
Exercises: Serre’s reduction

Alban Quadrat∗

Exercise 1 We study Serre’s reduction of the following linear OD time-delay system
ẋ1(t) + a x1(t)− k a x2(t− h) = 0,
ẋ2(t)− x3(t) = 0,
ẋ3(t) + ω2 x2(t) + 2 ζ ω x3(t)− ω2 u(t) = 0,

(1)

where x = (x1 x2 x3)T denotes the state, u the input, a, k, ω and ζ the constant parameters
and h ∈ R+. This system corresponds to a wind tunnel model studied in A. Manitius, “Feed-
back controllers for a wind tunnel model involving a delay: analytical design and numerical
simulations”, IEEE Trans. Autom. Contr., 29 (1984), 1058-1068.

1. Let D = Q(a, k, ω, ζ)
[
∂; id, ddt

]
[δ;α, 0] be the commutative polynomial ring of OD time-

delay operator (∂ y(t) = ẏ(t), δ y(t) = y(t− h)),

R =

 ∂ + a −k a δ 0 0
0 ∂ −1 0
0 ω2 ∂ + 2 ζ ω −ω2

 ∈ D3×4,

the presentation matrix of (1) and the finitely presented D-module M = D1×4/(D1×3R)
associated with (1).

2. Prove that R has full row rank, i.e., kerD(.R) = 0. Deduce a finite free resolution of M .

3. Deduce that ext1D(M,D) = D3/(RD4) = D1×3/
(
D1×4RT

)
.

4. Describe the D-module ext1D(M,D) in terms of generators and relations.

5. Prove that ext1D(M,D) is a 1-dimensional Q(a, k, ω, ζ)-vector space. Give a basis ρ(Λ) of
ext1D(M,D), where ρ : D3 −→ D3/(RD4) denotes the canonical projection.

6. Deduce that ρ(Λ) generates ext1D(M,D), i.e., ext1D(M,D) is a cyclic D-module.

7. Consider the matrix P = (R − Λ) ∈ D3×5. Show that P admits a left-inverse over D
defined by:

S =



0 0 0
0 0 0
0 −1 0

0 −∂ + 2 ζ ω
ω2

− 1
ω2

−1 0 0


∈ D5×3.
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Deduce that the D-module E = D1×5/(D1×3 P ) is a free D-module of rank 2.

8. Describe the D-module E in terms of generators and relations.

9. Compute an injective parametrization of E, namely, a matrix Q ∈ D5×2 which admits a
left-inverse over D and satisfies kerD(.Q) = D1×3 P . Deduce a basis of E.

10. Write Q = (QT1 QT2 )T , where Q1 ∈ D4×2 and Q2 ∈ D1×2. Deduce that:

M ∼= L = D1×2/(DQ2).

11. Does Λ admit a left-inverse overD? Is thenR equivalent to the diagonal matrix diag(I2, Q2)?

12. Compute kerD(.Q1) and find a matrix F ∈ D2×4 such that kerD(.Q1) = D1×2 F . Deduce
that kerD(.Q1) is a free D-module of rank 2.

13. Compute a right-inverse Q3 of F over D and check that W = (Q3 Q1) ∈ GL4(D).

14. Prove that U = (RQ3 Λ) ∈ GL3(D) and compute V = U−1.

15. Show that R = V RW = diag(I2, Q2) and thus (1) is equivalent to the following OD
time-delay equation:

ż(t) + a z(t)− ω2 k a v(t− h) = 0. (2)

16. Characterize the module properties of L and thus those of (1).

17. Using the commands KBasis, LeftInverse, RightInverse, MinimalParametriza-
tions and SyzygyModule of OreModules, redo the previous computations.

Exercise 2 Let us consider the following linear OD time-delay system
φ1(t) + ψ1(t)− φ2(t)− ψ2(t) = 0,

φ̇1(t) + ψ̇1(t) + η1 φ1(t)− η1 ψ1(t)− η2 φ2(t) + η2 ψ2(t) = 0,
φ1(t− 2h1) + ψ1(t)− u(t− h1) = 0,
φ2(t) + ψ2(t− 2h2)− v(t− h2) = 0,

(3)

which describes the movement of a vibrating string with an interior mass (see H. Mounier,
J. Rudolph, M. Fliess, P. Rouchon, “Tracking control of a vibrating string with an interior mass
viewed as delay system”, ESAIM COCV, 3 (1998), 315-321). In (3), h1 and h2 ∈ R+ are such
that Qh1 + Qh2 is a two-dimensional Q-vector space (i.e., there exists no relation of the form
mh1 +nh2 = 0, where m,n ∈ Z), and η1 and η2 are two constant parameters of the system. The
condition on h1 and h2 implies that σ1 and σ2 are two non-commensurate time-delay operators,
i.e., define two independent variables.

1. Let D = Q(η1, η2)
[
∂; id, ddt

]
[σ1;α1, 0][σ2;α2, 0] be the commutative polynomial ring of OD

time-delay operators with coefficients in the field Q(η1, η2), where σi(y(t)) = y(t− hi),

R =


1 1 −1 −1 0 0

∂ + η1 ∂ − η1 −η2 η2 0 0
σ2

1 1 0 0 −σ1 0
0 0 1 σ2

2 0 −σ2

 ∈ D4×6,

the presentation matrix of (3) and M = D1×6/(D1×4R) the finitely presented D-module
associated with (3).
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2. Following the same lines as in Example 1, prove M ∼= L = D1×3/(DQ2), where:

Q2 = (−∂ − η1 − η2 η1 σ1 − σ2).

3. Check that Λ admits a left-inverse over D and deduce that R is equivalent to the diagonal
matrix diag(I3, Q2).

4. Following the same lines as in Example 1, prove that the matrices defined by

V =



1 0 0 0

−∂ − η1 1 0 0

σ2
1 0 −1 0(

σ2
2 − 1

) (
∂ + η1 + 2 η1 σ

2
1

)
2 η2

−σ
2
2 − 1
2 η2

−
η1

(
σ2

2 − 1
)

η2
1


∈ GL4(D),

W =



1 0 1 −2 η2 η2 σ1 0

0 0 −1 0 −η2 σ1 0

0 − 1
2 η2

η1

η2
−∂ − η1 − η2 η1 σ1 0

0
1

2 η2
−η1

η2
∂ + η1 − η2 −η1 σ1 0

0 0 σ1 −2 η2 σ1 η2 (σ1 − 1) (σ1 + 1) 0

0 0 0 σ2 (∂ + η1 − η2) −η1 σ1 σ2 1


∈ GL6(D)

satisfy V RW = diag(I3, Q2).

5. Post-multiplying W by the following unimodular matrix

U =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 η2


∈ GL6(D),

show that (3) is then equivalent to the sole linear OD time-delay equation:

ẋ1(t) + (η1 + η2)x1(t)− η1 x2(t− h1)− η2 x3(t− h2) = 0.

6. Study the module properties of L and deduce those of L.

7. Deduce the properties of the linear OD time-delay system (3).
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Exercise 3 We consider the following time-varying OD linear system

ρ
∂θ

∂ρ
+

1
2

(θ +K) +
(λ+ µ)

2

(
ρ
∂σ

∂ρ
− σ

)
= 0,

2 ρ
∂θ

∂ρ
+ ρ

∂K

∂ρ
+ 3K − (3λ+ 2µ)σ = 0,

λ σ + 2µ
(
G+ ρ

∂G

∂ρ

)
− ρ ∂θ

∂ρ
−K = 0,

(4)

where σ, G, θ and K are functions of ρ =
√
x2 + y2 + z2 and λ and µ are real parameters,

considered in J. Hadamard, “Sur l’équilibre des plaques élastiques circulaires libres ou appuyées
et celui de la sphère isotrope”, Annales Scientifiques de l’Ecole Normale Supérieure, 18 (1901),
313-324.

1. Let D = A1(Q(λ, µ)) = Q(λ, µ)[ρ]
[
∂; id, ddρ

]
be the first Weyl algebra over the field Q(λ, µ)

R =


ρ ∂ +

1
2

1
2

(λ+ µ) (ρ ∂ − 1)
1
2

0

2 ρ ∂ −3λ− 2µ ρ ∂ + 3 0

−ρ ∂ λ −1 2µ (ρ ∂ + 1)

 ∈ D3×4,

the presentation matrix of (4) and the left D-module M = D1×4/(D1×3R).

2. Using the command Involution of OreModules, compute the formal adjoint R̃ of R.

3. Using the command Dimension, check that dimD(Ñ) = 1 and deduce that Ñ is a holo-
nomic left D-module.

4. Denote by E = B1(Q(λ, µ)) = Q(λ, µ)(ρ)
[
∂; id, ddρ

]
the second Weyl algebra. Using the

command KBasis, show that Ñ = E1×3/(E1×4 R̃) is a 1-dimensional Q(λ, µ)(ρ)-vector
space and compute a basis. Find a row vector Λ̃ ∈ E1×3 such that the matrix

P̃ =

(
R̃

Λ̃

)
∈ D5×3

admits a left-inverse over E using the command LeftInverseRat.

5. Check that Λ̃ ∈ D1×3 and P̃ admits a left-inverse over D using the command LeftIn-
verse. Deduce that Ñ is a cyclic left D-module.

6. Deduce that the matrix P = (R −Λ) admits a right-inverse over D and check again the
last result using the command RightInverse.

7. Using Stafford’s theorem, show that the left D-module E = D1×5/(D1×3 P ) is free of rank
2.

8. Using the command MinimalParametrizations, compute an injective parametrization
Q ∈ D5×2 of M and a basis of the free left D-module E.

9. Write Q = (QT1 QT2 )T , where Q1 ∈ D4×2 and Q2 ∈ D1×2, and deduce that:

M ∼= L = D1×2/(DQ2).
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10. Check that Λ admits a left-inverse over D and deduce that R is equivalent to the diagonal
matrix diag(I2, Q2).

11. Compute a matrix F ∈ D2×4 such that kerD(.Q1) = D1×2 F by means of the command
SyzygyModule and check that kerD(.Q1) is a free left D-module of rank 2.

12. Compute a right-inverse Q3 ∈ D4×2 of F and deduce that W = (Q3 Q1) ∈ GL4(D).

13. Form the matrix U = (RQ3 Λ) ∈ D3×3 and, using the command LeftInverse, check
that V = U−1 ∈ D3×3, i.e., V ∈ GL3(D).

14. Compute the block diagonal matrix R = V RW and check that R = diag(I2, Q2).

15. If F is a left D-module, then deduce that (4) is equivalent to the following OD system:

z1 ∈ F : ρ
dz1
dρ

+ z1 = 0, ∀ z2 ∈ F .

16. Study the module properties of L. Deduce those of M and the properties of the linear OD
system (4).

Exercise 4 Let D = Q(K1,K2,Kc,Ke, Tp)
[
∂; id, ddt

]
[δ;α, 0] be the commutative polynomial

ring of OD time-delay operators (∂ y(t) = ẏ(t), δ y(t) = y(t − 1)), where K1, K2, Kc, Ke and
Kp denote constant parameters, and the matrix of OD time-delay operators defined by:

R =



∂ −K1 0 0 0 0 0 0 0

0 ∂ +
K2

Te
0 0 0 0 −Kp

Te
δ −Kc

Te
δ −Kc

Te
δ

0 0 ∂ −K1 0 0 0 0 0

0 0 0 ∂ +
K2

Te
0 0 −Kc

Te
δ −Kp

Te
δ −Kc

Te
δ

0 0 0 0 ∂ −K1 0 0 0

0 0 0 0 0 ∂ +
K2

Te
−Kc

Te
δ −Kc

Te
δ −Kp

Te
δ


∈ D6×9.

The matrix R is the presentation matrix of a model of a two reflector antenna studied in
V. Kolmanovskii, V. Nosov, Stability of Functional Differential Equations, Academic Press,
1986. The purpose of this exercise is to use OreModules to find an equivalent system defined
by fewer equations and unknowns.

1. Prove that R has full row rank, i.e., kerD(.R) = 0. Deduce a finite free resolution of M .

2. Show that ext1D(M,D) = D6/(RD9) = D1×6/(D1×9RT ).

3. Prove that ext1D(M,D) is a 6-dimensional Q(K1,K2,Kc,Ke, Tp)-vector space.

4. Define the matrix

Λ =



0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 0 1


,
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and prove that the matrix P = (R − Λ) ∈ D6×12 admits a right-inverse over D.

5. Deduce that the D-module E = D1×12/(D1×6 P ) is free of rank 6.

6. Compute an injective parametrization Q ∈ D12×6 of E and a basis of E.

7. Write Q = (QT1 QT2 )T , where Q1 ∈ D9×6 and Q2 ∈ D3×6. Deduce that:

M ∼= L = D1×6/(D1×3Q2).

8. Check that Λ admits a left-inverse over D. Deduce that R is equivalent to the diagonal
matrix diag(I3, Q2).

9. Compute a matrix F ∈ D3×9 satisfying kerD(.Q1) = D1×3 F . Check that F admits a
right-inverse Q3 ∈ D9×3. Deduce that kerD(.Q1) is a free D-module of rank 3.

10. Form the matrices W = (Q3 Q1) and U = (RQ3 Λ) and check that U ∈ GL6(D) and
W ∈ GL9(D).

11. Deduce that U−1RW = diag(I3, Q2) and thus:

Rη = 0 ⇔


Te ζ̈1(t) +K2 ζ̇1(t) + (Kp + 2Kc) (Kc −Kp) ζ2(t− 1) = 0,

Te ζ̈3(t) +K2 ζ̇3(t) + (Kp + 2Kc) (Kc −Kp) ζ4(t− 1) = 0,

Te ζ̈5(t) +K2 ζ̇5(t) + (Kp + 2Kc) (Kc −Kp) ζ6(t− 1) = 0.

12. Study the module properties of L and deduce those of M .

Exercise 5 We consider the general transmission line defined by
∂V

∂x
+ L

∂I

∂t
+RI = 0,

C
∂V

∂t
+GV +

∂I

∂x
= 0,

(5)

where I denotes the current, V the voltage, L the self-inductance, R the resistance, C the capac-
itor and G the conductance. Let D = Q(L,R,C,G)

[
∂t; id, ∂∂t

] [
∂x; id, ∂∂x

]
be the commutative

polynomial ring of PD operators with coefficients in the field Q(L,R,C,G),

S =

(
∂x L∂t +R

C ∂t +G ∂x

)
∈ D2×2

the presentation matrix of (5) and the D-module M = D1×2/(D1×2 S).

1. Check that S has full row rank, i.e., kerD(.S) = 0. Give a finite free resolution of M .

2. Deduce that ext1D(M,D) = D2/(RD2) = D1×2/(D1×2RT ).

3. Compute dimD(ext1D(M,D)). What is the dimension of ext1D(M,D) as a Q(L,R,C,G)-
vector space?

4. Consider Λ = (a b)T , where a and b are two arbitrary constants and form the matrix
P = (R − Λ). Does P admit a right-inverse over D?
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5. Using the command PiPolynomial of OreModules, compute the obstructions for the
D-module E = D1×3/(D1×2 P ) to be projective, i.e., free by the Quillen-Suslin theorem.

6. Prove that if we take b = C and a2 = LC, then one of the obstructions becomes 1, i.e.,
A⊗DE is a free A = K

[
∂t; id, ∂∂t

] [
∂x; id, ∂∂x

]
-module and K = Q(L,R,C,G)[a]/(a2−LC).

7. Deduce an injective parametrization Q ∈ A3 of A⊗D E.

8. Write Q = (QT1 QT2 ), where Q1 ∈ A2 and Q2 ∈ A, and deduce that A ⊗D M ∼= L =
A/(AQ2), i.e., M is a cyclic A-module.

9. Check that Λ admits a left-inverse over A. Deduce that R is equivalent to the diagonal
matrix diag(1, Q2).

10. Compute a matrix F ∈ A1×2 such that kerA(.Q1) = AF . Show that kerA(.Q1) is a free
A-module.

11. Compute a right-inverse Q3 ∈ A2 of F over A and prove that W = (Q3 Q1) ∈ GL2(A).

12. Form the matrix U = (RQ3 Λ) ∈ A2×2 and check that U ∈ GL2(A).

13. Finally, check that U−1RW = diag(1, Q2) and (5) is equivalent to the following DE:(
∂2
x − LC ∂2

t − (RC +GL) ∂t −GR
)
Z(x, t) = 0. (6)

14. Note that (6) corresponds to the determinant of R, and thus V and I also satisfy (6).

Exercise 6 We consider the so-called conjugated Beltrami equation with σ(x, y) = x:
∂z1(x, y)

∂x
− x ∂z2(x, y)

∂y
= 0,

∂z1(x, y)
∂y

+ x
∂z2(x, y)

∂x
= 0.

(7)

Let D = A2(Q) = Q[x, y]
[
∂x; id, ∂∂x

] [
∂y; id, ∂∂y

]
be the first Weyl algebra over Q,

R =

(
∂x −x ∂y
∂y x ∂y

)
∈ D2×2

the presentation matrix of (7) and the left D-module M = D1×2/(D1×2R).

1. Compute the formal adjoint R̃ of R and compute dimD(Ñ), where Ñ = D1×2/(D1×2 R̃)
is the left D-module finitely presented by R̃. Deduce that Ñ is not a holonomic left
D-module.

2. Consider Λ = (a b)T , where a and b are two arbitrary constants and form the matrix
P = (R − Λ). Check that P admits a right-inverse over D when a 6= 0 and b 6= 0.
Deduce that E = D1×3/(D1×2 P ) is a stably free left D-module of rank 1. Does Stafford’s
theorem hold in this case?

3. Compute minimal parametrizations of the left D-module E. Do they admit a left-inverse
over D?
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4. Compute the annihilator of the minimal parametrizations.

5. Prove that if we take a = i and b = 1, then one of the annihilators reduces to D, i.e.,
the corresponding minimal parametrization Q admits a left-inverse over the new ring
A = A2(Q[a]/(a2 + 1)).

6. Write Q = (QT1 QT2 )T , where Q1 ∈ A2 and Q2 ∈ A, and deduce that A ⊗D M ∼= L =
A/(AQ2), i.e., A⊗DM is a cyclic left A-module.

7. Check that Λ admits a left-inverse over A. Deduce that R is equivalent to the diagonal
matrix diag(1, Q2).

8. Compute F ∈ A1×2 such that kerA(.Q1) = AF . Deduce that kerA(.Q1) is a free left
A-module of rank 1.

9. Prove that F admits a right-inverse Q3 ∈ A2 and show that W = (Q3 Q1) ∈ GL2(A).

10. Form the matrix U = (RQ3 Λ) and prove that U ∈ GL2(A).

11. Prove that U−1RW = diag(1, Q2) and deduce that (7) is equivalent to the following PDE

(i x∆ + ∂y)u(x, y) = 0,

where ∆ = ∂2
x + ∂2

y denotes the Laplacian operator.

12. Using the command Exti of OreModules, check that z1 and z2 respectively satisfy:

(x∆− ∂x) z1 = 0, (x∆ + ∂x) z2 = 0.

Contrary to the previous exercise (transmission line), note that z1 and z2 do not satisfy
the same equation. Does the determinant of R make sense over the noncommutative
polynomial D ring?
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