r will be obtained by substituting derivatives instead of jet coordinates, differentiating r times in the
usual way and substituting again jet coordinates. The projections πq+r+s

q+r : Jq+r+s(E) −→ Jq+r(E) induce maps

πq+r+s
q+r : Rq+r+s −→ Rq+r which are not in general surjective and we may introduce the families of vector spaces

R
(s)
q+r = πq+r+s

q+r (Rq+r+s) ⊆ Rq+r which may not be vector bundles for any r, s ≥ 0.

The symbol gq = Rq ∩ SqT
∗ ⊗ E ⊂ Jq(E) of Rq is defined by the linear equations:

Aτµ
k (x)vk

µ = 0 |µ| = q

We let the reader check that the symbol gq+r of Rq+r is similarly defined by the linear equations:

Aτµ
k (x)vk

µ+ν = 0 |µ| = q, |ν| = r

Now, to any set (P τ ) of polynomials of degree q in k[χ] with P τ = Aτµχµ and χµ = (χ1)
µ1 ...(χn)µn we may as-

sociate a trivial vector bundle with fiber dimension one and the linear system Rq defined ”locally” by the equations:

Aτµyµ = 0 0 ≤| µ |≤ q

on the condition to consider it with locally constant coefficients. We notice that such a property insures all
the regularity conditions needed for the applications of the formal theory and allows to associate a linear system



of PD equations in one unknown with constant coefficients to any system of polynomials generating an ideal in k[ξ].

In any case, from now on we shall suppose that the various symbols and projections already defined are vector
bundles over k, with a slight abuse of language. Apart from the situation coming from pure algebra as we saw,
such a case is quite rare in practice and only happens usually in the study of transitive Lie pseudogroups of
transformations [18].

If we introduce the cotangent bundle T ∗ = T ∗(X) with corresponding tensor, exterior and symmetric products
respectively denoted by ⊗,Λ, S, we may define the Spencer map:

δ : ΛsT ∗ ⊗ gq+r+1 −→ Λs+1T ∗ ⊗ gq+r

by the following local formulas on families of forms:

(δiv)
k
µ = vk

µ+1i
(δv)k

µ = dxi ∧ δiv

One has:

((δ ◦ δ)v)k
µ = dxi ∧ dxj ∧ vk

µ+1i+1j
≡ 0

and thus δ ◦ δ = 0. The cohomology at ΛsT ∗ ⊗ gq+r of the corresponding sequence is denoted by Hs
q+r(gq) as it

only depends on gq which is said to be s-acyclic if H1
q+r = ... = Hs

q+r = 0, ∀r ≥ 0, involutive if it is n-acyclic and
finite type if gq+r = 0 for r big enough. Contrary to 2-acyclicity, involutivity can be checked by means of a finite
algorithm and gq+r becomes involutive for r big enough whenever gq is not involutive.

Indeed, let us define locally:

(gq)
i
= {v ∈ gq | δ1v = 0, ..., δiv = 0}

with (gq)
0

= gq, (gq)
n

= 0 and introduce the local characters:

αi
q = dim(gq)

i−1 − dim(gq)
i

that satisfy the inequalities: α1
q ≥ ... ≥ α

n
q ≥ 0.

Then gq is involutive if and only if there exists a system of local coordinates, called δ-regular, such that:

dim(gq+1) = α1
q + 2α2

q + ...+ nαn
q

or, equivalently, if we have the following short exact sequences:

0 −→ (gq+1)
i −→ (gq+1)

i−1 δi−→ (gq)
i−1 −→ 0

The latter definition is the modern version of the multiplicative and nonmultiplicative variables used by Janet that
we now recall and illustrate [5].

For this, let us order the vk
µ according to the lexicographic order on µ, k and let us solve in cascade the vari-

ous linear equations defining gq with respect to the highest vk
µ each time. Then, let us associate with each such

solved equation the multiplicative variables (x1, ..., xi) if the highest vk
µ is of class i, that is to say is such that

µ1 = ... = µi−1 = 0 with µi 6= 0. Of course, this choice will highly depend on the local coordinates that we can
always change linearly. One can prove that the following definitionis equivalent to the previous one.

Definition 3.3.3: gq is said to be involutive if its first prolongation with respect to the only multiplicative vari-
ables is producing gq+1. In that case, the system of coordinates is said to be δ-regular.

Remark 3.3.4: The case of a finite type symbol is the only situation where one can test 2-acyclicity because one
can prove easily that the prolongation of a finite type symbol becomes involutive only when the symbol becomes
zero [18,19]. Also, when n = 2, we notice that the symbol of the system y11 = 0, y12 = 0 is involutive though
(x1, x2) is not δ-regular as we may exchange x1 and x2 to check the preceding definition.



Example 3.3.5: With n = 3, q = 2,m = 1, we provide an example of a symbol which is finite type and 2-acyclic
but not involutive. For this, let us consider the symbol g2 defined by the 3 equations:

v33 − v11 = 0, v23 = 0, v22 − v11 = 0

We easily obtain dim(g2) = 3 with only parametric jets v11, v12, v13, then dim(g3) = 1 with only parametric jet
v111 and, surprisingly, g4 = 0. It follows that g2 is finite type but cannot be involutive because, if it were so, all
the Spencer δ-sequences should be exact, in particular the one finishing at Λ3T ∗⊗ g3. Counting the dimensions in
this sequence, we should obtain g3 = 0 and a contradiction. A similar comment should prove that g3 is of course
finite type but not involutive too but we now prove that g3 is 2-acyclic. For this, using the sequence:

0→ g5 → T ∗ ⊗ g4 → Λ2T ∗ ⊗ g3 → Λ3T ∗ ⊗ g2 → 0

and the fact that g4 = 0 ⇒ g5 = 0, we just need to prove that the last map on the right is an isomorphism.
However, the kernel of this map is defined by the 3 equations:

v11,123 = v111,23 + v112,31 + v113,12 = 0

v12,123 = v121,23 + v122,31 + v123,12 = 0

v13,123 = v131,23 + v132,31 + v133,12 = 0

that is to say:
v111,23 = 0, v111,31 = 0, v111,12 = 0

Hence, the last map on the right, being a monomorphism between two spaces of the same dimension 3 is an
isomorphism and H2

3 (g2) = 0.

The key (absolutely nontrivial) theorem from which all results can be obtained is the following one that can
also be extended to nonlinear systems [18,24]:

Theorem 3.3.6: If gq is 2-acyclic, then (R
(1)
q )+r = R

(1)
q+r, ∀r ≥ 0 .

Definition 3.3.7: A system is said to be formally integrable if R
(1)
q+r = Rq+r , ∀r ≥ 0 and involutive if it is formally

integrable with an involutive symbol.

Accordingly, we have the following criterion for formal integrability which is crucial for applications [18,19,24]:

Corollary 3.3.8: If gq is 2-acyclic and R
(1)
q = Rq , then Rq is formally integrable.

A delicate inductive use of this criterion provides [18,19]:

Corollary 3.3.9: There is a finite algorithm providing two integers r, s ≥ 0 such that the system R
(s)
q+r is formally

integrable (involutive) with the same solutions as Rq .

Example 3.3.10: In order to help the reader maturing these new concepts, we illustrate the preceding effective
results by showing out, in the case of the Janet motivating example 2.4, that r = 3, s = 2 with, totally unexpect-

edly, g
(2)
5 = 0.

For this, if Φ : E → F is a morphism between vector bundles, we define the r-prolongation ρr(Φ) : Jq+r(E)→
Jr(F ) by means of the local induction Φ : Aτµ

k (x)yk
µ = uτ ⇒ ρr(Φ) : Aτµ

k (x)yk
µ+ν + ...+∂νA

τµ
k (x)yk

µ for 0 ≤| ν |≤ r,
according to the well known Leibnitz rules of derivations.

Also, if Φ : E → F is a morphism of vector bundles, we may introduce, as in the subsection 1.3.2, K =
ker(Φ), Q = coker(Φ) = F/im(Φ) in the following ker-coker long exact sequence of vector budles:

0→ K → E → F → Q→ 0

where one checks the equality dim(K)−dim(E)+dim(F )−dim(Q) = 0 because dim(E)−dim(K) = dim(im(Φ)) =
dim(F )− dim(Q).



Finally, introducing Jq
q+r(E) = ker(πq+r

q , it is easy to check that Jq
q−1(E) = SqT

∗⊗E and we recall the various
above results and definitions in the following commutative diagram diag(q, r, s) where we have set F = Jq(E)/Rq:

0 0 0
↓ ↓ ↓

0 −→ Rq+r
q+r+s −→ Jq+r

q+r+s(E) −→ Jr
r+s(F )

↓ ↓ ↓

−→ Rq+r+s −→ Jq+r+s(E)
ρr+s(Φ)
−→ Jr+s(F ) −→ Qr+s −→ 0

↓ ↓ πq+r+s
q+r ↓ πr+s

r ↓

0 −→ Rq+r −→ Jq+r(E)
ρr(φ)
−→ Jr(F ) −→ Qr −→ 0

↓ ↓ ↓
0 0

We have gq+r = Rq+r−1
q+r and the short exact sequences seq(q, r, s):

0 −→ Rq+r
q+r+s −→ Rq+r+s −→ R

(s)
q+r −→ 0

In the Janet example, n = 3, dim(E) = m = 1, dim(F ) = 2, q = 2. We remember that dim(Jq(E)) = (n +
q)!/n!q! and we can easily use computer algebra in order to obtain the numbers dim(im(ρr(Φ))) = dim(Jq+r(E))−
dim(Rq+r) for r = 0, 1, ..., 6, that is successively 2, 8, 20, 39, 66, 102, 147.
We are now ready for applying inductively the preceding theorem and criterion of formal integrability to R2 until

we reach R
(2)
5 and prove that it is formally integrable with involutive (in fact zero !) symbol or simply involutive.

Let us consider R2 with dim(R2) = 10 − 2 = 8. Then seq(2, 0, 1) gives: dim(R
(1)
2 ) = dim(R3) − dim(g3) =

12− (10− 6) = 8 = dim(R2) and thus R
(1)
2 = R2. However, we have for g2:

{

v33 − x2v11 = 0
v22 = 0

x1 x2 x3

x1 x2 .

and g2 is not involutive because we have for g3:































v333 − x2v113 = 0
v233 − x2v112 = 0
v223 = 0
v222 = 0
v133 − x2v111 = 0
v122 = 0

x1 x2 x3

x1 x2 .
x1 x2 .
x1 x2 .
x1 . .
x1 . .

and dim(g3) = 10− 6 = 4 instead of 10− 5 = 5. Hence R2 is not formally integrable. Indeed, R
(1)
3 ⊂ R3 because

seq(2, 1, 1) gives: dim(R
(1)
3 ) = dim(R4)− dim(g4) = (35 − 20)− (15− 11) = 15− 4 = 11 < 12 and we may start

afresh with R
(1)
3 .

Now we notice that g3 is involutive because dim(g4) = 15 − 11 = 4 = 15 − nb of multiplicative variables for g3.

We may thus apply the prolongation theorem to R3 and get (R
(1)
3 )+r = r

(1)
3+r. In particular, if we want to apply

the formal integrability criterion to R
(1)
3 , we must study g

(1)
3 :







































v333 − x2v113 = 0
v233 = 0
v223 = 0
v222 = 0
v133 − x2v111 = 0
v122 = 0
v112 = 0

x1 x2 x3

x1 x2 .
x1 x2 .
x1 x2 .
x1 . .
x1 . .
x1 . .

g
(1)
3 is not involutive because of the non-multiplicative variable x3 for v112 = 0. However, its first prolongation

g
(1)
4 is involutive (exercise). Hence, if we want to check the criterion, we have:

π5
4((R

(1)
4 )+1) = π5

4((R
(1)
3 )+2) = π5

4(R
(1)
5 ) = R

(2)
4 ⊆ R

(1)
4



dim(R
(1)
4 ) = dim(R5)− dim(g5) = (56− 39)− 4 = 17− 4 = 13

Now the reader may check by himself that R
(2)
4 is obtained from R

(1)
4 by adding the equation y1111 = 0 and thus

dim(R
(2)
4 ) = dim(R

(1)
4 )− 1 = 12.

We may start afresh with R
(2)
4 with symbol g

(2)
4 given by:































































































v3333 = 0
v2333 = 0
v2233 = 0
v2223 = 0
v2222 = 0
v1333 − x2v1113 = 0
v1233 = 0
v1223 = 0
v1222 = 0
v1133 = 0
v1123 = 0
v1122 = 0
v1112 = 0
v1111 = 0

x1 x2 x3

x1 x2 .
x1 x2 .
x1 x2 .
x1 x2 .
x1 . .
x1 . .
x1 . .
x1 . .
x1 . .
x1 . .
x1 . .
x1 . .
x1 . .

.

We notice that g
(2)
4 is not involutive because of the non-multiplicative variable x3 for v1111 = 0. Its first prolongation

is zero and thus trivially involutive. However, we have:

(R
(2)
4 )+1 = ((R

(1)
4 )(1))+1 = ((R

(1)
4 )+1)

(1) = (R
(1)
5 )(1) = R

(2)
5

because g
(1)
4 and g3 are involutive. But we have π5

4(R
(2)
5 ) = R

(3)
4 and we deduce from diag(2, 3, 2):

dim(R
(2)
5 ) = dim(R7)− dim(R5

7) = (120− 102)− (64− 58) = 18− 6 = 12

while we deduce from diag(2, 2, 3):

dim(R
(3)
4 ) = dim(R7)− dim(R4

7) = (120− 102)− (85− 79) = 18− 6 = 12.

It follows that dim(g
(2)
5 ) = dim(R

(2)
5 )− dim(R

(3)
4 ) = 12− 12 = 0 and g

(2)
5 = 0 is trivially involutive. However, we

have:
(R

(2)
5 )+1 = (R

(2)
4 )+2 = ((R

(1)
4 )(1))+2 = ((R

(1)
4 )+2)

(1) = (R
(1)
6 )(1) = R

(2)
6

and π6
5(R

(2)
6 ) = R

(3)
5 . Using similarly diag(2, 3, 3), we get:

dim(R
(3)
5 ) = dim(R8)− dim(R5

8) = (165− 147)− (109− 103) = 18− 6 = 12

and it follows that R
(2)
5 is involutive with zero symbol. In fact, using diag(2, 4, 2), we get:

dim(R
(2)
6 ) = dim(R8)− dim(R6

8) = (165− 147)− (81− 75) = 18− 6 = 12

and we check that R
(2)
6 ' R

(2)
5 while R

(3)
5 = R

(2)
5 .

We have thus proved that the space of solutions of R2 is a 12-dimensional vector space over the constants as it

coincides with the space of solutions of the involutive system R
(2)
5 which has zero symbol.

We finally use this result in order to look for the generating compatibility conditions. Indeed, introducing u and

v as second members of R2, we may therefore add to R
(2)
5 second members involving the derivatives of u and v up

to order 7− 2 = 5. Now, as R
(2)
5 is involutive, the compatibility conditions for the second members only become

first order because the criterion only involves one prolongation. Accordingly, the compatibility conditions for R2

only involves the derivatives of u and v up to order 1 + 5 = 6 and we have successively:

Q1 = Q2 = 0, dim(Q3) = 1, ..., dim(Q6) = 21 = dim(J3(Q3) + 1.



We now specify the correspondence:

SY STEM ⇔ OPERATOR⇔MODULE

in order to show later on that certain concepts, which are clear in one framework, may become quite obscure in
the others and conversely (check this for the formal integrability and torsion concepts for example !).

Having a system of order q, say Rq ⊂ Jq(E), we can introduce the canonical projection Φ : Jq(E) −→
Jq(E)/Rq = F and define a linear differential operator D : E −→ F : ξ(x) −→ ητ (x) = Aτµ

k (x)∂µξ
k(x). When D

is given, the compatibility conditions for solving Dξ = η can be described in operator form by D1η = 0 and so on.
In general (see the preceding examples), if a system is not formally integrable, it is possible to obtain a formally
integrable system, having the same solutions, by “saturating” conveniently the given PD equations through the
adjunction of new PD equations obtained by various prolongations and such a procedure must absolutely be done
before looking for the compatibility conditions.

Starting with the work of M. Janet in 1920, effective tests have been provided for checking formal integrability
and computer algebra packages dealing with Gröbner bases can be used for such a purpose [4]. However, for
reasons that will become clear later on, formal integrability is not sufficient for having certain canonical forms of
systems and tests. We have already introduced the Spencer cohomology of the symbol as an intrinsic/coordinate
free homological tool for the previous test and now, passing from the symbol to the system, we shall provide an
equivalent local description, more useful in practice. For this, changing linearly the independent variables if nec-
essary, we shall solve the maximum number β of equations, called equations of class n, with respect to the jets of
order q and class n. Then, we shall solve the maximum number of remaining equations, called equations of class
n− 1, with respect to the jets of order q and class n− 1, and so on till we get equations of class 1, the remaining
equations being of order ≤ q − 1. For each equation of class i we shall call the variables x1, ..., xi (respectively
xi+1, ..., xn) multiplicative (non-multiplicative) while all variables will be non-multiplicative for the equations of
order ≤ q− 1. The following definition is essential and studies are in progress in order to test it through computer
algebra packages:

Definition 3.3.11: A system of PD equations is said to be involutive if its first prolongation can be achieved by
prolonging its equations only with respect to the corresponding multiplicative variables.

It can be proved that this definition is intrinsic though it must be checked in a particular system of coordinates
and this point has not been yet overcome by symbolic computations. An involutive system is formally integrable.
Also, one can prove that, in this case, the maximum number α of dependent variables that can be given arbitrar-
ily (that are differentially independent) is equal to m − β. Homogeneous systems with constant coefficients are
automatically formally integrable. One can prove [18,19]:

Proposition 3.3.12: When Rq is involutive, we shall say that D is involutive and, in this case only, we get a finite
chain of first order involutive operatorsD1, ...,Dn making up a canonical differential sequence called Janet sequence.

Proof: Let us define the vector bundle F1 by the ker/coker exact sequence of vector budles over X :

0 −→ gq+1 −→ Sq+1T
∗ ⊗ E

σ1(Φ)
−→ T ∗ ⊗ F0 −→ F1 −→ 0

where σ1(Φ) is the restriction of the first prolongation ρ1(Φ) : Jq+1(E)→ J1(F0) of the epimorphism Φ : Jq(E)→
F0. As gq is involutive and thus at least 2-acyclic, it follows from Theorem 3.2.3 by induction on r ≥ 1 that we
have the following commutative and exact diagram:

0 0 0 0
↓ ↓ ↓ ↓

0→ gq+r+1 → Sq+r+1T
∗ ⊗ E → Sr+1T

∗ ⊗ F0 → SrT
∗ ⊗ F1

↓ ↓ ↓ ↓
0→ T ∗ ⊗ gq+r → T ∗ ⊗ Sq+rT

∗ ⊗ E → T ∗ ⊗ SrT
∗ ⊗ F0 → T ∗ ⊗ Sr−1T

∗ ⊗ F1

↓ ↓ ↓
0→ Λ2T ∗ ⊗ gq+r−1 → Λ2T ∗ ⊗ Sq+r−1T

∗ ⊗ E → Λ2T ∗ ⊗ Sr−1T
∗ ⊗ F0

↓ ↓
0→ Λ3T ∗ ⊗ Sq+r−2T

∗ ⊗ E = Λ3T ∗ ⊗ Sq+r−2T
∗ ⊗ E → 0



where the vertical sequences are δ-sequences.
Using the exactness of the top rows of the preceding diagrams and the assumption of formal integrability, it now
follows by induction on r ≥ 0 that we have the following commutative and exact diagram:

0 0 0 0
↓ ↓ ↓ ↓

0 −→ gq+r+1 −→ Sq+r+1T
∗ ⊗ E

σr+1(Φ)
−→ Sr+1T

∗ ⊗ F0
σr(Ψ1)
−→ SrT

∗ ⊗ F1

↓ ↓ ↓ ↓

0 −→ Rq+r+1 −→ Jq+r+1(E)
ρr+1(Φ)
−→ Jr+1(F0)

ρr(Ψ1)
−→ Jr(F1)

↓ ↓ ↓ ↓

0 −→ Rq+r −→ Jq+r(E)
ρr(Φ)
−→ Jr(F0)

ρr−1(Ψ1)
−→ Jr−1(F1)

↓ ↓ ↓ ↓
0 0 0 0

Accordingly, the compatibility conditions of order r + 1 are nothing else than the r-prolongation ρr(Ψ1) of the
compatibility conditions of order 1, namely Ψ1 : J1(F0) → F1 and we may introduce the first order operator
D1 = Ψ1 ◦ j1. We let the reader check as an exercise that D1 is again involutive and we may successively construct
similarly the first order involutive operators D2, ...,Dn.
Finally, cutting the first of the preceding diagrams as we did in the proof of Theorem 3.2.3 and setting h1 =
im(σ1(Φ)) ⊂ T ∗⊗F0, we obtain (exercise) the crucial canonical formula Fr = ΛrT ∗⊗F0/δ(Λ

r−1T ∗⊗h1) showing
that Dn is always formally surjective.

Q.E.D.

Example 3.3.13: With n = 4,m = 1, q = 1, the system R1 defined by the two PD equations Φ2 ≡ y4−x3y2−y =
0,Φ3 ≡ y3−x4y1 = 0 is not formally integrable as one can easily check Φ1 ≡ d4Φ

2−d3Φ
3−x3d2Φ

2+x4d1Φ
3−Φ2 ≡

y2− y1 = 0. However, the system R′
1 ⊂ R1 defined by the three PD equations Φ1 = 0,Φ2 = 0,Φ3 = 0 is involutive

with 1 equation of class 4, 1 equation of class 3, 1 equation of class 2 and one checks the 3 first order compatibility
conditions:

Ψ3 ≡ d4Φ
2 − d3Φ

3 − x3d2Φ
2 + x4d1Φ

3 − Φ2 − Φ1 = 0

Ψ2 ≡ d4Φ
1 − d2Φ

3 + d1Φ
3 − x3Φ1 − Φ1 = 0

Ψ1 ≡ d3Φ
1 − d2Φ

2 + d1Φ
2 − x4d1Φ

1 = 0

This is again an involutive system with 2 equations of class 4, 1 equation of class 3 and 1 single compatibility
condition of class 4, namely:

(d4 − x
3d2 − 1)Ψ1 + (x4d1 − d3)Ψ

2 + (d2 − d1)Ψ
3 = 0

ending the construction of the Janet sequence.

Example 3.3.14: With n = 3,m = 1, q = 2, let us consider the homogeneous second order system Φ1 ≡
y22 − y11 = 0,Φ2 ≡ y23 = 0,Φ3 ≡ y33 − y11 = 0. This system is formally integrable though one needs 2 prolon-
gations to get involution (all jets of order 4 are nul !). There are 3 compatibility conditions of order two, namely
d33Φ

2− d23Φ
3− d11Φ

2 = 0, d33Φ
1− d22Φ

3 + d11Φ
3− d11Φ

1 = 0, d23Φ
1− d22Φ

2 + d11Φ
2 = 0 and this homogeneous

system is again formally integrable though not involutive.

We shall now prove that the “Kalman form” is nothing else but a particular case of the so-called “Spencer
form” existing in the formal theory of systems of PD equations, as no reference to control theory is needed.

For simplicity and in a sketchy way, we may say that the Spencer method amounts to use the canonical inclusion
Jq+1 ⊂ J1(Jq(E)) through the identification yk

µ,i = yk
µ+1i

in order to induce a canonical inclusion Rq+1 ⊂ J1(Rq)
allowing to consider Rq+1 as a first order system on Rq, whenever Rq+1 is a vector bundle. When Rq is involu-
tive, this is the Spencer form and the corresponding canonical Janet sequence is called second Spencer sequence
[18,19,24]. It is not so well known that such a method, which allows to bring a system of order q to a system of
order 1, is only truly useful when Rq is formally integrable. Indeed, in this case and only in this case, Rq+1 can
be considered as a first order system over Rq, without equations of order zero. The following example clarifies this



delicate point:

Example 3.3.15: Looking back to the preceding example, we notice that R2 −→ R1 is not surjective and, in-
troducing the parametric jets (derivatives) z1 = y, z2 = y1, z

3 = y2 for R1, then R2 ⊂ J1(R1) is defined by first
order PD equations and by the zero order equation z3− z2 = 0. On the contrary, if we introduce the new formally

integrable system R′
1 = R

(1)
1 ⊂ R1, projection of R2 in R1, the parametric jets of R′

1 are now only z1 = y, z2 = y1.
Though this is not evident at first sight, they are linked by the 7 first order PD equations:

z1
4 − x

3z2 − z1 = 0, z2
4 − x

3z2
1 − z

2 = 0, z1
3 − x

4z2 = 0, z2
3 − x

4z2
1 = 0, z1

2 − z
2 = 0, z2

2 − z
2
1 = 0, z1

1 − z
2 = 0

because dim(R′
2) = 10− 9 = 4× 2− 7 = 1.

According to the preceding comments and with no loss of generality, we consider from now on a first order
system R1 ⊂ J1(E) over E with R1 −→ E surjective and we shall bring such a system to a canonical form, noticing
that similar methods can be used for nonlinear systems too as in [19]. For this, changing linearly the system of
coordinates if necessary, we may manage to have a maximum number of PD equations solved with respect to the

jets y1
n, ..., y

βn
1

n , called equations of class n. The remaining equations only contain jets with respect to x1, ..., xn−1

and, changing again linearly the system of coordinates if necessary, we may manage to have a maximum number

of PD equations solved with respect to y1
n−1, ..., y

βn−1

1

n−1 with βn−1
1 ≤ βn

1 , called equations of class n− 1 and so on,
till we get the equations of class 1 if any. The complements to m of the β-integers are the characters (exercise).

Definition 3.3.16: A first order system is said to be involutive if it can be brought to such a canonical form
and all the equations of second order can be obtained by differentiating/prolonging the equations of class i with
respect to x1, ..., xi only, for i = 1, ..., n.

In this situation, x1, ..., xi are called multiplicative variables while xi+1, ..., xn are called non-multiplicative
variable for the equations of class i.

Example 3.3.17: The system R′
1 defined in the preceding example is easily seen to be in canonical form and invo-

lutive with characters (1, 1, 1, 0). In particular, the equation y2 − y1 = 0 is of class 2 with multiplicative variables
x1, x2 and non-multiplicative variables x3, x4. One has d3(y2− y1) ≡ d2(y3−x4y1)− d1(y3−x4y1)+x4d1(y2− y1)

Denoting by z the variables yβn+1

1 , ..., ym and using elementary properties of the characteristic variety to be
found in section 6, one can prove that the z can be chosen arbitrarily (differential transcendence basis)[ ]. More
generaly, if Rq is formally integrable with an involutive symbol, that is to say a symbol such that all the groups
of Spencer δ-cohomology vanish, the corresponding first order system Rq+1 ⊂ J1(Rq) is involutive in the above
sense.

It now remains to introduce the linear combinations ȳk = yk − term(z) for k = 1, ..., βn
1 that will allow to

“absorb” the zn in the yn. The generalization of the Kalman form finally depends on the following striking though
technical result on involutive systems that does not seem to have been previously known:

Proposition 3.3.18: The new equations of class n only contain z, z1, ..., zn−1 while the equations of class 1, ..., n−1
no more contain z or its jets.

Proof: xn is a non-multiplicative variable for the equations of class 1, ..., n − 1. Hence, if z or any jet of order
one should appear in one of the latter equations, by prolonging this equation with respect to xn and using the
involutiveness property, one should get a linear combination of equations of various classes, prolonged with respect
to x1, ..., xn−1 and this is not possible as only z, z1, ..., zn−1 do appear.

Q.E.D.

Example 3.3.19: With n = 2,m = 3, q = 1, let us consider the following linear involutive first order system in
solved form:

Φ3 ≡ y2
2 − y

2
1 + z2 − z1 − z = 0,Φ2 ≡ y1

2 − y
2
1 − z2 − z1 − z = 0,Φ1 ≡ y1

1 − y
2
1 − 2z1 = 0

In this system, Φ2 and Φ3 are of class 2 while Φ1 is of class 1. Setting ȳ1 = y1−z, ȳ2 = y2+z, we get the new system:



Φ3 ≡ ȳ2
2 − ȳ

2
1 − z = 0,Φ2 ≡ ȳ1

2 − ȳ
2
1 − z = 0,Φ1 ≡ ȳ1

1 − ȳ
2
1 = 0

and z or its jets no longer appear in Φ1.

In order to study differential modules, for simplicity we shall forget about changes of coordinates and consider
trivial bundles. Let K be a differential field with n commuting derivations ∂1, ..., ∂n, that is to say K is a field
and ∂i : K → K satisfies ∂i(a + b) = ∂ia+ ∂ib, ∂i(ab) = (∂ia)b + a∂ib, ∀a, b ∈ K, ∀i = 1, ..., n (say Q,Q(x1, ..., xn)
or Q(a) in the previous examples). If d1, ..., dn are formal derivatives (pure symbols in computer algebra packages
!) which are only supposed to satisfy dia = adi + ∂ia in the operator sense for any a ∈ K, we may consider the
(non-commutative) ring D = K[d1, ..., dn] of differential operators with coefficients in K. If now y = (y1, ..., ym) is
a set of differential indeterminates, we let D act formally on y by setting dµy

k = yk
µ and set Dy = Dy1 + ...+Dym.

Denoting simply by DDy the subdifferential module generated by all the given OD or PD equations and all their
formal derivatives, we may finally introduce the D-module M = Dy/DDy.

Example 3.3.20: In the Motivating Examples 1 with K = Q(x1, x2) and 2 with K = Q, we get M = 0, while in
the Motivating Example 3 with K = Q(x1, x2, x3), we get dimK(M) = 12.

More generally, with similar definitions, if A is a differential ring, we can consider D = A[d] to be the ring of
differential operators with coefficients in A and D is noetherian (is an integral domain) whenever A is noetherian
(is an integral domain).
It just remains to prove that even in this non-commutative case, one can also define localization and the torsion
submodule. We achieve this in the previous situation of differential operators over a differential field K by means
of the following proposition:

Proposition 3.3.21: D = K[d] is an Ore ring, that is to say, given any nonzero P,Q ∈ D, then one can find
A,B ∈ D such that AP = BQ.

proof: Let us consider the system with second members Py = u,Qy = v and its prolongations as a linear system
over K for the jets of y, u, v. If deg(P ) = p, deg(Q) = q, we may suppose that p ≤ q and, if we prolong r times,
the number of jets of y of order q + r is equal to (n+ q + r)!/n!(q + r)! = (q + r + 1)...(q + r + n)/n! = 1

n!r
n + ....

Meanwhile, the number of jets of order r of u and v is equal to 2(n+ r)!/n!r! = 2
n!r

n + .... Hence, when r is large
enough, the second number is greater than the first and we can eliminate the jets of y by using Cramer’s rule over
K. Accordingly, one can find at least one compatibility condition of the form Au−Bv = 0 and thus AP = BQ.

Q.E.D.

The application of the preceding results on localization to D and S = D − {0} is immediate and we refer the
reader to [19] for more general situations.

I.4 PROBLEM FORMULATION

Though it seems that we are very far from any possible application, let us now present three problems which,
both with the previous examples, look like unrelated with what we already said and between themselves.

Problem 4.1: Let a rigid bar of length L be able to slide horizontally and attach at the end of abcissa x (resp.
x + L) a pendulum of length l1 (resp. l2) with mass m1 (resp. m2), making an angle θ1 (resp. θ2) with the
downwards vertical axis. Projecting the dynamical equations on the perpendicular to each pendulum in order to
eliminate the respective tension, we get:

m1(ẍcosθ1 + l1θ̈1) +m1gsinθ1 = 0

where g is the gravity. When θ1 and θ2 are small, we get the following two OD equations that only depend on l1
and l2 but no longer on m1 and m2:

{

ẍ+ l1θ̈1 + gθ1 = 0

ẍ+ l2θ̈2 + gθ2 = 0

Now it is easy to check experimentally that, when l1 6= l2, it is possible to bring any small amplitude motion
θ1 = θ1(t), θ2 = θ2(t) of the two pendula back to equilibrium θ1 = 0, θ2 = 0, just by choosing a convenient x = x(t)



and the system is said to be controllable. On the contrary, if l1 = l2 and unless θ1(t) = θ2(t), then it is impossible
to bring the pendula back to equilibrium and the system is said to be uncontrollable. A similar question can be
asked when l1 = l1(t), l2 = l2(t) are given, the variation of length being produced by two small engines hidden in
the bar.
Hence, a much more general question concerns the controllability of control systems defined by systems of OD or
PD equations as well, like in gasdynamic or magnetohydrodynamic.
In our case, setting x1 = x+ l1θ1, x2 = x+ l2θ2, we get:

{

ẍ1 + (g/l1)x1 − (g/l1)x = 0
ẍ2 + (g/l2)x2 − (g/l2)x = 0

and may set ẋ1 = x3, ẋ2 = x4 in order to bring the preceding system to Kalman form with 4 first order OD
equations. The controllability condition is then easily seen to be l1 6= l2 but such a result not only seems to
depend on the choice of input and output but cannot be extended to PD equations.

Problem 4.2: Any engineer knows about the first set of Maxwell equations:

~∇. ~B = 0, ~∇∧ ~E +
∂ ~B

∂t
= 0

and the fact that any solution can be written in the form:

~B = ~∇∧ ~A, ~E = −~∇.V −
∂ ~A

∂t

for an arbitrary vector ~A and an arbitrary function V .
According to special relativity, these equations can be condensed on space-time by introducing a 1-form A for
the potential and a 2-form F for the field in order to discover that the above Mawell equations can be written in
the form dF = 0 and admit the “generic” solution dA = F where d is the exterior derivative. Hence, we have
“parametrized” the field equations by means of a “potential”, that is the field equations generate the compatibility
conditions of the inhomogeneous system allowing to express the field (right member) by means of the potential
(left member).

Similarly, in 2-dimensional elasticity theory, if we want to solve the stress equations with no density of force,
namely:

∂1σ
11 + ∂2σ

21 = 0 , ∂1σ
12 + ∂2σ

22 = 0

we may use the first PD equation to get:

∃ϕ , σ11 = ∂2ϕ , σ21 = −∂1ϕ

and the second PD equation to get:

∃ψ , σ12 = −∂2ψ , σ22 = ∂1ψ

Now, σ12 = σ21 ⇒ ∃φ , ϕ = ∂2φ , ψ = ∂1φ
and we finally get the generic parametrization by the Airy function:

σ11 = ∂22φ , σ12 = σ21 = −∂12φ , σ22 = ∂11φ

The reader will have noticed that such a specific computation cannot be extended in general, even to 3-dimensional
elasticity theory.

In 1970 J. Wheeler asked a similar question for Einstein equations in vacuum and we present the linearized
version of this problem.
Indeed, if ω = (dx1)2 +(dx2)2 +(dx3)2− (dx4)2 with x4 = ct, where c is the speed of light, is the Minkowski metric
of space-time, we may consider a perturbation Ω of ω and the linearized Einstein equations in vacuum become
equivalent to the following second order system with 10 equations for 10 unknowns:

ωrs(dijΩrs + drsΩij − driΩsj − dsjΩri)
−ωij(ω

rsωuvdrsΩuv − ωruωsvdrsΩuv) = 0



Surprisingly, till we gave the (negative) answer in 1995 [17], such a problem had never been solved before.
More generally, if one considers a system of the form D1η = 0, the question is to know whether one can parametrize
or not the solution space by Dξ = η with arbitrary potential-like functions ξ, in such a way that D1η = 0 just
generates the compatibility conditions of the parametrization. The problem of multiple parametrizations may also
be considered, as an inverse to the construction of differential sequences. For example, in vector calculus, the div
operator is parametrized by the curl operator which is itself parametrized by the grad operator (See [19,21,22] for
more details).

Problem 4.3: When M is an A-module, there is a canonical morphism ε = εM : M −→ M∗∗ given by
ε(x)(f) = f(x), ∀x ∈ M, ∀f ∈ M∗ and M is said to be torsionless if ε is injective and reflexive if ε is bijective.
Any finitely projective module is reflexive but a reflexive module may not be projective. We have t(M) ⊆ ker(ε)
because, if x ∈ M is a torsion element for a 6= 0, then af(x) = f(ax) = f(0) = 0⇒ f(x) = 0, ∀f ∈ M∗ as before
and ε fails to be injective. Hence, it just remains to study whether this inclusion is strict or not.

The striking result of this lecture is to prove that THESE THREE PROBLEMS ARE IDENTICAL !.

I.5 PROBLEM SOLUTION

The main but highly not evident trick will be to introduce the adjoint operator D̃ = ad(D) by the formula of
integration by part:

< λ,Dξ >=< D̃λ, ξ > +div( )

where λ is a test row vector and <> denotes the usual contraction. The adjoint can also be defined formally, as
in computer algebra packages, by setting ad(a) = a, ∀a ∈ K, ad(di) = −di, ad(PQ) = ad(Q)ad(P ), ∀P,Q ∈ D.
Another way is to define the adjoint of an operator directly on D by setting P =

∑

0≤|µ|≤p a
µdµ −→ ad(P ) =

∑

0≤|µ|≤p(−1)|µ|dµa
µ for any P ∈ D with ord(P ) = p and to extend such a definition by linearity.

We shall denote by N the differential module defined from ad(D) exactly like M was defined from D, we have
[7,13,14,19]:

Theorem 5.1: The following statements are equivalent:
• A control system is controllable.
• The corresponding operator is simply (doubly) parametrizable.
• The corresponding module is torsion-free (reflexive).

Proof: Let us start with a free presentation of M :

F1
d1−→ F0 −→M −→ 0

By definition, we have M = coker(d1) =⇒ N = coker(d∗1) and we may exhibit the following free resolution of N :

0←− N ←− F ∗
1

d∗

1←− F ∗
0

d∗

0←− F ∗
−1

d∗

−1

←− F ∗
−2

where M∗ = ker(d∗1) = im(d∗0) ' coker(d
∗
−1). The deleted sequence is:

0←− F ∗
1

d∗

1←− F ∗
0

d∗

0←− F ∗
−1

d∗

−1

←− F ∗
−2

Applying homA(•, A) and using the canonical isomorphism F ∗∗ ' F for any free module F , we get the sequence:

0 −→ F1
d1−→ F0

d0−→ F−1
d−1

−→ F−2

↓ ↑

M
ε
−→ M∗∗

↓ ↑
0 0

Denoting as usual a coboundary space by B, a cocycle space by Z and the corresponding cohomology by H = Z/B,
we get the commutative and exact diagram:

0 −→ B0 −→ F0 −→ M −→ 0
↓ ‖ ↓ ε

0 −→ Z0 −→ F0 −→ M∗∗



An easy chase provides at once H0 = Z0/B0 = ext1A(N,A) ' ker(ε). It follows that ker(ε) is a torsion module
and, as we already know that t(M) ⊆ ker(ε) ⊆ M , we finally obtain t(M) = ker(ε). Also, as B−1 = im(ε) and
Z−1 ' M∗∗, we obtain H−1 = Z−1/B−1 = ext2A(N,A) ' coker(ε). Accordingly, a torsion-free (reflexive) module
is described by an operator that admits a single (double) step parametrization.

Q.E.D.

This proof also provides an effective test for applications by using D and ad instead of A and ∗ in the differ-
ential framework. In particular, a control system is controllable if it does not admit any “autonomous element”,
that is to say any finite linear combination of the control variables and their derivatives that satisfies, for itself,
at least one OD or PD equation. More precisely, starting with the control system described by an operator D1,
one MUST construct D̃1 and then D such that D̃ generates all the compatibility conditions of D̃1. Finally, M is
torsion-free if and only if D1 generates all the compatibility conditions of D. Though striking it could be, this is
the true generalization of the standard Kalman test.

Example 5.2: If D1 : (σ11, σ12 = σ21, σ22) → (∂1σ
11 + ∂2σ

21, ∂1σ
12 + ∂2σ

22) is the stress operator, then
D̃1 : (ξ1, ξ2) → (∂1ξ

1 = ε11,
1
2 (∂1ξ

2 + ∂2ξ
1) = ε12 = ε21, ∂2ξ

2 = ε22) is half of the Killing operator. The only

compatibility condition for the strain tensor ε is D̃ε = 0⇔ ∂11ε22 + ∂22ε11− 2∂12ε12 = 0 and D describes the Airy
parametrization.

Now, in order to have a full picture of the correspondence existing between differential modules and differential
operators, it just remains to explain why and how we can pass from left to right modules and conversely. By this
way, we shall be able to take into account the behaviour of the adjoint of an operator under changes of coordinates.
We start with a technical lemma (exercise):

Lemma 5.3: If f ∈ aut(X) is a local diffeomorphism of X , we may set y = f(x) ⇒ x = f−1(y) = g(y) and
introduce the jacobian ∆(x) = det(∂if

k(x)) 6= 0. Then, we have the identity:

∂

∂yk
(

1

∆(g(y))
∂if

k(g(y)) ≡ 0.

Accordingly, we notice that, if D : E → F is an operator, the way to obtain the adjoint through an integration
by parts proves that the test function is indeed a section of the adjoint bundle F̃ = F ∗⊗ΛnT ∗ and that we get an
operator ad(D) : F̃ → Ẽ. This is in particular the reason why, in elasticity, the deformation is a covariant tensor
but the stress is a contravariant tensor density and, in electromagnetism, the EM field is a covariant tensor (in
fact a 2-form) but the induction is a contravariant tensor density.
Also, if we define the adjoint formally, we get, in the operator sense:

ad(
1

∆
∂if

k ∂

∂yk
) = −

∂

∂yk
◦ (

1

∆
∂if

k) = −
1

∆
∂if

k ∂

∂yk
= −

1

∆

∂

∂xi

and obtain therefore:

∂

∂xi
= ∂if

k(x)
∂

∂yk
⇒ ad(

∂

∂xi
) = −

∂

∂xi
= ∆ad(

1

∆
∂if

k(x)
∂

∂yk
)

a result showing that the adjoint of the gradient operator d : Λ0T ∗ → Λ1T ∗ is minus the exterior derivative
d : Λn−1T ∗ → ΛnT ∗.

If A is a differential ring and D = A[d] as usual, we may introduce the ideal I = {P ∈ D|P (1) = 0} and obtain
A ' D/I both with the direct sum decomposition D ' A ⊕ I. In fact, denoting by Dq the submodule over A of
operators of order q, A can be identified with the subring D0 ⊂ D of zero order operators and we may consider
any differential module over D as a module over A, just “ forgetting” about its differential structure. Caring about
the notation, we shall set T = D1/D0 = {ξ = aidi|ai ∈ A} with ξ(a) = ξi∂ia, ∀a ∈ A, so that D can be generated
by A and T .

The module counterpart is much more tricky and is based on the following theorem [19]:

Theorem 5.4: If M and N are right D-modules, then homA(M,N) becomes a left D-module.



Proof: We just need to define the action of ξ ∈ T by the formula:

(ξf)(m) = f(mξ)− f(m)ξ, ∀m ∈M

Indeed, setting (af)(m) = f(m)a = f(ma) and introducing the bracket (ξ, η) → [ξ, η] of vector fields, we let the
reader check that a(bf) = (ab)f, ∀a, b ∈ A and that we have the formulas:

ξ(af) = (ξ(a) + aξ)f, (ξη − ηξ)f = [ξ, η]f, ∀a ∈ A, ∀ξ, η ∈ T

in the operator sense.
Q.E.D.

Finally, if M is a left D-module, according to the comment following lemma 3.1.13, then M∗ = homD(M,D)
is a right D-module and thus N = Nr is a right D-module. However, we have the following technical proposition:

Proposition 5.5: ΛnT ∗ has a natural right module structure over D.

Proof: If α = adx1∧...∧dxn ∈ T ∗ is a volume form with coefficient a ∈ A, we may set α.P = ad(P )(a)dx1∧...∧dxn .
As D is generated by A and T , we just need to check that the above formula has an intrinsic meaning for any
ξ ∈ T . In that case, we check at once:

α.ξ = −∂i(aξ
i)dx1 ∧ ... ∧ dxn = −L(ξ)α

by introducing the Lie derivative of α with respect to ξ, along the intrinsic formula L(ξ) = i(ξ)d+ di(ξ) where i()
is the interior multiplication and d is the exterior derivative of exterior forms. According to well known properties
of the Lie derivative, we get :

α.(aξ) = (α.ξ).a− α.ξ(a), α.(ξη − ηξ) = −[L(ξ),L(η)]α = −L([ξ, η])α = α.[ξ, η].

Q.E.D.

According to the preceding theorem and proposition, the left differential module corresponding to ad(D) is not
Nr but rather Nl = homA(ΛnT ∗, Nr). When D is a commutative ring, this side changing procedure is no longer
needed.

Of course, keeping the same module M but changing its presentation or even using an isomorphic module M ′

(2 OD equations of order 2 or 4 OD equations of order 1 as in the case of the double pendulum), then N may
change to N ′. The following result, totally unaccessible to intuition, justifies “a posteriori” the use of the extension
functor by proving that the above results are unchanged and are thus “intrinsic” [19,22].

Theorem 5.6: N and N ′ are projectively equivalent, that is to say one can find projective modules P and P ′ such
that N ⊕ P ' N ′ ⊕ P ′.

Proof: According to Schanuel lemma, we can always suppose, with no loss of generality, that the resolution of M
projects onto the resolution of M ′. The kernel sequence is a splitting sequence made up with projective modules
because the kernel of the projection of Fi onto F ′

i is a projective module Pi for i = 0, 1. Such a property still
holds when applying duality. Hence, if C is the kernel of the epimorphism from P1 to P0 induced by d1, then C
is a projective module and the top short exact sequence splits in the following commutative and exact diagram:

0 0 0
↓ ↓ ↓

0 → C → P1 → P0 → 0
↓ ↓ ↓ ↓

0 → K → F1
d1→ F0 → M → 0

↓ ↓ ↓ ↓

0 → K ′ → F ′
1

d′

1→ F ′
0 → M ′ → 0

↓ ↓ ↓ ↓
0 0 0 0



Applying homA(•, A) to this siagram while taking into account Corollary 3.1.15, we get the following commutative
and exact diagram:

0 0 0
↑ ↑ ↑

0 ← C∗ ← P ∗
1 ← P ∗

0 ← 0
↑ ↑ ↑ ↑

0 ← N ← F ∗
1

d∗

1← F ∗
0 ← M∗ ← 0

↑ ↑ ↑ ↑

0 ← N ′ ← F ′
1
∗ d′

1

∗

← F ′
0
∗ ← M ′∗ ← 0

↑ ↑ ↑ ↑
0 0 0 0

In this diagram C∗ is also a projective module, the upper and left short exact sequences split and we obtain
N ' N ′ ⊕ C∗.

Q.E.D.

Remark 5.7: When A is a principal ideal ring, it is well known (See [3,23] for more details) that any torsion-free
module over A is free and thus projective. Accordingly, the kernel of the projection of F0 onto M is free and we
can always suppose, with no loss of generality, that d1 and d′1 are monomorphisms [8]. In that case, there is an
isomorphism P0 ' P1 in the proof of the preceding theorem and C = 0 ⇒ C∗ = 0, that is to say N ' N ′. This
is the very specific situation only considered by OD control theory where the OD equations defining the control
systems are always supposed to be differentially independent (linearly independent over D).

Accordingly, using the properties of the extension functor, we get:

Corollary 5.8: extiA(N,A) ' extiA(N ′, A) ∀i ≥ 1.

We finally apply these results in order to solve the three preceding problems.

Solution 5.9: As the operator D of the control system is surjective, it follows that the map d1 of the presentation
is injective. When K = R and n = 1, then D can be identified with a polynomial ring in one indeterminate and
is therefore a principal ideal domain (any ideal can be generated by a single polynomial). In this case, it is well
known, as we just said, that any torsion-free module is indeed free and thus projective. The short exact sequence
of the presentation splits, with a similar comment for its dual sequence. Accordingly, M is torsion-free if and only
if N = 0 and it just remains to prove that D̃ is injective. We have to solve the system:







x −→ λ̈1 + λ̈2 = 0

θ1 −→ l1λ̈1 + gλ1 = 0

θ2 −→ l2λ̈2 + gλ2 = 0

Multiplying the second OD equation by l2, the third by l1 and adding them while taking into account the first
OD equation, we get:

l2λ1 + l1λ2 = 0

Differentiating this OD equation twice while using the second and third OD equations, we get:

(l2/l1)λ1 + (l1/l2)λ2 + 0

The determinant of this linear system for λ1 and λ2 is just l1 − l2, hence the system is controllable if and only if
l1 6= l2.
Conversely, if l1 = l2 = l, the corresponding module has torsion elements. In particular, setting θ = θ1 − θ2 and
substracting the second dynamic equation from the first, we get lθ̈+ gθ = 0. Hence θ is a torsion element which is
solution of an autonomous OD equation, that is an OD equation for itself which cannot therefore be “controlled”
by any means.
We now study the problem of a double-pendulum when one of the pendula has a variable length, namely , setting
l1 = l(t), l2 = 1, g = 1, we study the system:

ẍ+ l(t)θ̈1 + θ1 = 0, ẍ+ θ̈2 + θ2 = 0



Multiplying these two OD equations by test functions λ1, λ2 and integrating by part, we obtain for the kernel of
the adjoint operator:

λ̈1 + λ̈2 = 0, lλ̈1 + 2l̇λ̇1 + (l̈ + 1)λ1 = 0, λ̈2 + λ2 = 0

Eliminating λ2 among the first and third OD equations, we get at once for λ = λ1 the system:

λ(4) + λ̈ = 0, lλ̈+ 2l̇λ̇+ (l̈ + 1)λ = 0

which is surely not formally integrable.
Differentiating twice the second OD equation, we successively get:

lλ(3) + 3l̇λ̈+ (3l̈+ 1)λ̇+ l(3)λ = 0

lλ(4) + 4l̇λ(3) + (6l̈+ 1)λ̈+ 4l(3)λ̇+ l(4)λ = 0

Using the first OD equation of order 4, we get:

4l̇λ(3) + (6l̈ − l + 1)λ̈+ 4l(3)λ̇+ l(4)λ = 0

Using the previous OD equation of order 3, we get:

(6ll̈ − 12l̇2 − l2 + l)λ̈+ (4ll(3) − 12l̇l̈ − 4l̇)λ̇+ (ll(4) − 4l̇l(3))λ = 0

Using the previous OD equation of order 2, we get:

(4l2l(3) − 24ll̇l̈ − 6ll̇+ 2l2l̇ + 24l̇3)λ̇+ (l2l(4) − 4ll̇l(3) − (l̈ + 1)(6ll̈− 4l̇2 − l2 + l))λ = 0

It remains to differentiate this OD equation, substitute the λ̈ obtained from the first OD equation of order 2 found
for λ and eliminate λ̇, λ in the resulting linear system of two OD equations by equating to zero the corresponding
determinant. We should obtain for l(t) A HIGHLY NONLINEAR OD EQUATION OF ORDER 5. The MAPLE
output has been produced by Daniel Robertz (daniel@momo.math.rwth-aachen.de) and covers half a page !.
Of course, no computer algebra technique may work in order to look for all the solutions of this OD equation or
even have any idea of possible solutions. By chance, in this specific case, exactly as in [19, Example 1.104 where
one should point out a confusion as the adjoint operator corresponds to the reduced Kalman type system with
variable length and not to the bipendulum, though the conceptual approach is similar], there is a way to find out
directly the general solution by integrating the system for λ1 = λ, λ2 and l. From the third OD equation, we get:

λ2 = αcost+ βsint

where α and β are arbitrary constants and thus, from the first OD equation, we therefore obtain:

λ = at+ b− αcost− βsint

where a and b are again arbitrary constants. Accordingly, we get:

(d2/dt2)(lλ) = −λ = −at− b+ αcost+ βsint

and thus, with two new arbitrary constants c and d, we get:

lλ = −
1

6
at3 −

1

2
bt2 + ct+ d− αcost− βsint

We finally get the general solution:

l(t) =
− 1

6at
3 − 1

2bt
2 + ct+ d− αcost− βsint

at+ b − αcost− βsint

For example, if a = b = 0, we get:

l(t) = 1−
ct+ d

αcost+ βsint

but other possibilities may be of interest and could be tested or simulated, provided l(t) ≥ 0. Of course, if l(t) = 1,
we get a = b = c = d = 0 ⇒ λ1 + λ2 = 0 while, if l(t) = cst 6= 1, we also get α = β = 0 ⇒ λ1 = λ2 = 0 in a



coherent way with the constant coefficient case.

Solution 5.10: After a short computation left to the reader as an exercise, one checks easily that the Einstein
operator is self-adjoint because the 6 terms are just exchanged between themselves. Then, it is well known that
the compatibility condition is made by the standard divergence operator and its adjoint is the Killing operator
(Lie derivative of the Minkowski metric) which admits the linearized Riemann curvature (20 PD equations) as
compatibility conditions and not the Einstein equations (10 PD equations only). Hence, the Einstein operator
cannot be parametrizable and it follows that Einstein equations cannot be any longer considered as field equations
(For a computer algebra solution, see [27]).

Solution 5.11: It has already been provided by the preceding theorems.

Remark 5.12: Writing a Kalman type system in the form −ẋ + Ax + Bu = 0 and multiplying on the left by a
test row vector λ, the kernel of the adjoint operator is defined by the system:

λ̇+ λA = 0, λB = 0

Differentiating the second equations, we get:

λ̇B = 0 =⇒ λAB = 0 =⇒ λA2B = 0 =⇒ ...

and we discover that the Kalman criterion just amounts to the injectivity of the adjoint operator. Hence, in
any case, controllability only depends on formal integrability. Comparing with the Motivating Examples, we
notice that, when a constant coefficient operator is injective, the fact that we can find differentially independent
compatibility conditions is equivalent to the Quillen-Suslin theorem saying roughly that a projective module
over a polynomial ring is indeed free (See [9,23] for details). More generally, by duality we obtain at once
t(M) ' ext1A(N,A) ⇔ t(N) ' ext1A(M,A) and this result is coherent with the introduction of this lecture
provided we say that a control system is “observable” if ext1A(M,A) = 0. Finally, in the case of the linearized
system with variable coefficients provided at the end of section 2, multilying by a test function λ and integrating
by parts, we have to study the system :

U −→ λ̇+ ẏλ = 0, Y −→ uλ̇+ u̇λ = 0.

Multiplying the first OD equation by u and substracting the second, we get aλ = 0 and the linearized system is
controllable if and only if a 6= 0.

We now explain the link existing between localization and parametrization [21]. This result will prove at once
that localization is the good substitute for superseding the transfer matrix approach and can even be used for
systems with variable coefficients. The main idea is contained in the following technical proposition:

Proposition 5.15: If A is an integral domain with quotient field K = Q(A) and M is a finitely generated torsion-
free module over A, then M can be embedded into a free module of the same rank.

Proof: As t(M) = 0, the module M = (x1, ..., xn) can be identified with a submodule of K⊗AM . Also, as K⊗AM
is a vector space over K, the x1, ..., xn may not be lineary independent overK and we may select a basis (e1, ..., em)
with rkA(M) = m ≤ n. We have therefore xi =

∑m
j=1 b

j
iej with bji ∈ K. We may reduce all these coefficients to

the same denominator s ∈ S = A− {0} and write xi =
∑ aj

i

s ei =
∑

aj
i ēj with aj

i ∈ A. Accordingly, M becomes a
submodule of the free module generated over A by the ē which are linearly independent over K and thus over A.

Q.E.D.

When D is used in place of A with S = D−{0}, the expression xi =
∑m

j=1 a
j
i ēj just describes the parametriza-

tion of the corresponding system by m potentials. In the non-commutative case, the technique relies on the
following lemma that essentially uses the adjoint operator:

Lemma 5.16: S−1D ' DS−1.

Proof: Let U ∈ S and P ∈ D. We may consider the adjoint operators Ũ = ad(U) ∈ S and P̃ = ad(P ) ∈ D. Taking
into account the Ore property of S ⊂ D, we may find Ṽ = ad(V ) ∈ S and Q̃ = ad(Q) ∈ D such that Ṽ P̃ = Q̃Ũ



and obtain therefore PV = UQ, that is to say U−1P = QV −1.
Q.E.D.

Example 5.17: With n = 2,m = 2,K = Q(x1, x2), let us consider the system d1y
1 − d2y

2 − x2y1 = 0. We have
d2y

2 = d1y
1 − x2y1 and thus y2 = d−1

2 (d1 − x2)y1. Using the above lemma, we obtain (exercise) the identity:

(d1 − x
2)d22 = d2(d12 − x

2d2 + 1)

We have therefore y2 = (d12 − x2d2 + 1)d−1
22 y

1. Hence, setting d−1
22 y

1 = z, we get the parametrization:

y1 = d22z, y2 = (d12 − x
2d2 + 1)z

This parametrization is of course not unique and one could exhibit the other (very different) parametrization:

y1 = (d12 − x
2d2 − 2)z, y2 = (d11 − 2x2d1 + (x2)2)z

In both cases, we check that the corresponding compatibility conditions are indeed generated by the given system.

We have therefore exhibited a kind of non-commutative SISO transfer function for a system with variable
coefficients. In actual practice, unless we know by means of other techniques that M is torsion-free, the only way
to look for a parametrization is to proceed as above for exhibiting one parametrization and to check that it is
indeed generic. Of course, many other different parametrizations may exist as in the above example.

At the end of this section, we shall present a new constructive way to study the torsion submodule t(M) of a
differential module M having torsion.
For this, setting D′ = K[d1, ..., dn−1] ⊂ D, let us now introduce the nested chain:

M(0) ⊆M(1) ⊆ ... ⊆M(∞) = M

of D′-submodules of the D-module M by defining M(r) as the residue of the set of all parametric jets for which

yk
µ is such that 1 ≤ k ≤ βn

1 , µn = 0 and zl
ν is such that 1 ≤ l ≤ m− βn

1 , νn ≤ r.

Definition 5.18: We shall introduce the chain of D′-submodules:

M(−∞) ⊆ ... ⊆M(−1) ⊆M(0)

by setting M(−r−1) = {m ∈M(−r) | dnm ∈M(−r)}.

Our main result is the following theorem (compare to [ ]):

Theorem 5.19: M(−∞) = t(M).

Proof: By analogy with the method used for the Kalman form, a torsion element cannot contain any zν with
νn ≥ 1 and thus t(M) ⊂M(0). As t(M) is a D-module, it is stable by dn and t(M) ⊆M(−∞). Let now w ∈M(−∞)

be an element of order q. The number of derivatives of w of order r is a polynomial in r with leading term 1
n!r

n.
Let us now call jet of class i any jet with µ1 = ... = µi−1 = 0 and equation of class i any equation solved with
respect to a leading jet of class i, called principal. We notice that the prolongations of an involutive solved form
are also in involutive solved form because the prolongation of an equation of class i with respect to a multiplicative
variable xj becomes an equation of class j, as j ≤ i. Accordingly, one can express all the principal jets as linear
combinations of the parametric jets and the number of such jets of order q + r for each dependent variable is a
polynomial in r with leading term not greater than 1

(n−1)!r
n−1. Hence, when r is large enough, one can eliminate

the parametric jets among the derivatives of w that must therefore satisfy at least one OD or PD equation for
itself, that is to say M(−∞) ⊆ t(M).

Q.E.D.

Remark 5.20: Using (ȳ, z) in place of (y, z) as we did for the Kalman form, we discover that a torsion el-
ement cannot contain anymore z or its jets and only depends on ȳ and its jets with respect to x1, ..., xn−1.
The Kalman form is thus only the particular case n = 1 of the modified Spencer form. In this case, M(−1) =
{Σλx} ⊂ M(0) = {Σλx + Σµu} and M(−r−2) can be identified with the orthogonal space to Sr in M(−1) with



dim(M(−r−2)) = n− dim(Sr) for r ≥ 0.

Example 5.21: Looking back to example [19], we notice that M(0) is generated by (ȳ1, ȳ2, z) and their jets in
x1, modulo the only equation ȳ1

1 − ȳ
2
1 = 0 of class 1. However, d2z ∈ M(0) and thus M(−1) is only generated by

(ȳ1, ȳ2). Finally, t(M) is generated by w = ȳ1 − ȳ2 = y1 − y2 − 2z which satisfies d2w = 0 but also d1w = 0 and
we get t(M) = M(−2).

The effectivity of this recursive algorithm lies in the following non-trivial corollary which constitutes the core
of the procedure and brings a quite new understanding of the controllability indices (Compare to [1]).

Corollary 5.22: t(M) = M(−r) for a certain r <∞.

Proof: The previous definitions amount to the exact sequences:

0 −→M(−r−1) −→M(−r)
dn−→M(−r+1)/M(−r)

and we obtain therefore the induced monomorphisms:

0 −→M(−r)/M(−r−1)
dn−→M(−r+1)/M(−r)

of D′-modules. Composing these monomorphisms, we deduce that all these quotient modules are torsion-free
D′-modules because they are submodules of M(0)/M(−1) which is only generated by the z, exactly like in classical
control theory.
Now, if F ' Dr is a free D-module, we define its differential rank to be rkD(F ) = r and, more generally,
if M is a D-module, we define its differential rank rkD(M) to be the differential rank of a maximum free
differential submodule F ⊆ M , and, in this case, T = M/F is a torsion module. In our situation, setting
rkD′(M(−r−1)/M(−r−2)) = lr, we notice that, if lr = 0, then M(−r−1)/M(−r−2) is a torsion D′-module and get a
contradiction unless M(−r−1) = M(−r−2). Otherwise, if lr > 0 strictly, using the additivity property of the differen-
tial rank, we obtain the strict inequalities rkD′(M(−r−2)) < rkD′(M(−r−1)) < rkD′(M(−r)) < ... < rkD′ (M(−1)) =
nb of ȳ− nb of equations of class (n− 1) <∞ and the inductive procedure necessarily stops after a finite number
of steps. When n = 1, the lr are nothing else but the controllability indices and ȳ is just the output/state.

Q.E.D.

I.6 POLES AND ZEROS

In order to explain our motivation in this section, let us start with a simple motivating example and consider
the SISO system:

ÿ − 3ẏ + 2y = ü− u̇

Using a Laplace transform, we should get:

(s− 1)(s− 2)ŷ = s(s− 1)û⇒ ŷ =
s

s− 2
û

as we can divide both members by s − 1. In the rational transfer function thus obtained, we may pay attention
separately to the numerator s or to the denominator s − 2, which are both polynomials in s, and look for their
roots s = 0 or s = 2 respectively called zeros and poles. Of couse, in the present traditional setting, we may obtain
ŷ from û and thus y from u but we could also, asking for the inverse problem, try to obtain û from ŷ and thus u
from y. Meanwhile, the common factor s − 1 with root s = 1 just “disappeared”, though, in view of the way to
obtain the transfer function, it could be interpreted either as a zero or as a pole.

It becomes clear that the challenge is now to extend these concepts of poles and zeros to MIMO systems
defined by PD equations in a way that should not depend on any multivariable Laplace transform and could
be applied to systems with variable coefficients. Also, even if we understand at once that poles and zeros do
not any longer, as in the previous sections, depend on a structural property of the control system but rather on
an inpututput property, we should like to define poles and zeros in a unique intrinsic way related to module theory.

For this, we need a few more definitions and results on modules that were not needed in the previous sections.



If M is a module over a ring A and ann(M) = annA(M) is the annihilator of M in A, it follows from its
definition that, in any case, ann(M) = 0 if M is not a torsion module. Also, if M ′ is a submodule of M , then
ann(M) ⊆ ann(M ′). The proof of the following lemma is left to the reader as an exercise:

Lemma 6.1: If M ′ and M ′′ are submodules of M , we have:
• ann(M ′ +M ′′) = ann(M ′) ∩ ann(M ′′)
• ann(M ′ ⊕M ′′) = ann(M ′) ∩ ann(M ′′)
• ann(M ′ ∩M ′′) ⊇ ann(M ′) + ann(M ′′)

The key result is the following proposition:

Proposition 6.2: For any short exact sequence:

0→M ′ f
→M

g
→M ′′ → 0

one has the relations:

ann(M) ⊆ ann(M ′) ∩ ann(M ′′)⇒ rad(ann(M)) = rad(ann(M ′)) ∩ rad(ann(M ′′))

.

Proof: If a ∈ ann(M), then f(ax′) = af(x′) = 0, ∀x′ ∈ M ′ because x = f(x′) ∈ M and thus ax′ = 0 because f
is a monomorphism. It follows that ann(M) ⊂ ann(M ′). Now, if x′′ ∈ M ′′, we have x′′ = g(x) for some x ∈ M
because g is an epimorphism and we get ax′′ = ag(x) = g(ax) = g(0) = 0, that is ann(M) ⊆ ann(M ′′). It follows
that ann(M) ⊆ ann(M ′) ∩ ann(M ′′) and thus rad(ann(M)) ⊆ rad(ann(M ′)) ∩ rad(ann(M ′′)).
Conversely, let a ∈ rad(ann(M ′))∩rad(ann(M ′′)). As a ∈ rad(ann(M ′′)), we may find x ∈M such that g(x) = x′′

and we have arx′′ = 0 for a certain r ∈ N, that is arg(x) = g(arx) = 0. Hence we may find x′ ∈ M ′ such that
arx = f(x′) because the sequence is exact. As a ∈ rad(ann(M ′)), we have asx′ = 0 for a certain s ∈ N and we
get ar+sx = asarx = asf(x′) = f(asx′) = 0, that is a ∈ rad(ann(M)), a result leading to the converse inclusion
rad(ann(M ′)) ∩ rad(ann(M ′′)) ⊆ rad(ann(M)).

Q.E.D

Definition 6.3: For any ideal a ∈ A, we may introduce the zero of a to be the family Z(a) = {p ∈ spec(A)|p ⊇
rad(a) ⊇ a} of proper prime ideals of A.

Definition 6.4: If p ∈ spec(A), the localization with respect to the multiplicatively closed set S = A − p is
denoted by Mp and the support of M is the family supp(M) of proper prime ideals p ∈ spec(A) such that Mp 6= 0.

Proposition 6.5: If M is a finitely generated A-module, then supp(M) = Z(ann(M)).

Proof: If p ∈ spec(A), p + ann(M), then we can find s ∈ ann(M) ⊂ A, s /∈ p and Mp = 0, that is to say
supp(M) ⊆ Z(ann(M)).
Conversely, if M = Ax1 + ... + Axr is a finitely generated A-module and p ∈ spec(A) is such that Mp = 0, then
we can find si ∈ A − p such that sixi = 0 for i = 1, ..., r. We have s = s1...sr ∈ ann(M) but s /∈ p and herefore
p + ann(M), that is to say Z(ann(M)) ⊆ supp(M).

Q.E.D.

We obtain at once the following corollary from the two preceding propositions:

Corollary 6.6: For any short exact sequence:

0→M ′ f
→M

g
→M ′′ → 0

one has the relation:

supp(M) = supp(M ′) ∪ supp(M ′′).

Having in mind the preceding example, we now define poles and zeros for systems with coefficients in a field k
of constants.



With D = k[d] = k[d1, ..., dn] as usual, separating the control variables into inputs u and outputs y, we may use
the canonical injection Du ⊂ Du+Dy, take the intersection of Du with the submodule of equations in Du+Dy
allowing to define M and define by residue the differential input module Min. A similar procedure may be applied
with y in place of u and leads to the differential output module Mout. We may then introduce the differential
modules M ′

in = Min + t(M),M ′
out = Mout + t(M) and obtain the following commutative diagram of inclusions:

M
↗ ↖

M ′
in M ′

out

↖ ↗
↑ t(M) ↑

Min ↑ Mout

↖ ↗
0

We now prove that all the known results on poles and zeros just amount to apply the preceding corollary to
the various modules we have introduced, both with their sums and quotient whenever they can be defined.
For example, in order to define supp(M/Min), that provides the so-called system poles, we just need to add u = 0
to the control OD equations and look for the annihilator of the differential module M/Min which is a torsion
module by tradition in OD control. In the preceding example, we get the ideal ((s − 1)(s − 2)) and the only
two prime ideals containing it are (s − 1) and (s − 2). Now, the torsion submodule t(M) is easily seen to be
generated by z = ẏ − 2y − u̇ satisfying ż − z = 0. Hence, in order to define supp(M/M ′

in), that provides the
so-called controllable poles, we just need to add u = 0, ẏ − 2y − u̇ = 0 to the control OD equations and look for
the annihilator of the differential module M/m′

in which is generated by (s− 2)and is already prime. We have thus
recovered the “ poles” and could similarly recover the “ zeros” by using now supp(M/Mout) and supp(M/M ′

out).
Finally, in order to define supp(t(M)), that provides the so-called input decoupling zeros, we have to look for the
annihilator of t(M) which is generated by (s− 1) and thus prime.

The only difficulty left is to define the corresponding concepts in the non-commutative case D = K[d] when
K is an arbitrary differential field. For this, using the inclusion Dq = {P ∈ D|ord(P ) ≤ q} ⊂ D, we obtain
the inclusion Dqy ⊂ Dy inducing by residue, as above, a submodule Mq ⊂ M which is not a differential module
with an action DrMq ⊆ Mq+r, ∀q, r ≥ 0 providing an equality for q large enough. Looking at the composition
P,Q ∈ D → P ◦Q 6= Q◦P ∈ D, we notice (exercise) that gr(D) = ⊕∞

q=0Dq/Dq−1 is isomorphic to the commutative
ring K[χ] = K[χ1, ..., χn] of polynomials in n indeterminates with coefficients in K. Introducing Gq = Mq/Mq−1

and setting G = gr(M) = ⊕∞
q=0Gq, we notice that G is a module over gr(D) and we are brought back to the

commutative case with gr(D) and G in place of D and M . As a byproduct, we may state:

Definition 6.7: char(M) = supp(G) is called the characteristic set of M while ann(G) is called the characteristic
ideal.
Remark 6.8: According to the last corollary, one must rather use rad(ann(G)) in place of ann(G). (For more
details, see [10,19,20]).

Remark 6.9: The above technique may also be used in order to define poles and zeros for non-linear systems
through a generic linearization as will become clear from the following example.

Example 6.10: With n = 2,M = 1, q = 2, let us consider the following non-linear system:

y22 −
1

3
(y11)

3 = 0, y12 −
1

2
(y11)

2 = 0

We let the reader prove that this system is involutive with respective multiplicative variables (x1, x2) and (x1).
The generic linearization:

Y22 − (y11)
2Y11 = 0, Y12 − y11Y11 = 0

is defined (exercise) over the differential field K = Q(y, y1, y2, y11, y111, ...) and the characteristic ideal in K[χ1, χ2]
becomes:

((χ2)
2 − (y11)

2(χ1)
2, χ1(χ2 − y11χ1))



Its radical is the prime ideal (χ2 − y11χ1).

When k is a ring of constants, the commutative ring D = k[d1, ..., dn] of linear differential operators in n
commuting formal derivatives with constant coefficients in k can be identified with the polynomial integral domain
A = k[χ1, ..., χn] in n indeterminates. In 1955, J.P. Serre conjectured that any projective module over A was
free, that is to say isomorphic to Ar for some positive integer r [9,23]. This result has been proved in 1976,
independently by D. Quillen and A.A. Suslin through very technical arguments and a constructive proof has only
been given less than 10 years ago [15].
As a generalization of the above results, N.K. Bose and Z. Lin proposed in 1998 a conjecture on the possibility to
factorize a certain type of full rank polynomial matrices through zero prime polynomial matrices in order to factor
out the P.G.C.D. of the major minors [3]. Our purpose is to use algebraic analysis in order to solve positively this
conjecture while giving its intrinsic module theoretic meaning.

Any linear operator D of order q with constant coefficients acting on m differential indeterminates y1, ..., ym

can be written as D =
∑

0≤|µ|≤q a
µdµ when using a multi-index µ = (µ1, ..., µn) with|µ| = µ1 + ... + µn and

aµ ∈ kl×m for some l while setting for short dµ = (d1)
µ1 ...(dn)µn . According to what we said, D can be identified

with the polynomial matrix ϕ = (
∑

aµχµ) ∈ Al×m. From now on, we shall suppose that l ≤ m and that ϕ has
l rows, m columns and maximal rank equal to l. In general, any operator D may have (generating) compatibility
conditions expressed by another operator D1 such that D1 ◦D ≡ 0 and the above assumption just amounts to the
fact that D1 is the zero operator and we shall say in this case that D is (formally) surjective.

Similarly, we may introduce the (formal) adjoint operator D̃ = ad(D) as usual. In actual practice, for a con-
stant coefficient operator D with matrix ϕ, we shall identify the matrix of D̃ with the simple transposed ϕ̃ of ϕ,
forgetting about the need to also change χ to −χ.

Example 6.11: When n = 3, the curl operator is not surjective, is equal to its own adjoint and the action of the
corresponding polynomial matrix just amounts to exterior product by the covector χ = (χ1, ..., χn) , up to sign.
The div operator is surjective and its adjoint is the grad operator.

Let us introduce the module M over A defined by the finite presentation Al ϕ
−→ Am → M → 0 where ϕ acts

on the right on row vectors. Similarly, let N be the module defined by the cokernel of ϕ̃. Following [ ], we set:

Definition 6.12: We denote by Ii(ϕ) the ideal of A generated by the determinants of the i×i submatrices (minors
of size i) of ϕ, with the convention I0(ϕ) = A. One can prove that the ideals Fittr(M) = Im−r(ϕ) of A, called
r-Fitting ideal of M , only depend on M and not on its presentation. Moreover we have Fittr(M) = Fittr+l−m(N).

If M is any module over A, we denote by annA(M) or simply ann(M) the annihilator of M in A and we shall
set as usual Z = zero and M? = homA(M,A). We quote the two main (very technical) results on Fitting ideals
that will be crucially used in the sequel with l ≤ m and r = m− l:

Theorem 6.13: Fitt0(N) ⊆ ann(N) and rad(Fitt0(N)) = rad(ann(N)).

Theorem 6.14: M is a projective (thus free) module of rank r if and only if Fittr(M) = Fitt0(N) = A.

We now recall from section 3 the following three numbers:
• The last character αn

q = rkD(M) ≤ m.
• The number of nonzero characters d(M) = dM = d ≤ n.
• The smallest nonzero character α.
These numbers are intrinsic because, when the corresponding system Rq is involutive in the differential geometric
framework, the Hilbert polynomial of M is by definition:

PM (r) = dimk(Rq+r) =
α

d!
rd + ...

It follows from the delicate Hilbert-Serre theorem [10,19] that d is also equal to the maximum dimension of the
irreducible components of the characteristic set, this number being equal, in the present situation, to the maximum
dimension of the irreducible components of the algebraic set defined by annA(M) as we are dealing with systems
having constant coefficients. In particular, we have d = n⇔ αn

q = αn 6= 0. We shall define the codimension cd(M)



of M to be n− d and we may introduce the two following concepts that coincide when n = 1 [20]:

Definition 6.15: ϕ is said to be zero prime if Fittr(M) = Fitt0(N) = A or, equivalently, if d(N) = −1 (conven-
tion).

Definition 6.16: ϕ is said to be minor prime if the elements of Fitt0(N) have no common divisor in A\k or,
equivalently, if d(N) ≤ n− 2.

We are now ready to state the conjecture we want to prove:

Conjecture 6.17: Let us suppose that the greatest common divisor c ∈ A of the m!/(m− l)!l! minors ai = ca′i
of ϕ is such that (a′1, ..., a

′
m!/(m−l)!l!) = A, then one can find ϕ′ ∈ Al×m and ψ ∈ Al×l such that ϕ = ψ ◦ ϕ′ and

det(ψ) = c.

Surprisingly, in order to understand the intrinsic meaning of this conjecture, we shall need many more (deli-

cate) facts from algebraic analysis [7,0,19,20]. In particular, if ...
d2−→ F1

d1−→ F0
p
−→ M → 0 is a free resolution

of the A-module M , we recall that the groups of cohomology of the dual complex ...
d?
2←− F ?

1

d?
1←− F ?

0 ← 0, where
d?(f) = f ◦ d, ∀f ∈ homA(F,A) = F ?, do not depend on the resolution and will be denoted by extiA(M,A) =
ker(d?

i+1)/im(d?
i ) or simply by exti(M) with ext0(M) = M?. The proof of the three following results is quite

delicate but valid for an arbitrary differential module M .

Theorem 6.18: cd(exti(M)) ≥ i .

Theorem 6.19: cd(M) ≥ r ⇐⇒ exti(M) = 0, ∀i < r.

Setting char(M) = Z(ann(M)) = {p ∈ spec(A)|p ⊇ ann(M)}, we have:

Theorem 6.20: char(M) = ∪n
i=0char(ext

i(M)).

We shall now use these results in order to give an intrinsic interpretation and solution of the previous conjec-
ture.
Introducing the torsion submodule t(M) = {x ∈ M |∃0 6= a ∈ A, ax = 0} and the torsion-free module M ′ =
M/t(M), the main trick will be to use N and N ′ in the preceding theorems, in order to study t(M),M and M ′.
First of all, if c ∈ k, then c 6= 0 because of the maximum rank assumption on ϕ and the conjecture is trivial, that
is M is projective, thus free. In particular, if l = m, then M = 0 (See Janet conjecture in [20]). Hence, we may
suppose that c ∈ A\k. Surprisingly, in this case, we shall need all the previous results in order to prove that the
quoted conjecture is equivalent to the following theorem:

Theorem 6.21: M ′ is a projective module if and only if char(N) is the union of irreducible varieties of the same
dimension n− 1.

Proof: If M ′ is projective, the kernel K ′ of the composition Am → M → M ′ of epimorphisms is a projective
module because the short exact sequence 0 → K ′ → Am → M ′ → 0 splits. It is thus a free module of rank l
because of the additivity property of the rank and the fact that, if Q(A) is the quotient field of A, we have an
isomorphism Q(A)⊗AM ' Q(A)⊗AM

′ of vector spaces over Q(A). We obtain therefore a commutative and exact
diagram:

0 −→ Al ϕ
−→ Am −→ M −→ 0

↓ ‖ ↓

0 −→ Al ϕ′

−→ Am −→ M ′ −→ 0

inducing the matrix ψ : Al → Al on the left, with ϕ = ψ ◦ ϕ′ acting on the right on row vectors. According to
Theorem 2, we get ai = det(ψ)a′i fot the corresponding minors and obtain the assumption of the conjecture with
c = det(ψ).



The hard step is the converse way. First of all, if char(N) is (n− 1)-equidimensional, we find the assumption
of the conjecture as we have indeed ann(N) = (c), though this monogenic ideal needs not be equal to its radical.
Now, using Theorem 5.21 for N , we get:

char(N) = char(ext0(N)) ∪ char(ext1(N)) ∪ char(ext2(N)) ∪ ...

Applying homA(•, A) to the ker/coker exact sequece:

0←− N ←− Al ϕ̃
←− Am ←−M? ←− 0

and using the fact that D surjective ⇔ ϕ injective, we get N? = ext0(N) = 0 and char(0) = ∅.
It then follows from Section 5 that we have the ker/coker exact sequence:

0 −→ ext1(N) −→M
ε
−→M?? −→ ext2(N) −→ 0

where ε(x)(f) = f(x), ∀x ∈M, ∀f ∈M? and ext1(N) = t(M), with d(t(M)) = n− 1 strictly in our case.
Using Theorem 3, we have d(exti(N)) < n− 1 when i = 2, 3, ..., n and, from the assumption of the theorem, this
is impossible unless exti(N) = 0, ∀i = 2, 3, ..., n.
Then, applying homA(•, A) to the short exact sequence 0 → t(M) → M → M ′ → 0, we get M? = M ′? because,
if x ∈ t(M) is such that ax = 0 with a 6= 0, we get af(x) = f(ax) = f(0) = 0 ⇒ f(x) = 0 as A is an integral
domain and thus t(M)? = 0.
Using the commutative and exact diagram:

0 −→ t(M) −→ M
ε
−→ M?? −→ ext2(N) −→ 0

↓ ↓ ↓ ↓

0 −→ t(M ′) −→ M ′ ε′
−→ M ′?? −→ ext2(N ′) −→ 0

where t(M ′) = ext1(N ′) = 0 because M ′ is torsion-free, we obtain from an easy chase the isomorphism ext2(N ′) '
ext2(N) = 0.
Finally, from the previous ker/coker exact sequences defining N and N ′, using twice the connecting sequence for
the ext, we get:

exti(N ′) ' exti−2(M ′?) ' exti−2(M?) ' exti(N) = 0, ∀i = 3, ..., n.

It follows that exti(N ′) = 0, ∀i ≥ 1 and M ′ is projective according to [20, Corollary 4].
Q.E.D.

Remark 6.22: This result is coherent with the fact that N is defined up to an isomorphism (exercise) while N ′

is only defined up to a projective equivalence and exti(P ) = 0, ∀i ≥ 1 for any projective module P . It is also
coherent with the long exact connecting sequence for ext :

0→M ′? →M? → 0→ ext1(M ′)→ ext1(M)→ ext1(t(M))→ ...

as we deduce from it the monomorphism 0→ N → ext1(ext1(N)) showing that N is 1-pure [19].

Remark 6.23: In a more specific way, taking into account Theorem 6.19 and applying it to N , we notice that:

N∗ = homD(N,D) = ext0D(N,D) = 0⇔ Ntorsion⇔ D formally surjective.

We obtain therefore the following recapitulating tabular for systems made up by differentially independent PD
equations [22]:

Module M exti
D(N,D) d(N) Primeness

with torsion ext0D(N,D) = 0 ≤ n− 1 ∅
torsion-free exti

D(N,D) = 0, 0 ≤ i ≤ 1 ≤ n− 2 minor prime
reflexive exti

D(N,D) = 0, 0 ≤ i ≤ 2 ≤ n− 3
. . . .
. . . .
projective exti

D(N,D) = 0, 0 ≤ i ≤ n ≤ −1 zero prime



where we set d(N) = −1 when char(N) = ∅. For example, the divergence operator for n = 3 provides a good
example of a differential module which is reflexive but not projective because ext3D(N,D) 6= 0.

Example 6.24: With n = 3 and k = Q, let M be defined by the two differentially independent PD equations
y3
12 − y2

3 − y3 = 0, y3
22 − y1

3 = 0. We have a1 = (χ3)
2, a2 = χ3(χ1χ2 − 1), a3 = χ3(χ2)

2 and b1 = χ3, b2 =
χ1χ2 − 1, b3 = (χ2)

2 with (χ1)
2b3 − (χ1χ2 + 1)b2 = 1, a result leading to ann(N) = rad(ann(N)) = (χ3). The

generating torsion element z = y2
22 − y

1
12 + y1 satisfies z3 = 0. Though this is not evident at all, we may define

M ′ by the two independent PD equations y2
22 − y

1
12 + y1 = 0, y2

123 − y
1
113 + y2

3 + y3 = 0 and we have the injective
parametrization u22 = y1, u12 − u = y2, u3 = y3 showing that M ′ ' A is free.

I.7 CONCLUSION

We hope to have convinced the reader that the results presented are striking enough to open a wide future for
applications of computer algebra. The systematic use of the adjoint operator has allowed to relate together results
as far from each other as the Quillen-Suslin theorem in module theory and the controllability criterion in control
theory. A similar criterion for projective modules does exist and relies on the possibility to have finite length
differential sequences [19]. We believe that the corresponding symbolic packages will be available in a short time.
It will thus become possible to classify (differential) modules, having in mind that such a classification always
describes hidden but deep concepts in the range of applications.

Exercises: We provide thereafter three exercises which can help the reader recapitulating the various concepts
introduced through this chapter.
Exercise 1: In the motivating examples of Section 2, we have seen that the system:

Py ≡ d22y = u, Qy ≡ d12y − y = v

where P,Q ∈ D = Q[d1, d2], admits the two generating compatibility conditions of order 4:

A ≡ d1122u− u− d1222v − d22v = 0, B ≡ d1112u− d11u− d1122v = 0

or the single compatibility condition of order 2:

C ≡ d12u− u− d22v = 0

1) Prove that the two systems A = 0, B = 0 on one side and C = 0 on the other side for (u, v) determine the same
differential module M ' Dy = D.
2) Determine the unique generating compatibility condition of order 2 satisfied by (A, ).
3) Exhibit the corresponding resolution (’) of M :

0 −→ D −→ D2 −→ D2 −→M −→ 0

with central morphism DA+DB → Du+Dv.
4) Exhibit similarly a resolution (“) of M :

0 −→ D −→ D2 −→M −→ 0

with morphism DC → Du+ dv.
5) Prove that (’) projects onto (“) by exhibiting an epimorphism D2 → D : DA+DB → DC.
6) Prove that the kernel of the preceding epimorphism is a free module by finding out an injective parametrization
of the second order operator just obtained.
7) Find a lift for the preceding epimorphism and exhibit a short split exact sequence:

0 −→ D −→ D2 −→ D −→ 0

with morphism DA+DB → DC on the right.
8) Applying hom(•, D) to the commutative diagram just obtained, prove that, if N ′ and N ′′ are the modules
′′N ′′ that can be constructed from the two preceding resolutions of M , then one has N ′ ' N ′′ ⊕ D and thus
extD(N ′, D) ' extD(N ′′, D) = 0, ∀i ≥ 1.



Exercise 2: With m = 2, n = 2, q = 1, let us consider the following first order system with two variable coefficients,
namely one arbitrary constant α and one arbitrary function a(x) = a(x1, x2) (for example α ∈ Q = k, a ∈ K =
Q(x1, x2)):

d2y
1 − αd1y

1 − d2y
2 + a(x)y2 = 0

Study how the corresponding module M does depend on the coefficients by exhibiting a “tree” of 4 possibilities,
from the less generic to the most generic one (successively with torsion, free, torsion-free, projective).

1) In the case M has torsion, exhibit a generator for the torsion submodule t(M).
2) In the case M is free, prove that M ' D.
3) In the case M is torsion-free but not free, prove that M ⊂ D with strict inclusion and prove that M is not
projective.
4) In the case M is projective, exhibit a lift for the presentation 0→ D → D2 →M → 0 which becomes therefore
a split short exact sequence.

Exercise 3: With n = 1, χ = d
dt and D = Q[d] ' Q[χ], we shall revisit the following example of a third order OD

control system given in 1980 by Blomberg and Ylinen in [2]:

(

2χ3 + χ2 − 8χ− 4 2χ+ 1 4χ2 + 2χ
χ2 − 4 χ3 + 5χ2 + 8χ+ 5 3χ+ 2

)





y1

y2

u



 =

(

0
0

)

with one input u and two outputs (y1, y2).
1) Check that the above operator matrix D can be factorized through D = P ◦ D′ with P square and D′ the
operator matrix:

(

χ2 − 4 1 2χ
0 χ2 + 3χ+ 2 1

)

Provide the corresponding commutative diagram interpretation, both in terms of operators and in terms of the
differential modules M and M ′ respectively determined by D and D′.
2) Prove that M ′ is torsion-free.
3) Check that the ideal generated in Q[χ] by the 3 determinants of the 2× 2 minors of D′ is equal to Q[χ], that
is this ideal contains 1. Use this result in order to find out a lift for D′.
4) Prove that M ′ 'M/t(M).
5) Denoting by Min the submodule of M induced by the inclusion Du ⊂ Du + Dy1 + Dy2 and introducing
Min

′ = Min + t(M) ⊂ M , work out the ideals a = ann(M/Min
′), a′ = ann(Min

′/Min), a′′ = ann(M/Min
′) and

prove that rad(a) = rad(a′) ∩ rad(a′′) though a 6= a′ ∩ a′′.
For this last question, one may refer to the general theory by showing that t(M) ∩Min = 0⇒Min

′/Min = t(M)
and exhibit the short exact sequence:

0 −→Min
′/Min −→M/Min −→M/Min

′ −→ 0

and finally find:
a ⊂ rad(a) = ((2χ+ 1)(χ+ 1)(χ+ 2)(χ− 2)),

a′ = rad(a′) = ((2χ+ 1)(χ+ 2)),

a′′ ⊂ rad(a′′) = ((χ+ 1)(χ+ 2)(χ− 2)).
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[10] P. MAISONOBE, C. SABBAH, D-Modules Cohérents et Holonomes, Travaux en Cours, 45, Hermann, Paris,
1993.
[11] B. MALGRANGE, Cohomologie de Spencer (d’après Quillen), Sém. Math. Orsay, 1966.
[12] H. MATSUMURA, Commutative Ring Theory, Cambridge Studies in Advanced Mathematics 8, Cambridge
University Press, 1986.
[13] U. OBERST, Multidimensional Constant Linear Systems, Acta Appl. Math., 20, 1990, 1-175.
[14] V.P. PALAMODOV, Linear Differential Operators with Constant Coefficients, Grundlehren der Mathematis-
chen Wissenschaften 168, Springer, 1970.
[15] H. PARK, C. WOODBURN, An Algorithmic Proof of Suslin’s Stability Theorem for Polynomial Rings, J.
Algebra, 178, 1995, 277-298.
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