Stafford and Quillen-Suslin theorems: Algorithms and applications

Alban Quadrat

INRIA Sophia Antipolis, APICS Project, 2004 route des lucioles, BP 93, 06902 Sophia Antipolis cedex, France.

Alban.Quadrat@sophia.inria.fr

http://www-sop.inria.fr/members/Alban.Quadrat/index.html in collaboration with

Daniel Robertz \& Anna Fabiańska

Lehrstuhl B für Mathematik RWTH Aachen, Germany. daniel@momo.math.rwth-aachen.de

AACA 2009

Monge problem (1784)

- Let D be a ring of differential operators (e.g., $D=A_{n}(k)$).
- Let \mathcal{F} be a left D-module (e.g., $k\left[x_{1}, \ldots, x_{n}\right], \mathcal{F}=C^{\infty}\left(\mathbb{R}^{n}\right)$):

$$
\forall P_{1}, P_{2} \in D, \forall y_{1}, y_{2} \in \mathcal{F}: P_{1} y_{1}+P_{2} y_{2} \in \mathcal{F}
$$

Let us consider $R \in D^{q \times p}$ and the linear system of PDEs:

$$
\operatorname{ker}_{\mathcal{F}}(R .) \triangleq\left\{\eta \in \mathcal{F}^{p} \mid R \eta=0\right\}
$$

- Question: When does $Q \in D^{p \times m}$ exist such that:

$$
\operatorname{ker}_{\mathcal{F}}(R .)=\operatorname{im}_{\mathcal{F}}(Q .) \triangleq Q \mathcal{F}^{m} ?
$$

$\Rightarrow Q$ is called a parametrization of $\operatorname{ker}_{\mathcal{F}}(R$.$) .$

Example

- Example: $D=B_{1}(\mathbb{R})=\mathbb{R}(t)\left[\partial ; \mathrm{id}, \frac{d}{d t}\right], \mathcal{F}=C^{\infty}(\mathbb{R}), \alpha \in \mathbb{R}(t)$,

$$
\begin{gather*}
R=\left(\partial^{2}+\alpha(t) \partial+1,-\partial-\alpha(t)\right) \in D^{1 \times 2} \\
\ddot{y}(t)+\alpha(t) \dot{y}(t)+y(t)-\dot{u}(t)-\alpha(t) u(t)=0 \quad(\star) \\
\Leftrightarrow\left\{\begin{array}{l}
y(t)=\dot{\xi}(t)+\alpha(t) \xi(t) \\
u(t)=\ddot{\xi}(t)+\alpha(t) \dot{\xi}(t)+(\dot{\alpha}(t)+1) \xi(t)
\end{array}\right.
\end{gather*}
$$

$(\star \star)$ is an injective parametrization of (\star) because $\xi=-\dot{y}+u$.

- Example: $D=\mathbb{R}\left[\partial_{1}, \partial_{2}, \partial_{3}\right], \quad \partial_{i}=\partial / \partial x_{i}, \quad \mathcal{F}=C^{\infty}\left(\mathbb{R}^{3}\right)$,

$$
\begin{aligned}
\operatorname{div} \vec{A}=0 & \Leftrightarrow \exists \vec{B} \in \mathcal{F}^{3}: \vec{A}=\operatorname{curl} \vec{B} \\
\operatorname{curl} \vec{B}=\overrightarrow{0} & \Leftrightarrow \exists f \in \mathcal{F}: \vec{B}=\operatorname{grad} f
\end{aligned}
$$

Involution \& formal adjoint

- Let k be a field, $\operatorname{char}(k)>0$, and $D=A_{n}(k)$ or $B_{n}(k)$.
- Let θ be the involution of D defined by:

$$
\theta\left(\partial_{i}\right)=-\partial_{i}, \quad \theta\left(x_{i}\right)=x_{i}, \quad \theta(a)=a, \quad \forall a \in k
$$

$\left(\theta: D \longrightarrow D k\right.$-linear map, $\left.\quad \theta(P Q)=\theta(Q) \theta(P), \theta^{2}=\mathrm{id}\right)$.

- If $R \in D^{q \times p}$, then the formal adjoint of R is defined by:

$$
\theta(R)=\left(\theta\left(R_{i j}\right)\right)^{T} \in D^{p \times q}
$$

- $\widetilde{N}=D^{1 \times q} /\left(D^{1 \times p} \theta(R)\right)$ is adjoint left D-module of the finitely presented left D-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$.
- If \mathcal{F} is a left D-module, then we have:

$$
\operatorname{ker}_{\mathcal{F}}(R .)=\left\{\eta \in \mathcal{F}^{p} \mid R \eta=0\right\} \cong \operatorname{hom}_{D}(M, \mathcal{F})
$$

Definitions

- Definition: 1. M is free if $\exists r \in \mathbb{Z}_{+}$such that $M \cong D^{r}$.

2. M is stably free if $\exists r, s \in \mathbb{Z}_{+}$such that $M \oplus D^{s} \cong D^{r}$.
3. M is projective if $\exists r \in \mathbb{Z}_{+}$and a D-module P such that:

$$
M \oplus P \cong D^{r}
$$

4. M is reflexive if $\varepsilon: M \longrightarrow \operatorname{hom}_{D}\left(\operatorname{hom}_{D}(M, D), D\right)$ is an isomorphism, where:

$$
\varepsilon(m)(f)=f(m), \quad \forall m \in M, \quad \forall f \in \operatorname{hom}_{D}(M, D)
$$

5. M is torsion-free if:

$$
t(M)=\{m \in M \mid \exists 0 \neq P \in D: P m=0\}=0
$$

6. M is torsion if $t(M)=M$.

Classification of modules

- Theorem:

1. We have the following implications:

$$
\text { free } \Rightarrow \text { stably free } \Rightarrow \text { projective } \Rightarrow \text { reflexive } \Rightarrow \text { torsion-free. }
$$

2. If D is a principal domain (e.g., $\left.B_{1}(\mathbb{Q})=\mathbb{Q}(t)\left[\partial ; i d, \frac{d}{d t}\right]\right)$, then:

$$
\text { torsion-free }=\text { free }
$$

3. If D is a hereditary ring (e.g., $\left.A_{1}(\mathbb{Q})=\mathbb{Q}[t]\left[\partial ; i d, \frac{d}{d t}\right]\right)$, then:

$$
\text { torsion-free }=\text { projective }
$$

4. If $D=k\left[\partial_{1}, \ldots, \partial_{n}\right], k$ is a field of constants, then:

$$
\text { projective }=\text { free } \quad \text { (Quillen-Suslin theorem) } .
$$

Module M	Homological algebra	\mathcal{F} injective cogenerator
with torsion	$t(M) \cong \operatorname{ext}_{D}^{1}(\widetilde{N}, D)_{\theta}$	\emptyset
torsion-free	$\operatorname{ext}_{D}^{1}(\widetilde{N}, D)=0$	$\operatorname{ker}_{\mathcal{F}}(R)=.Q \mathcal{F}^{/_{1}}$
reflexive	$\begin{gathered} \operatorname{ext}_{D}^{i}(\widetilde{N}, D)=0 \\ i=1,2 \end{gathered}$	$\begin{gathered} \operatorname{ker}_{\mathcal{F}}(R .)=Q_{1} \mathcal{F}^{\prime_{1}} \\ \operatorname{ker}_{\mathcal{F}}\left(Q_{1} .\right)=Q_{2} \mathcal{F}^{l_{2}} \end{gathered}$
$\begin{gathered} \text { projective } \\ = \\ \text { stably free } \end{gathered}$	$\begin{gathered} \operatorname{ext}_{D}^{i}(\widetilde{N}, D)=0 \\ 1 \leq i \leq n=\operatorname{gld}(D) \end{gathered}$	$\begin{gathered} \operatorname{ker}_{\mathcal{F}}(R .)=Q_{1} \mathcal{F}^{I_{1}} \\ \operatorname{ker}_{\mathcal{F}}\left(Q_{1} .\right)=Q_{2} \mathcal{F}^{I_{2}} \\ \cdots \\ \operatorname{ker}_{\mathcal{F}}\left(Q_{n-1} .\right)=Q_{n} \mathcal{F}^{\prime \prime} \end{gathered}$
free	?	$\begin{gathered} \operatorname{ker}_{\mathcal{F}}(R .)=Q \mathcal{F}^{m} \\ \exists T: T Q=I_{m} \end{gathered}$

Computation bases

- $\left.\left.V=\left\{\begin{array}{lll}(x & y & z\end{array}\right)^{T} \in k^{3} \right\rvert\, 2 x+3 y+5 z=0\right\}, \quad k=\mathbb{Q}, \mathbb{R}, \mathbb{C}$. $2 x+3 y+5 z=0 \Rightarrow x=-\frac{3}{2} y-\frac{5}{2} z \Rightarrow\left\{\begin{array}{l}x=\frac{3}{2} y-\frac{5}{2} z, \\ y=y, \\ z=z,\end{array} \quad \forall y, z \in k\right.$.

$$
\Rightarrow V=k\left(\begin{array}{lll}
-\frac{3}{2} & 1 & 0
\end{array}\right)^{T}+k\left(\begin{array}{lll}
-\frac{5}{2} & 0 & 1
\end{array}\right)^{T} \text { basis of } V .
$$

- $\left.\left.M=\left\{\begin{array}{lll}x & y & z\end{array}\right)^{T} \in \mathbb{Z}^{3} \right\rvert\, 2 x+3 y+5 z=0\right\}$.
$M=\mathbb{Z}\left(\begin{array}{lll}\alpha_{1} & \beta_{1} & \gamma_{1}\end{array}\right)^{T}+\mathbb{Z}\left(\begin{array}{lll}\alpha_{2} & \beta_{2} & \gamma_{2}\end{array}\right)^{T} \Leftrightarrow\left\{\begin{array}{l}x=\alpha_{1} t_{1}+\alpha_{2} t_{2}, \\ y=\beta_{1} t_{1}+\beta_{2} t_{2}, t_{i} \in \mathbb{Z}, \\ z=\gamma_{1} t_{1}+\gamma_{2} t_{2}, \quad(\star)\end{array}\right.$
$\left.\Rightarrow\left\{\begin{array}{lll}\left(\alpha_{i}\right. & \beta_{i} & \gamma_{i}\end{array}\right)^{T}\right\}_{i=1,2}$ is a basis of M iff (\star) is injective, ie.:

$$
\exists a_{i j} \in \mathbb{Z}, \quad i=1,2: \quad t_{i}=a_{i 1} x+a_{i 2} y+a_{i 3} z
$$

Shorter free resolutions

- Theorem: Let us consider a finite free resolution of M :
$0 \longrightarrow D^{1 \times p_{m}} \xrightarrow{. R_{m}} D^{1 \times p_{m-1}} \xrightarrow{. R_{m-1}} \ldots \xrightarrow{. R_{2}} D^{1 \times p_{1}} \xrightarrow{. R_{1}} D^{1 \times p_{0}} \xrightarrow{\pi} M \longrightarrow 0$.

1. If $m \geq 3$ and there exists $S_{m} \in D^{p_{m-1} \times p_{m}}$ such that
$R_{m} S_{m}=I_{p_{m}}$, then we have the finite free resolution of M :
$0 \longrightarrow D^{1 \times p_{m-1}} \xrightarrow{T_{m-1}} D^{1 \times\left(p_{m-2}+p_{m}\right)} \xrightarrow{\xrightarrow{T_{m-2}}} D^{1 \times p_{m-3}} \xrightarrow{. R_{m-3}} \ldots \xrightarrow{\pi} M \longrightarrow 0$,
where $\quad T_{m-1}=\left(\begin{array}{ll}R_{m-1} & S_{m}\end{array}\right), \quad T_{m-2}=\binom{R_{m-2}}{0}$.
2. If $m=2$ and there exists $S_{2} \in D^{p_{1} \times p_{2}}$ such that $R_{2} S_{2}=I_{p_{2}}$, then we have the finite free resolution

$$
\begin{equation*}
0 \longrightarrow D^{1 \times p_{1}} \xrightarrow{. T_{1}} D^{1 \times\left(p_{0}+p_{2}\right)} \xrightarrow{\tau} M \longrightarrow 0, \tag{2}
\end{equation*}
$$

where $T_{1}=\left(\begin{array}{ll}R_{1} & S_{2}\end{array}\right)$ and $\tau=\binom{\pi}{0}$.

Example: annihilator of $\dot{\delta}$

- $\dot{\delta}$ satisfies the system: $\quad t^{2} y(t)=0, \quad t \dot{y}(t)+2 y(t)=0$.
- We consider $D=\mathbb{Q}[t]\left[\partial ; \mathrm{id}, \frac{d}{d t}\right]$ and the left D-module:

$$
M=D /\left(D t^{2}+D(t \partial+2)\right)
$$

- M admits the following finite free resolution of M :

$$
\begin{aligned}
& 0 \longrightarrow D \xrightarrow{. R_{2}} D^{1 \times 2} \xrightarrow{R_{1}} D \xrightarrow{\pi} M \longrightarrow 0, \\
& R_{1}=\left(\begin{array}{ll}
t^{2} & t \partial+2
\end{array}\right)^{T}, \quad R_{2}=\left(\begin{array}{ll}
\partial & -t
\end{array}\right) .
\end{aligned}
$$

- $S_{2}=\left(\begin{array}{ll}t & \partial\end{array}\right)^{T}$ is a right-inverse of R_{2}, and thus, we get:

$$
0 \longrightarrow D^{1 \times 2} \xrightarrow{. T_{1}} D^{1 \times 2} \xrightarrow{\tau} M \longrightarrow 0, \quad T_{1}=\left(\begin{array}{cc}
t^{2} & t \\
t \partial+2 & \partial
\end{array}\right) .
$$

Example: contact transformations

- $D=A_{3}(\mathbb{Q})=\mathbb{Q}\left[x_{1}, x_{2}, x_{3}\right]\left[\partial_{1} ; \mathrm{id}, \frac{\partial}{\partial x_{1}}\right]\left[\partial_{2} ; \mathrm{id}, \frac{\partial}{\partial x_{2}}\right]\left[\partial_{3} ; \mathrm{id}, \frac{\partial}{\partial x_{3}}\right]$,

$$
R_{1}=\left(\begin{array}{ccc}
\frac{1}{2} x_{2} \partial_{1} & x_{2} \partial_{2}+1 & x_{2} \partial_{3}+\frac{1}{2} \partial_{1} \\
-\frac{1}{2} x_{2} \partial_{2}-\frac{3}{2} & 0 & \frac{1}{2} \partial_{2} \\
-\partial_{1}-\frac{1}{2} x_{2} \partial_{3} & -\partial_{2} & -\frac{1}{2} \partial_{3}
\end{array}\right) \in D^{3 \times 3} .
$$

- If $R_{2}=\left(\partial_{2}-\left(\partial_{1}+x_{3} \partial_{3}\right) \quad x_{2} \partial_{2}+2\right)$, then the left D-module $M=D^{1 \times 3} /\left(D^{1 \times 3} R_{1}\right)$ admits the finite free resolution:

$$
0 \longrightarrow D \xrightarrow{R_{2}} D^{1 \times 3} \xrightarrow{R_{1}} D^{1 \times 3} \xrightarrow{\pi} M \longrightarrow 0 .
$$

- $S_{2}=\left(\begin{array}{lll}-x_{2} & 0 & 1\end{array}\right)^{T}$ is a right-inverse of R_{2} and we get:

$$
\begin{gathered}
0 \longrightarrow D^{1 \times 3} \xrightarrow{T_{1}} D^{1 \times 4} \xrightarrow{\tau} M \longrightarrow 0, \\
T_{1}=\left(\begin{array}{cccc}
\frac{1}{2} x_{2} \partial_{1} & x_{2} \partial_{2}+1 & x_{2} \partial_{3}+\frac{1}{2} \partial_{1} & -x_{2} \\
-\frac{1}{2} x_{2} \partial_{2}-\frac{3}{2} & 0 & \frac{1}{2} \partial_{2} & 0 \\
-\partial_{1}-\frac{1}{2} x_{2} \partial_{3} & -\partial_{2} & -\frac{1}{2} \partial_{3} & 1
\end{array}\right) .
\end{gathered}
$$

Projective dimensions

- Definition: A projective resolution of a left D-module M is an exact sequence of the form

$$
0 \longrightarrow P_{n} \xrightarrow{\delta_{n}} P_{n-1} \xrightarrow{\delta_{n-1}} \ldots \xrightarrow{\delta_{1}} P_{0} \xrightarrow{\delta_{0}} M \longrightarrow 0, \quad(\star)
$$

where the $P_{i}^{\prime} s$ are projective left D-modules.

- Definition: We call left projective dimension of a left D-module M, denoted by $\operatorname{lpd}_{D}(M)$, the smallest n such that there exists a projective resolution of the form (\star).
- Proposition: $\operatorname{lpd}_{D}(M)=n$ iff there exists a finite projective resolution (\star) of M, where δ_{n} is nonsplit, i.e., there exists no D-morphism $\tau_{n}: P_{n-1} \longrightarrow P_{n}$ such that $\tau_{n} \circ \delta_{n}=\operatorname{id}_{P_{n}}$, with the convention $P_{-1}=M$.

Computation of left projective dimensions

- Algorithm: 1. Compute a finite free resolution of M.

2. Set $j=m$ and $T_{j}=R_{m}$.
3. Check if R_{j} admits a right-inverse S_{j} over D.
\Rightarrow If not, then exit and $\operatorname{lpd}_{D}(M)=j$.
\Rightarrow If yes and:
(a) If $j=1$, then exit with $\operatorname{lpd}_{D}(M)=0$.
(b) If $j=2$, then compute (2) and return to 3 with $j \leftarrow j-1$.
(c) If $j \geq 3$, then compute (1) and return to 3 with $j \leftarrow j-1$.

- Example: The left $A_{1}(\mathbb{Q})$-module M associated with the annihilator of $\dot{\delta}$ has $\operatorname{lpd}_{D}(M)=1$.
- Example: The left $A_{3}(\mathbb{Q})$-module M associated with the contact transformations has $\operatorname{lpd}_{D}(M)=0$.

Shortest free resolutions

- If M is a projective left D-module, then $\operatorname{lpd}_{D}(M)=0$.
- Moreover, if M admits a finite free resolution
$0 \longrightarrow D^{1 \times p_{m}} \xrightarrow{. R_{m}} D^{1 \times p_{m-1}} \xrightarrow{. R_{m-1}} \ldots \xrightarrow{. R_{2}} D^{1 \times p_{1}} \xrightarrow{. R_{1}} D^{1 \times p_{0}} \xrightarrow{\pi} M \longrightarrow 0$, then the previous algorithm returns a matrix $R \in D^{q \times p}$ such that

$$
0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0 \quad(\star)
$$

is a split finite free resolution of M, i.e., (\star) is exact and R admits a right-inverse $S \in D^{p \times q}$, i.e., $R S=I_{q}$. In particular, we have $D^{1 \times p} \cong M \oplus D^{1 \times q}$, which proves that M is a stably free left D-module (Serre's theorem).

- The matrix R will be called a minimal presentation matrix of M.

Example: contact transformations

- We consider the left $D=A_{3}(\mathbb{Q})$-module $M=D^{1 \times 3} /\left(D^{1 \times 3} R_{1}\right)$:

$$
R_{1}=\left(\begin{array}{ccc}
\frac{1}{2} x_{2} \partial_{1} & x_{2} \partial_{2}+1 & x_{2} \partial_{3}+\frac{1}{2} \partial_{1} \\
-\frac{1}{2} x_{2} \partial_{2}-\frac{3}{2} & 0 & \frac{1}{2} \partial_{2} \\
-\partial_{1}-\frac{1}{2} x_{2} \partial_{3} & -\partial_{2} & -\frac{1}{2} \partial_{3}
\end{array}\right) .
$$

- M is a stably free left D-module defined by the minimal presentation matrix $T_{1}: 0 \longrightarrow D^{1 \times 3} \xrightarrow{T_{1}} D^{1 \times 4} \xrightarrow{\tau} M \longrightarrow 0$,

$$
\begin{gathered}
T_{1}=\left(\begin{array}{cccc}
\frac{1}{2} x_{2} \partial_{1} & x_{2} \partial_{2}+1 & x_{2} \partial_{3}+\frac{1}{2} \partial_{1} & -x_{2} \\
-\frac{1}{2} x_{2} \partial_{2}-\frac{3}{2} & 0 & \frac{1}{2} \partial_{2} & 0 \\
-\partial_{1}-\frac{1}{2} x_{2} \partial_{3} & -\partial_{2} & -\frac{1}{2} \partial_{3} & 1
\end{array}\right), \\
S_{1}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & x_{2} \\
0 & -x_{2} & 0 \\
\partial_{2} & -\partial_{1}-x_{2} \partial_{3} & x_{2} \partial_{2}+2
\end{array}\right), \quad T_{1} S_{1}=I_{3} .
\end{gathered}
$$

Existence of finite free resolutions

- Theorem: Let A be a left noetherian ring of finite left projective dimension $\operatorname{lgld}(A)$ and whose finitely generated projective left A-module are stably free. Let $D=A\left[\partial_{1} ; \alpha_{1}, \beta_{1}\right] \ldots\left[\partial_{m} ; \alpha_{m}, \beta_{m}\right]$ be an Ore algebra where the α_{i} 's are automorphisms. Then, we have:
(1) Every finitely generated left D-module admits a finite free resolution of length $\operatorname{lpd}(D)+1$.
(2) Every finitely generated projective left D-module is stably free.
- Example: $D=A\left[x_{1}, \ldots, x_{n}\right]$, where A is a principal ideal domain (e.g., $A=\mathbb{Z}, A=k$ a field).
- Example: The Weyl algebras $D=A_{n}(k)$ and $B_{n}(k)$.

Characterization of free modules

- Let M be a stably free left D-module defined by a minimal presentation matrix R :

$$
0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0, \quad R S=I_{q} .
$$

- $\mathrm{GL}_{p}(D)=\left\{U \in D^{p \times p} \mid \exists V \in D^{p \times p}: U V=V U=I_{p}\right\}$.
- Theorem: Let $R \in D^{q \times p}$ be a matrix admitting a right-inverse over D. Then, the left D-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ is free of rank $p-q$ iff there exists $U \in \mathrm{GL}_{p}(D)$ satisfying:

$$
R U=\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)
$$

Then, $U^{-1}=\binom{R}{T}$, where $T \in D^{(p-q) \times p}$, and the family $\left\{\pi\left(T_{i \bullet}\right)\right\}_{i=1, \ldots, p-q}$ forms a basis of the free left D-module M.

Proof

- Let us suppose that there exists $U \in \mathrm{GL}_{p}(D)$ such that:

$$
R U=\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)
$$

- We obtain the following commutative exact diagram

which proves that $M \cong D^{1 \times(p-q)}$, i.e., M is a free of rank $p-q$.

Proof

- Let M be a free left D-module, i.e., $\phi: M \stackrel{\cong}{\cong} D^{1 \times(p-q)}$.
- We have the following exact commutative diagram (. $Q=\phi \circ \pi$)

where the first horizontal exact sequence splits, namely:
$R Q=0, \quad R S=I_{q}, \quad T Q=I_{p-q}, \quad T S=0, \quad S R+Q T=I_{p}$,
i.e., $\binom{R}{T}\left(\begin{array}{ll}S & Q\end{array}\right)=\left(\begin{array}{cc}I_{q} & 0 \\ 0 & I_{p-q}\end{array}\right)=I_{p}, \quad\left(\begin{array}{ll}S & Q\end{array}\right)\binom{R}{T}=I_{p}$.

Proof

$$
\begin{aligned}
& 0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} \quad M \quad \longrightarrow 0,
\end{aligned}
$$

The isomorphism ϕ is defined by:

$$
\begin{aligned}
\phi: M & \longrightarrow D^{1 \times(p-q)} & \phi^{-1}: D^{1 \times(p-q)} & \longrightarrow M \\
\pi(\lambda) & \longmapsto \lambda & \longmapsto & \longmapsto \pi(\mu T) .
\end{aligned}
$$

- If we denote by $\left\{h_{k}\right\}_{k=1, \ldots, p-q}$ the standard basis of $D^{1 \times(p-q)}$, then $\left\{\phi^{-1}\left(h_{k}\right)=\pi\left(h_{k} T\right)=\pi\left(T_{k}\right)\right\}_{k=1, \ldots,(p-q)}$ is a basis of M
\Rightarrow the residue classes of the rows of T in M define a basis of M.

Injective parametrizations

- Let $\left\{f_{j}\right\}_{j=1, \ldots, p}$ be the standard basis of $D^{1 \times p}$ and $\left\{y_{j}=\pi\left(f_{j}\right)\right\}_{j=1, \ldots, p}$ a family of generators of $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$.
- For $j=1, \ldots, p$, we have
$y_{j}=\phi^{-1}\left(\phi\left(y_{j}\right)\right)=\phi^{-1}\left(f_{j} Q\right)=\phi^{-1}\left(\sum_{k=1}^{p-q} Q_{j k} h_{k}\right)=\sum_{k=1}^{p-q} Q_{j k} z_{k},(\star)$
which shows that Q defines a parametrization of M.
- The elements $z_{k}=\phi^{-1}\left(h_{k}\right)=\pi\left(T_{k}\right)$ of the basis of M satisfy

$$
z_{k}=\pi\left(\sum_{j=1}^{p} T_{k j} f_{j}\right)=\sum_{j=1}^{p} T_{k j} \pi\left(f_{j}\right)=\sum_{j=1}^{p} T_{k j} y_{j},
$$

which proves that (\star) is an injective parametrization of M.

Injective parametrizations

- Let $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ be a torsion-free left D-module.
- From the vanishing of $\operatorname{ext}_{D}^{1}(N, D)$, where $N=D^{q} /\left(R D^{p}\right)$ is the Auslander transpose of M, we obtain $Q \in D^{p \times m}$ such that

$$
\begin{array}{rcccccc}
D^{1 \times q} & \xrightarrow{R} & D^{1 \times p} & \xrightarrow{\pi} & M & \longrightarrow 0 \\
0 \longleftarrow N & D^{q} & \stackrel{R}{\longleftrightarrow} & D^{p} & \stackrel{Q}{\longleftrightarrow} & D^{m} & \\
& D^{1 \times q} & \xrightarrow{R} & D^{1 \times p} & \xrightarrow{Q} & D^{1 \times m}, &
\end{array}
$$

$$
\operatorname{ext}_{D}^{1}(N, D)=\operatorname{ker}_{D}(. Q) /\left(D^{1 \times q} R\right)=0 \Leftrightarrow M \cong D^{1 \times p} Q \subseteq D^{1 \times m}
$$

- If $. Q: D^{1 \times p} \longrightarrow D^{1 \times m}$ is surjective, i.e, Q admits a left-inverse $T \in D^{m \times p}$, i.e., $T Q=I_{m}$, then we have

$$
M \cong D^{1 \times p} Q=D^{1 \times m}
$$

i.e., M is a free left D-module of rank $m,\left\{\pi\left(T_{k \bullet}\right)\right\}_{k=1, \ldots, m}$ is a basis and Q an injective parametrization of M.

Example: contact transformations

- We consider the left $D=A_{3}(\mathbb{Q})$-module $M=D^{1 \times 3} /\left(D^{1 \times 3} R\right)$:

$$
R=\left(\begin{array}{ccc}
\frac{1}{2} x_{2} \partial_{1} & x_{2} \partial_{2}+1 & x_{2} \partial_{3}+\frac{1}{2} \partial_{1} \\
-\frac{1}{2} x_{2} \partial_{2}-\frac{3}{2} & 0 & \frac{1}{2} \partial_{2} \\
-\partial_{1}-\frac{1}{2} x_{2} \partial_{3} & -\partial_{2} & -\frac{1}{2} \partial_{3}
\end{array}\right) .
$$

- Checking the vanishing of $\operatorname{ext}_{D}^{1}(\widetilde{N}, D)=0$, we obtain that

$$
Q=\left(-\partial_{2} \quad x_{2} \partial_{3}+\partial_{1} \quad-\left(x_{2} \partial_{2}+2\right)\right)^{T}
$$

defines a parametrization of M, i.e., $M \cong D^{1 \times 3} Q \subseteq D$.

- Q admits the left-inverse $T=\frac{1}{2}\left(\begin{array}{lll}x_{2} & 0 & -1\end{array}\right)$, which proves that $M \cong D^{1 \times 3} Q=D$ and $z=\pi(T)$ is a basis of M.
- The generators $\left\{y_{i}=\pi\left(f_{j}\right)\right\}_{j=1,2,3}$ of M satisfying the relations $R y=0$, where $y=\left(y_{1}, y_{2}, y_{3}\right)^{T}$, satisfy $y=Q z$ and $z=T y$:

$$
\begin{aligned}
y_{1}=-\partial_{2} z, \quad y_{2}= & \left(x_{2} \partial_{3}+\partial_{1}\right) z, \quad y_{3}=-\left(x_{2} \partial_{2}+2\right) z, \\
& z=\frac{1}{2}\left(x_{2} y_{1}-y_{3}\right) .
\end{aligned}
$$

Computation of bases of general free modules

- Let $P \in D^{p \times m}$ and $D^{1 \times p} \xrightarrow{. P} D^{1 \times m}$.

1. If $U=D^{1 \times p} P$ is free, then compute $R \in D^{q \times p}$ such that:

$$
\begin{aligned}
& 0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{. P} D^{1 \times m} \quad \text { is exact. } \\
& 0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{. P} D^{1 \times p} P \\
& \longrightarrow 0 \\
& \Rightarrow \quad\|\quad\| \quad \uparrow \psi \\
& 0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} \quad M \quad 0,
\end{aligned}
$$

where $\psi(\pi(\lambda))=\lambda P, \forall \lambda \in D^{1 \times p}$. We get $U=\psi(M)$ and:

$$
\Rightarrow U=D^{1 \times(p-q)}\left(\begin{array}{ll}
T P
\end{array}\right), \quad \text { where } \quad\binom{R}{T}\left(\begin{array}{ll}
S & Q
\end{array}\right)=I_{p} .
$$

2. If $V=\operatorname{ker}_{D}(. P)$ is free, then compute $R \in D^{q \times p}$ such that $\operatorname{ker}_{D}(. P)=D^{1 \times q} R$ and go to 1 with $V=D^{1 \times p} R$.
3. If $W=D^{1 \times p} / \operatorname{ker}_{D}(. P)$, then $W=D^{1 \times p} /\left(D^{1 \times q} R\right) \equiv M_{2}$

Stafford's results

- Theorem: Let us consider $a_{1}, a_{2}, a_{3} \in D$ and the left ideal:

$$
\begin{gathered}
I=D a_{1}+D a_{2}+D a_{3} . \\
\Rightarrow \exists c_{1}, c_{2} \in D: I=D\left(a_{1}+c_{1} a_{3}\right)+D\left(a_{2}+c_{2} a_{3}\right) .
\end{gathered}
$$

- Two constructive proofs have been developed in:
\star A. Hillebrand, W. Schmale, "Towards an effective version of a theorem of Stafford", J. Symbolic Computation, 32 (2001), 699-716.
* A. Leykin, "Algorithmic proofs of two theorems of Stafford",
J. Symbolic Computation, 38 (2004), 15 35-1550.
- Implementation in the package Stafford of OreModules.
- Corollary: A stably free left D-module M with $\operatorname{rank}_{D}(M) \geq 2$ is free, i.e., M admits a finite basis over D.

Elementary operations

- Definition: 1. The general linear group $\mathrm{GL}_{m}(D)$ is the group of invertible matrices with entries in D :

$$
\operatorname{GL}_{m}(D)=\left\{U \in D^{m \times m} \mid \exists V \in D^{m \times m}: U V=V U=I_{m}\right\} .
$$

2. The elementary group $\mathrm{EL}_{m}(D)$ is the subgroup of $\mathrm{GL}_{m}(D)$ generated by all matrices of the form

$$
I_{m}+r E_{i j}, \quad r \in D, \quad i \neq j,
$$

$E_{i j}$ is the matrix defined by 1 at the position (i, j) and 0 else.
3. $a=\left(a_{1} \ldots a_{m}\right)^{T} \in D^{m}$ is called unimodular if:

$$
\exists b=\left(b_{1} \ldots b_{m}\right) \in D^{1 \times m}: b a=\sum_{i=1}^{m} b_{i} a_{i}=1
$$

We denote by $\mathrm{U}_{m}(D)$ the set of unimodular vectors of \underline{D}^{m}.

- Theorem: Let $m \geq 3$ and $a=\left(a_{1} \ldots a_{m}\right)^{T} \in \mathrm{U}_{m}(D)$. Then, there exists $E \in \mathrm{EL}_{m}(D)$ which satisfies:

$$
E a=\left(\begin{array}{llll}
1 & 0 & \ldots
\end{array}\right)^{T} .
$$

- Using Stafford's result, there exist $c_{1}, c_{2} \in D$ such that:

$$
a^{\prime}=\left(a_{1}+c_{1} a_{m} \quad a_{2}+c_{2} a_{m} \quad a_{3} \ldots a_{m-1}\right)^{T} \in \mathrm{U}_{m-1}(D) .
$$

- $a_{1}^{\prime}=a_{1}+c_{1} a_{m}, \quad a_{2}^{\prime}=a_{2}+c_{2} a_{m}, \quad a_{i}^{\prime}=a_{i}, \quad i \geq 3$,

$$
E_{1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & c_{1} \\
0 & 1 & 0 & \ldots & 0 & c_{2} \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right) \in \operatorname{EL}_{m}(D)
$$

Then, we have $E_{1} a=\left(\begin{array}{lllll}a_{1}^{\prime} & a_{2}^{\prime} & \ldots & a_{m-1}^{\prime} & a_{m}\end{array}\right)^{T}$.

- $a^{\prime} \in \mathrm{U}_{m-1}(D) \Rightarrow \exists b_{1}, \ldots, b_{m-1} \in D$ such that:

$$
\sum_{i=1}^{m-1} b_{i} a_{i}^{\prime}=1 \Rightarrow \sum_{i=1}^{m-1}\left(a_{1}^{\prime}-1-a_{m}\right) b_{i} a_{i}^{\prime}=\left(a_{1}^{\prime}-1-a_{m}\right) .
$$

- Let us define $a_{i}^{\prime \prime}=\left(a_{1}^{\prime}-1-a_{m}\right) b_{i}, \quad i \geq 1$, and:

$$
E_{2}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
a_{1}^{\prime \prime} & a_{2}^{\prime \prime} & a_{3}^{\prime \prime} & \ldots & a_{m-1}^{\prime \prime} & 1
\end{array}\right) \in \mathrm{EL}_{m}(D)
$$

Using $\sum_{i=1}^{m-1} a_{i}^{\prime \prime} a_{i}^{\prime}=a_{1}^{\prime}-1-a_{m}$, we then have:

$$
E_{2}\left(a_{1}^{\prime} \ldots a_{m-1}^{\prime} \quad a_{m}\right)^{T}=\left(\begin{array}{l}
a_{1}^{\prime} \ldots a_{m-1}^{\prime}
\end{array} \quad a_{1}^{\prime}-1\right)^{T} .
$$

- If we define by

$$
E_{3}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & -1 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right) \in \operatorname{EL}_{m}(D)
$$

then we have:

$$
E_{3}\left(a_{1}^{\prime} \ldots a_{m-1}^{\prime} \quad a_{1}^{\prime}-1\right)^{T}=\left(\begin{array}{lllll}
1 & a_{2}^{\prime} & \ldots & a_{m-1}^{\prime} & a_{1}^{\prime}-1
\end{array}\right)^{T} .
$$

- Finally, if we denote by

$$
E_{4}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
-a_{2}^{\prime} & 1 & 0 & \ldots & 0 & 0 \\
-a_{3}^{\prime} & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-a_{m-1}^{\prime} & 0 & 0 & \ldots & 1 & 0 \\
-a_{1}^{\prime}+1 & 0 & 0 & \ldots & 0 & 1
\end{array}\right) \in \operatorname{EL}_{m}(D),
$$

then we finally get:

$$
E_{4}\left(1 \quad a_{2}^{\prime} \ldots a_{m-1}^{\prime} \quad a_{1}^{\prime}-1\right)^{T}=\left(\begin{array}{llll}
1 & 0 & \ldots
\end{array}\right)^{T} .
$$

- Hence, if we denote by $E=E_{4} E_{3} E_{2} E_{1} \in \operatorname{EL}_{m}(D)$, then:

$$
E\left(\begin{array}{lll}
a_{1} & \ldots & a_{m}
\end{array}\right)^{T}=\left(\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right)^{T} .
$$

Computation of basis

- Let $R \in D^{q \times p}$ be a matrix such that $p \geq q+2$ and which admits a right-inverse $S \in D^{p \times q}$.

$$
0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0 .
$$

$\Rightarrow M$ is a stably free left D-module with:

$$
\operatorname{rank}_{D}(M)=p-q \geq 2
$$

- Compute the formal adjoint $\widetilde{R}=\theta(R) \in D^{p \times q}$:

$$
0 \longleftarrow D^{1 \times q} \longleftarrow . \widetilde{R} D^{1 \times p} \longleftarrow \operatorname{ker}_{D}(. \widetilde{R}) \longleftarrow 0 .
$$

- If we denote by $\widetilde{S}=\theta(S)$, then we have $\widetilde{S} \widetilde{R}=I_{q}$.
- Compute $\widetilde{E_{1}} \in \operatorname{EL}_{p}(D)$ such that:

$$
\widetilde{E_{1}} \widetilde{R}=\left(\begin{array}{cc}
1 & \star \\
0 & \\
\vdots & \widetilde{R_{2}} \\
0 &
\end{array}\right), \quad \widetilde{R_{2}} \in D^{(p-1) \times(q-1)} .
$$

- Compute $\widetilde{E_{2}} \in \mathrm{EL}_{p-1}(D)$ such that:

$$
\begin{aligned}
& \widetilde{E_{2}} \widetilde{R_{2}}=\left(\begin{array}{cc}
1 & \star \\
0 & \\
\vdots & \widetilde{R_{3}} \\
0 &
\end{array}\right), \quad \widetilde{R_{3}} \in D^{(p-2) \times(q-2)} . \\
& =\left(\begin{array}{cc}
1 & 0 \\
0 & \widetilde{E_{2}}
\end{array}\right) \Rightarrow\left(\begin{array}{ccc}
1 & \star & \star \\
0 & 1 & \star \\
\vdots & 0 & \\
\vdots & \vdots & \widetilde{R_{3}} \\
0 & 0 &
\end{array}\right) .
\end{aligned}
$$

- By induction, we obtain $\widetilde{U} \in \mathrm{EL}_{n}(D)$ such that:

$$
\widetilde{T}=\widetilde{U} \widetilde{R}=\left(\begin{array}{ccccc}
1 & \star & \star & \star & \star \\
0 & 1 & \star & \star & \star \\
0 & 0 & 1 & \star & \star \\
0 & 0 & 0 & 1 & \star \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 \\
0 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

- We easily check that we have:

$$
\operatorname{ker}_{D}(. \widetilde{T})=D^{1 \times(p-q)}\left(\begin{array}{ll}
0 & I_{p-q}
\end{array}\right)
$$

- If we denote by $\widetilde{P}=\left(\begin{array}{ll}0 & I_{p-q}\end{array}\right) \in D^{(p-q) \times p}$, then we obtain the commutative exact diagram:

- In particular, we obtain:

$$
\operatorname{ker}_{D}(\widetilde{R})=D^{1 \times(p-q)}(\widetilde{P} \widetilde{U}) \cong D^{1 \times(p-q)}
$$

Therefore, we have the split exact sequence:

$$
0 \longleftarrow D^{1 \times q} \stackrel{. \tilde{R}}{\leftarrow} D^{1 \times p} \stackrel{.(\tilde{P} \widetilde{U})}{\longleftarrow} D^{1 \times(p-q)} \longleftarrow 0 .
$$

- By duality, we obtain the split exact sequence

$$
0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{.(U P)} D^{1 \times(p-q)} \longrightarrow 0,
$$

where $U=\theta(\widetilde{U})$, which proves

$$
M=\operatorname{coker}_{D}(. R) \cong D^{1 \times p}(U P)=D^{1 \times(p-q)}
$$

i.e., M is a free left D-module of rank $p-q$.

- Let $Q=U P \in D^{p \times(p-q)}$ be formed by the last $p-q$ columns of U and $T \in D^{(p-q) \times p}$ the left-inverse of Q, i.e., $T Q=I_{p-q}$.

Example

- Let us consider the time-varying linear control system:

$$
\left\{\begin{array}{l}
\dot{x}_{2}-u_{2}=0, \\
\dot{x}_{1}-t u_{1}=0,
\end{array}(\star) \quad \Rightarrow \quad R=\left(\begin{array}{cccc}
0 & \partial & 0 & -1 \\
\partial & 0 & -t & 0
\end{array}\right) .\right.
$$

- (\star) admits the injective parametrization of over the second Weyl algebra $B_{1}(\mathbb{Q})=\mathbb{Q}(t)\left[\partial ; \mathrm{id}, \frac{d}{d t}\right]$:

$$
\left\{\begin{array}{l}
x_{1}=\xi_{1}, \\
x_{2}=\xi_{2}, \\
u_{1}=\frac{1}{t} \dot{\xi}_{1}, \\
u_{2}=\dot{\xi}_{2}
\end{array}\right.
$$

- But, the parametrization $(\star \star)$ is singular at $t=0$.
- $M=B_{1}(\mathbb{Q})^{1 \times 4} /\left(B_{1}(\mathbb{Q})^{1 \times 2} R\right)$ is free with basis $\left\{x_{1}, x_{2}\right\}$.
- Let $D=A_{1}(\mathbb{Q})=\mathbb{Q}[t]\left[\partial ; \mathrm{id}, \frac{d}{d t}\right]$ and $P=D^{1 \times 4} /\left(D^{1 \times 2} R\right)$.
- P is a stably free D-module as R admits the right-inverse:

$$
S=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
t & 0 & \partial & 0
\end{array}\right)^{T}
$$

- Computing $\operatorname{ext}_{D}^{1}(\widetilde{N}, D)$, we obtain the parametrization of (\star) :

$$
\left\{\begin{array}{l}
x_{1}=-t^{2} \xi_{1}+t \dot{\xi}_{2}-\xi_{2} \\
x_{2}=-\xi_{3}, \\
u_{1}=-t \dot{\xi}_{1}-2 \xi_{1}+\ddot{\xi}_{2}, \quad(\star \star \star) \\
u_{2}=-\dot{\xi}_{3}
\end{array}\right.
$$

$(\star \star \star)$ is clearly non-injective because $\operatorname{rank}_{D}(P)=2$.

- P is a stably free left D-module of $\operatorname{rank}_{D}(P)=2$, i.e., free.
- The formal adjoint of R is $\widetilde{R}=\left(\begin{array}{cccc}0 & -\partial & 0 & -1 \\ -\partial & 0 & -t & 0\end{array}\right)^{T}$.
- We have the following equality of left ideals of D :

$$
D 0+D(-\partial)+D(-1)=D(0-(-1))+D(-\partial+0 \times(-1))
$$

Taking $c_{1}=-1$ and $c_{2}=0$, we define the elementary matrices:

$$
\begin{array}{ll}
\widetilde{E_{1}}=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \widetilde{E_{2}}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right), \\
\widetilde{E_{3}}=\left(\begin{array}{cccc}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad \widetilde{E_{4}}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
\partial & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
\end{array}
$$

- Defining $\widetilde{E}=\widetilde{E_{4}} \widetilde{E_{3}} \widetilde{E_{2}} \widetilde{E_{1}}$, we get:

$$
\widetilde{E} \widetilde{R}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & -t & -\partial
\end{array}\right)^{T}
$$

- We have the following equality of left ideals of D :

$$
D 0+D(-t)+D(-\partial)=D(0-\partial)+D(-t+0 \times(-\partial))
$$

Taking $c_{1}^{\prime}=1$ and $c_{2}^{\prime}=0$, we define the elementary matrices:

$$
\begin{gathered}
\widetilde{F_{1}}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \widetilde{F_{2}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-t & \partial & 1
\end{array}\right), \\
\widetilde{F_{3}}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \widetilde{F_{4}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
t & 1 & 0 \\
\partial+1 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

- If we define $\widetilde{F}=\widetilde{F_{4}} \widetilde{F_{3}} \widetilde{F_{2}} \widetilde{F_{1}}$ and $\widetilde{G}=\operatorname{diag}(1, \widetilde{F})$, then we get:

$$
(\widetilde{G} \widetilde{E}) \widetilde{R}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right)
$$

- Taking the last two columns of the formal adjoint of $\widetilde{G} \widetilde{E}$, we obtain the matrix defining a parametrization of (\star) :

$$
Q=\left(\begin{array}{cc}
t^{2} & -t \partial+1 \\
t(t+1) & -(t+1) \partial+1 \\
t \partial+2 & -\partial^{2} \\
t(t+1) \partial+2 t+1 & -(t+1) \partial^{2}
\end{array}\right)
$$

- The matrix Q defines an injective parametrization of (\star) because

$$
T=\left(\begin{array}{cccc}
0 & 0 & t+1 & -1 \\
t+1 & -t & 0 & 0
\end{array}\right)
$$

is a left-inverse of Q, i.e., $T Q=I_{2}$.

- Equivalently, time-varying linear control system

$$
\left\{\begin{array}{l}
\dot{x}_{2}-u_{2}=0 \\
\dot{x}_{1}-t u_{1}=0
\end{array}\right.
$$

is injectively parametrized by

$$
(\star) \Leftrightarrow\left\{\begin{array}{l}
x_{1}=t^{2} \xi_{1}-t \dot{\xi}_{2}+\xi_{2} \\
x_{2}=t(t+1) \xi_{1}-(t+1) \dot{\xi}_{2}+\xi_{2} \\
u_{1}=t \dot{\xi}_{1}+2 \xi_{1}-\ddot{\xi}_{2} \\
u_{2}=t(t+1) \dot{\xi}_{1}+(2 t+1) \xi_{1}-(t+1) \ddot{\xi}_{2}
\end{array}\right.
$$

and $\left\{\xi_{1}, \xi_{2}\right\}$ is a basis of the free left D-module P because:

$$
\left\{\begin{array}{l}
\xi_{1}=(t+1) u_{1}-u_{2} \\
\xi_{2}=(t+1) x_{1}-t x_{2}
\end{array}\right.
$$

Example

- Let $D=A_{3}(\mathbb{Q})$ and $R=-\left(\begin{array}{lll}\partial_{1}-x_{3} & \partial_{2} & \partial_{3}\end{array}\right) \in D^{1 \times 3}$.
- We define the left D-module $M=D^{1 \times 3} /(D R)$ defining:

$$
\partial_{1} y_{1}+\partial_{2} y_{2}+\partial_{3} y_{3}-x_{3} y_{1}=0
$$

- Does (\star) admit an injective parametrization?
- $S=\left(\begin{array}{lll}-\partial_{3} & 0 & \partial_{1}-x_{3}\end{array}\right)^{T}$ satisfies $R S=1$, i.e., M is stably free of rank 2, and thus, free.
- The formal adjoint \widetilde{R} of R is defined by

$$
\widetilde{R}=\left(\begin{array}{lll}
\partial_{1}+x_{3} & \partial_{2} & \partial_{3}
\end{array}\right)^{T}
$$

is unimodular because we have $\widetilde{S} \widetilde{R}=1$.

- An constructive version of Stafford's result gives

$$
D\left(\partial_{1}+x_{3}\right)+D \partial_{2}+D \partial_{3}=D\left(\partial_{1}+x_{3}\right)+D\left(\partial_{2}+\partial_{3}\right)
$$

because we have the relations

$$
\left\{\begin{array}{l}
\partial_{2}=\left(\partial_{2}\left(\partial_{2}+\partial_{3}\right)\right) P_{1}-\left(\partial_{2}\left(\partial_{1}+x_{3}\right)\right) P_{2} \\
\partial_{3}=\left(\partial_{3}\left(\partial_{2}+\partial_{3}\right)\right) P_{1}-\left(\partial_{3}\left(\partial_{1}+x_{3}\right)\right) P_{2}
\end{array}\right.
$$

where $P_{1}=\partial_{1}+x_{3}$ and $P_{2}=\partial_{2}+\partial_{3}$.

- Taking $c_{1}=0$ and $c_{2}=1$, we can define

$$
\widetilde{E_{1}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right), \quad \widetilde{E_{2}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
Q_{1} & Q_{2} & 1
\end{array}\right)
$$

where:

$$
\left\{\begin{array}{l}
Q_{1}=\left(\partial_{1}+x_{3}-1-\partial_{3}\right)\left(\partial_{2}+\partial_{3}\right) \\
Q_{2}=-\left(\partial_{1}+x_{3}-1-\partial_{3}\right)\left(\partial_{1}+x_{3}\right)
\end{array}\right.
$$

$$
\widetilde{E_{3}}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad \widetilde{E_{4}}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\left(\partial_{2}+\partial_{3}\right) & 0 & 1 \\
-\left(\partial_{1}+x_{3}-1\right) & 0 & 1
\end{array}\right) .
$$

- Defining $\widetilde{E}=\widetilde{E_{4}} \widetilde{E_{3}} \widetilde{E_{2}} \widetilde{E_{1}}$, we get:

$$
\widetilde{E}\left(\begin{array}{lll}
\partial_{1}+x_{3} & \partial_{2} & \partial_{3}
\end{array}\right)^{T}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)^{T} .
$$

- Taking the last two columns of $\theta(\widetilde{E})$, we obtain:

$$
\left\{\begin{array}{c}
\left\{\begin{array}{l}
y_{1}=\left(1-L_{1}\right)\left(\partial_{2}+\partial_{3}\right) \xi_{1}+\left(\left(1-L_{1}\right)\left(\partial_{1}-x_{3}\right)+1\right) \xi_{2}, \\
y_{2}=\left(-L_{2}\left(\partial_{2}+\partial_{3}\right)+1\right) \xi_{1}-L_{2}\left(\partial_{1}-x_{3}\right) \xi_{2}, \\
y_{3}=\left(-\left(1+L_{2}\right)\left(\partial_{2}+\partial_{3}\right)+1\right) \xi_{1}-\left(1+L_{2}\right)\left(\partial_{1}-x_{3}\right) \xi_{2}, \\
\text { where }\left\{\begin{array}{l}
L_{1}=\left(\partial_{2}+\partial_{3}\right)\left(\partial_{1}-\partial_{3}-x_{3}+1\right), \\
L_{2}=\left(-\partial_{1}+x_{3}\right)\left(\partial_{1}-\partial_{3}-x_{3}+1\right) .
\end{array}\right.
\end{array} . . \begin{array}{l}
\end{array},\right.
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
y_{1}=\left(1-L_{1}\right)\left(\partial_{2}+\partial_{3}\right) \xi_{1}+\left(\left(1-L_{1}\right)\left(\partial_{1}-x_{3}\right)+1\right) \xi_{2} \\
y_{2}=\left(-L_{2}\left(\partial_{2}+\partial_{3}\right)+1\right) \xi_{1}(x)-L_{2}\left(\partial_{1}-x_{3}\right) \xi_{2} \\
y_{3}=\left(-\left(1+L_{2}\right)\left(\partial_{2}+\partial_{3}\right)+1\right) \xi_{1}-\left(1+L_{2}\right)\left(\partial_{1}-x_{3}\right) \xi_{2}
\end{array}\right.
$$

is an injective parametrization of the system

$$
\partial_{1} y_{1}+\partial_{2} y_{2}+\partial_{3} y_{3}-x_{3} y_{1}=0, \quad(\star)
$$

as we have:

$$
\left\{\begin{aligned}
\xi_{1}= & \left(-\partial_{1}^{2}+\partial_{1} \partial_{3}-x_{3} \partial_{3}+\left(2 x_{3}-1\right) \partial_{1}-x_{3}^{2}+x_{3}+1\right) y_{2} \\
& +\left(\partial_{1}^{2}-\partial_{1} \partial_{3}+x_{3} \partial_{3}-\left(2 x_{3}-1\right) \partial_{1}+x_{3}^{2}-x_{3}\right) y_{3}, \\
\xi_{2}= & y_{1}+\left(-\partial_{3}^{2}+\partial_{1} \partial_{2}-\partial_{2} \partial_{3}+\partial_{1} \partial_{3}+\partial_{2}-\left(x_{3}-1\right) \partial_{3}-x_{3}-2\right) y_{2} \\
& +\left(\partial_{3}^{2}-\partial_{1} \partial_{2}+\partial_{2} \partial_{3}-\partial_{1} \partial_{3}+\left(x_{3}-1\right) \partial_{3}+\left(x_{3}-1\right) \partial_{2}+2\right) y_{3} .
\end{aligned}\right.
$$

- $\left\{\xi_{1}, \xi_{2}\right\}$ is a basis of the left D-module defined by (\star).

Sontag's example

- We consider the time-varying OD system:

$$
\dot{x}(t)-t u(t)=0
$$

- The system is controllable in a neighborhood of $t=0$ as:

$$
\operatorname{rank}_{\mathbb{R}}(B(t)=t, \dot{B}(t)-A(t) B(t)=1)(0)=1
$$

- Let $D=A_{1}(\mathbb{Q})=\mathbb{Q}[t][\partial], R=\left(\begin{array}{ll}\partial & -t\end{array}\right) \in D^{1 \times 2}$ and:

$$
M=D^{1 \times 2} /(D R)
$$

- The matrix R admits a right-inverse $S=\left(\begin{array}{ll}t & \partial\end{array}\right)^{T}$, i.e., $R S=1$ $\Rightarrow M$ is a projective left D-module of rank 1 .
- We have $M \cong D^{1 \times 2} Q=D t^{2}+D(t \partial+2)$
$\Rightarrow M$ is not free because $I=D t^{2}+D(t \partial+2)$ is not principal.

Example

- Let us consider the time-varying linear control system:

$$
\left\{\begin{array}{l}
\dot{x}_{2}(t)-u_{2}(t)=0, \\
\dot{x}_{1}(t)-t u_{1}(t)=0,
\end{array} \quad(1) \quad \Rightarrow \quad R=\left(\begin{array}{cccc}
0 & \partial & 0 & -1 \\
\partial & 0 & -t & 0
\end{array}\right) .\right.
$$

- (\star) admits the injective parametrization of over the second Weyl algebra $B_{1}(\mathbb{Q})=\mathbb{Q}(t)[\partial]$:

$$
\left\{\begin{array}{l}
x_{1}(t)=\xi_{1}(t), \tag{2}\\
x_{2}(t)=\xi_{2}(t), \\
u_{1}(t)=\frac{1}{t} \dot{\xi}_{1}(t), \\
u_{2}(t)=\dot{\xi}_{2}(t)
\end{array}\right.
$$

- But, the parametrization (2) is singular at $t=0$.
- $M=B_{1}(\mathbb{Q})^{1 \times 4} /\left(B_{1}(\mathbb{Q})^{1 \times 2} R\right)$ is free with basis $\left\{x_{1}, x_{2}\right\}$.
- Let $D=A_{1}(\mathbb{Q})=\mathbb{Q}[t]\left[\frac{d}{d t}\right]$ and $P=D^{1 \times 4} /\left(D^{1 \times 2} R\right)$.
- P is projective because R admits the right-inverse:

$$
S=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
t & 0 & \partial & 0
\end{array}\right)^{T}
$$

- Computing $\operatorname{ext}_{D}^{1}(N, D)$, we obtain the parametrization of (1) :

$$
\left\{\begin{array}{l}
x_{1}(t)=-t^{2} \xi_{1}(t)+t \dot{\xi}_{2}(t)-\xi_{2}(t) \\
x_{2}(t)=-\xi_{3}(t) \tag{3}\\
u_{1}(t)=-t \dot{\xi}_{1}(t)-2 \xi_{1}(t)+\ddot{\xi}_{2}(t) \\
u_{2}(t)=-\dot{\xi}_{3}(t)
\end{array}\right.
$$

(3) is clearly non-injective because $\operatorname{rank}_{D}(P)=2$.

- P is a projective left D-module of $\operatorname{rank}_{D}(P)=2$, i.e., free.
- The time-varying linear control system

$$
\left\{\begin{array}{l}
\dot{x}_{1}(t)-t u_{1}(t)=0 \\
\dot{x}_{2}(t)-u_{2}(t)=0
\end{array}\right.
$$

is injectively parametrized by (Stafford (Robertz, Q.))

$$
\left\{\begin{array}{l}
x_{1}(t)=t^{2} \xi_{1}(t)-t \dot{\xi}_{2}(t)+\xi_{2}(t) \\
x_{2}(t)=t(t+1) \xi_{1}(t)-(t+1) \dot{\xi}_{2}(t)+\xi_{2}(t) \\
u_{1}(t)=t \dot{\xi}_{1}(t)+2 \xi_{1}(t)-\ddot{\xi}_{2}(t) \\
u_{2}(t)=t(t+1) \dot{\xi}_{1}(t)+(2 t+1) \xi_{1}(t)-(t+1) \ddot{\xi}_{2}(t)
\end{array}\right.
$$

and $\left\{\xi_{1}, \xi_{2}\right\}$ is a flat output of the flat system $\operatorname{ker}_{\mathcal{F}}(R$.$) :$

$$
\left\{\begin{array}{l}
\xi_{1}(t)=(t+1) u_{1}(t)-u_{2}(t) \\
\xi_{2}(t)=(t+1) x_{1}(t)-t x_{2}(t)
\end{array}\right.
$$

- Idem for $\partial_{1} y_{1}+\partial_{2} y_{2}+\partial_{3} y_{3}+x_{3} y_{1}=0$.

Blowing-up of projective modules

- Theorem: If $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ is a projective left D-module defined by a matrix $R \in D^{q \times p}$ admitting a right-inverse $S \in D^{p \times q}$, then, we have:
(1) $\operatorname{ker}_{\mathcal{F}}(R.) \oplus \mathcal{F}^{q} \cong \mathcal{F}^{p+q}$, i.e., $\operatorname{ker}_{\mathcal{F}}(R.) \oplus \mathcal{F}^{q}$ is flat.
(2) $\operatorname{ker}_{\mathcal{F}}(R.) \oplus \mathcal{F}^{q}$ admits the following injective parametrization

$$
\left\{\begin{array} { l }
{ R \eta = 0 , } \\
{ \eta \in \mathcal { F } ^ { p } , } \\
{ \zeta \in \mathcal { F } ^ { q } , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
\eta=\left(I_{p}-S R\right) \xi, \\
\zeta=R \xi,
\end{array}\right.\right.
$$

and $\xi=\eta+S \zeta$ is a flat output of $\operatorname{ker}_{\mathcal{F}}(R.) \oplus \mathcal{F}^{q}$.
(3) $\operatorname{ker}_{\mathcal{F}}(R.) \oplus \mathcal{F}^{q}$ projects onto $\operatorname{ker}_{\mathcal{F}}(R$.$) .$

Example

- The system $\dot{x}(t)-t u(t)=0$ is not flat at $t=0$.
- But, the following flat linear OD system

$$
\left\{\begin{array} { l }
{ \dot { x } (t) - t u (t) = 0 , } \\
{ v \in \mathcal { F } , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x(t)=-t \dot{\xi}_{1}(t)+\xi_{1}(t)+t^{2} \xi_{2}(t), \\
u(t)=-\ddot{\xi}_{1}(t)+t \dot{\xi}_{2}(t)+2 \xi_{2}(t), \\
v(t)=\dot{\xi}_{1}(t)-t \xi_{2}(t)
\end{array}\right.\right.
$$

admitting the following flat outputs

$$
\left\{\begin{array}{l}
\xi_{1}(t)=x(t)+t v(t) \\
\xi_{2}(t)=u(t)+\dot{v}(t)
\end{array}\right.
$$

projects onto $\dot{x}(t)-t u(t)=0$.

Blowing-up of singularities

Figure: Graph of the curve $y^{2}=x^{3}$.

Blowing-up of singularities

Figure: Graph of the curve $t \longmapsto\left(x(t)=t^{3}, y(t)=t^{2}, z(t)=t\right)$.

Stable unimodular vectors

- Notation: $\mathrm{U}_{m}(D)=\left\{\right.$ unimodular vectors of $\left.D^{m}\right\}$.
- Definition: $a=\left(a_{1} \ldots a_{m}\right)^{T} \in \mathrm{U}_{m}(D)$ is stable if there exist $c_{1}, \ldots, c_{m-1} \in D$ such that:

$$
\left(a_{1}+c_{1} a_{m} \ldots a_{m-1}+c_{m-1} a_{m}\right)^{T} \in \mathrm{U}_{m-1}(D)
$$

- $a=\left(a_{1} \ldots a_{m}\right)^{T}$ is stable iff there exist $c_{1}, \ldots, c_{m-1} \in D$ and $b_{1}, \ldots, b_{m-1} \in D$ such that:

$$
\begin{gathered}
\sum_{i=1}^{m-1} b_{i}\left(a_{i}+c_{i} a_{m}\right)=1 \Leftrightarrow\left(\begin{array}{lll}
b_{1} \ldots b_{m-1} & \sum_{i=1}^{m-1} b_{i} c_{i}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right)=1 \\
\text { i.e., } b_{m} \triangleq \sum_{i=1}^{m-1} b_{i} c_{i} \in b_{1} D+\ldots+b_{m-1} D
\end{gathered}
$$

Examples

- Example: Let $D=\mathbb{Q}[x]$ and $a=\left(\begin{array}{ll}x^{2}+1 & x\end{array}\right)^{T} \in D^{2}$. The vector a is unimodular because:

$$
\left(\begin{array}{ll}
1 & -x
\end{array}\right)\binom{x^{2}+1}{x}=1
$$

Moreover, a is stable because $\left(x^{2}+1\right)-x x=1 \in \mathrm{U}_{1}(D)$.
The vector $a^{\prime}=\left(\begin{array}{ll}x & x^{2}+1\end{array}\right)^{T}$ is also unimodular but not stable:

$$
\forall c \in D, \quad \operatorname{deg}\left(x+c(x)\left(x^{2}+1\right)\right) \geq 1
$$

- Example: Let $D=A_{3}(\mathbb{Q})$ and $a=\left(\begin{array}{lll}\partial_{1}+x_{3} & \partial_{2} & \partial_{3}\end{array}\right)^{T} \in D^{3}$. The vector a is unimodular because $b=\left(\begin{array}{lll}\partial_{3} & 0 & -\left(\partial_{1}+x_{3}\right.\end{array}\right)$ is a left-inverse of a over D. Moreover, we have:

$$
\left(\partial_{2}+\partial_{3} \quad-\left(\partial_{1}+x_{3}\right)\right)\binom{\partial_{1}+x_{3}+0 \partial_{3}}{\partial_{2}+\partial_{3}}=1
$$

Stable rank

- Definition: The stable rank of D, denoted by $\operatorname{sr}(D)$ is the least integer m such that every element of $\mathrm{U}_{m+1}(D)$ is stable.
- Example: $\operatorname{sr}(D)=2$
- Example: $\operatorname{sr}(D)=1 \Rightarrow \forall\left(\begin{array}{ll}a_{1} & a_{2}\end{array}\right)^{T} \in \mathrm{U}_{2}(D), \exists c \in D$:

$$
a_{1}+c a_{2} \in \mathrm{U}_{1}(D) \Leftrightarrow\left(a_{1}+c a_{2}\right)^{-1} \in D .
$$

- Example: According to Stafford theorem $\left(D=A_{n}(k)\right.$ or $B_{n}(k)$, $\operatorname{char}(k)>0)$, for all $a_{1}, a_{2}, a_{3} \in D$, there exist c_{1} and $c_{2} \in D$ s.t.:
$D a_{1}+D a_{2}+D a_{3}=D\left(a_{1}+c_{1} a_{3}\right)+D\left(a_{2}+c_{2} a_{3}\right) \Rightarrow \operatorname{sr}(D)=2$.

Examples

- Example: If k is a field of characteristic 0 , then $\operatorname{sr}\left(A_{n}(k)\right)=2$.
- Example: If k is a field of characteristic 0 , then $\operatorname{sr}\left(B_{n}(k)\right)=2$.
- Example: If D is a a commutative noetherian ring of Krull dimension d, then $\operatorname{sr}(D) \leq d+1$.
- Example: If D is an integral domain (e.g., $\mathbb{Z}, k[x], k$ a field), then $\operatorname{sr}(D) \leq 2$.
- Example: $\operatorname{sr}\left(\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]\right)=n+1$.

Generalization I

- Proposition: If $a=\left(a_{1} \ldots a_{m}\right)^{T}$ is a stable element of $\mathrm{U}_{m}(D)$, then there exists $E \in \mathrm{EL}_{m}(D)$ such that:

$$
E\left(\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right)=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

More precisely, let $c_{1}, \ldots, c_{m-1} \in D$ such that
$a^{\prime}=\left(a_{1}+c_{1} a_{m} \quad a_{2}+c_{2} a_{m} \ldots a_{m-1}+c_{m-1} a_{m}\right)^{T} \in \mathrm{U}_{m-1}(D)$,
and $b_{1}, \ldots, b_{m-1} \in D$ satisfying $\sum_{i=1}^{m-1} b_{i} a_{i}^{\prime}=1$. Let us introduce

$$
a_{i}^{\prime \prime}=\left(a_{1}^{\prime}-1-a_{m}\right) b_{i}, \quad i=1, \ldots, m-1,
$$

and following matrices $E_{i} \in \mathrm{EL}_{m}(D)$:

Generalization I

$$
\begin{aligned}
& E_{1}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & c_{1} \\
0 & 1 & 0 & \ldots & 0 & c_{2} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & c_{m-1} \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right), \quad E_{2}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
a_{1}^{\prime \prime} & a_{2}^{\prime \prime} & a_{3}^{\prime \prime} & \ldots & a_{m-1}^{\prime \prime} & 1
\end{array}\right), \\
& E_{3}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & -1 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right), \quad E_{4}=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
-a_{2}^{\prime} & 1 & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
-a_{m-1}^{\prime} & 0 & 0 & \ldots & 1 & 0 \\
-a_{1}^{\prime}+1 & 0 & 0 & \ldots & 0 & 1
\end{array}\right) .
\end{aligned}
$$

Then, we have $\left(E_{4} E_{3} E_{2} E_{1}\right) a=\left(\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right)^{T}$.

Generalization II

- Theorem: Let D be a ring (admitting an involution θ) and M a stably free left D-module defined by the finite free resolution:

$$
0 \longrightarrow D^{1 \times q} \xrightarrow{. R} D^{1 \times p} \xrightarrow{\pi} M \longrightarrow 0 .
$$

If $\operatorname{rank}_{D}(M)=p-q \geq \operatorname{sr}(D)$, then M is a free left D-module.

- The proof of the theorem is similar as for the Stafford thm.

We can apply the previous proposition till the last column

$$
E \theta(R)=\left(\begin{array}{ccccc}
1 & \star & \ldots & \ldots & \star \\
0 & 1 & \star & \ldots & \star \\
\vdots & \vdots & \vdots & \vdots & \star \\
0 & 0 & 0 & \vdots & L
\end{array}\right)
$$

because we have $L \in D^{(p-(q-1)) \times 1}$ and $p-q+1 \geqslant \operatorname{sr}(D)+1$.

Quillen-Suslin theorem

- Theorem: Every finitely generated projective module over the ring $D=k\left[x_{1}, \ldots, x_{n}\right]$, where k is a field, is free.
- Corollary: For every stably free D-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ defined by a minimal presentation matrix $R \in D^{q \times p}$, there exists $U \in \operatorname{GL}_{p}(D)$, i.e., $\operatorname{det} U \in k \backslash\{0\}$, such that:

$$
R U=\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)
$$

- Corollary: For every stably free D-module $M=D^{1 \times p} /\left(D^{1 \times q} R\right)$ defined by a minimal presentation matrix $R \in D^{q \times p}$, there exists $T \in D^{(p-q) \times p}$ such that:

$$
\operatorname{det}\left(\binom{R}{T}\right) \in k \backslash\{0\} .
$$

- Constructive proofs of the Quillen-Suslin have been given in the literature (e.g., Logar-Sturmfels, Park, Lombardi-Yengui).

Particular case: principal ideal domain D

- Let D be a principal ideal domain D (e.g., $D=k[x], k$ a field).
- Computing a Smith normal form of $R \in D^{q \times p}$ satisfying $R S=I_{q}$, we obtain $F \in \mathrm{GL}_{q}(D)$ and $G \in \mathrm{GL}_{p}(D)$ satisfying:

$$
\begin{gathered}
R=F\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right) G=F\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)\binom{G_{1}}{G_{2}}=F G_{1} \Leftrightarrow G_{1}=F^{-1} R \\
\binom{F^{-1} R}{G_{2}} G^{-1}=I_{p} \Rightarrow\left(\begin{array}{cc}
F^{-1} & 0 \\
0 & I_{p-q}
\end{array}\right)\binom{R}{G_{2}} G^{-1}=I_{p} \\
\Rightarrow\binom{R}{G_{2}} G^{-1}\left(\begin{array}{cc}
F^{-1} & 0 \\
0 & I_{p-q}
\end{array}\right)=I_{p}
\end{gathered}
$$

Then, the matrix $U=G^{-1}\left(\begin{array}{cc}F^{-1} & 0 \\ 0 & I_{p-q}\end{array}\right) \in \operatorname{GL}_{p}(D)$ satisfies:

$$
R U=\left(\begin{array}{ll}
I_{q} & 0
\end{array}\right)
$$

Particular case: $R \in D^{(p-1) \times p}$

- Let D be a commutative ring and $R \in D^{(p-1) \times p}$ admitting a right-inverse $S \in D^{p \times(p-1)}$.
- Let us denote by m_{i} the $(p-1) \times(p-1)$-minor of R obtained by removing the $i^{\text {th }}$ column of R.
- The m_{i} 's satisfy a Bézout identity $\sum_{i=1}^{p} n_{i} m_{i}=1$, with $n_{i} \in D$.
- Then, we can check that the matrix

$$
V=\left(\begin{array}{ccc}
& R & \\
(-1)^{p+1} n_{1} & \ldots & (-1)^{2 p} n_{p}
\end{array}\right) \in D^{p \times p}
$$

is such that $\operatorname{det} V=1$ and its inverse $U=V^{-1} \in D^{p \times p}$ satisfies:

$$
R U=\left(\begin{array}{ll}
I_{p-1} & 0
\end{array}\right)
$$

Reduction to the case of a single row

- Let $R \in D^{q \times p}$ a matrix admitting a right-inverse $S \in D^{p \times q}$.
- The computation of $U \in \mathrm{GL}_{p}(D)$ satisfying $R U=\left(\begin{array}{ll}I_{q} & 0\end{array}\right)$ can be reduced to the case of row vectors with entries in D :
Let $U_{1} \in \mathrm{GL}_{p}(D)$ be such that $R_{1} \bullet U_{1}=\left(\begin{array}{lll}1 & 0 & \ldots\end{array}\right)$

$$
\Rightarrow R U_{1}=\left(\begin{array}{cc}
1 & 0 \\
C_{1} & R_{2}
\end{array}\right)
$$

$R S=I_{q} \Leftrightarrow\left(R U_{1}\right)\left(U_{1}^{-1} S\right)=I_{q}$

$$
\begin{aligned}
& \Leftrightarrow\left(\begin{array}{cc}
1 & 0 \\
C_{1} & R_{2}
\end{array}\right)\left(\begin{array}{cc}
W & X \\
Y & Z
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & I_{q-1}
\end{array}\right) \Leftrightarrow\left\{\begin{array}{l}
W=1, \\
X=0, \\
C_{1}+R_{2} Y=0, \\
R_{2} Z=I_{q-1},
\end{array}\right. \\
& \Rightarrow U_{2}=\left(\begin{array}{cc}
1 & 0 \\
Y & I_{p-1}
\end{array}\right) \in \operatorname{GL}_{p}(D): R\left(U_{1} U_{2}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & R_{2}
\end{array}\right) \ldots
\end{aligned}
$$

Particular case: one invertible entry in R

- Let $R \in D^{1 \times p}$ a row vector admitting a right-inverse $S \in D^{p \times 1}$.
- If one entry of R is invertible over D, e.g., $R_{1} \in \mathrm{U}(D)$, then

$$
\left(\begin{array}{lll}
R_{1} & \ldots & R_{p}
\end{array}\right) \overbrace{\left(\begin{array}{cc}
R_{1}^{-1} & 0 \\
0 & I_{p-1}
\end{array}\right)}^{W}=\left(\begin{array}{llll}
1 & R_{2} & \ldots & R_{p}
\end{array}\right)
$$

and $\operatorname{det} W=R_{1}^{-1} \in D$. Denoting by $L=\left(R_{2} \ldots R_{p}\right)$, we get:
$\left(\begin{array}{ll}1 & L\end{array}\right)\left(\begin{array}{cc}1 & -L \\ 0 & I_{p-1}\end{array}\right)=\left(\begin{array}{llll}1 & 0 & \ldots & 0\end{array}\right)$.
Then, the matrix $U=\left(\begin{array}{cc}R_{1}^{-1} & 0 \\ 0 & I_{p-1}\end{array}\right)\left(\begin{array}{cc}1 & -L \\ 0 & I_{p-1}\end{array}\right) \in \operatorname{GL}_{p}(D)$ satisfies:

$$
R U=\left(\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right) .
$$

Particular case: 2 entries of R generate D

- Let D be a commutative ring.
- Let $R \in D^{1 \times p}$ a row vector admitting a right-inverse $S \in D^{p \times 1}$.
- We suppose that two entries of R, e.g., R_{1} and R_{2} generate D : there exist X_{1} and $X_{2} \in D$ such that $R_{1} X_{1}+R_{2} X_{2}=1$.
- The matrix defined by

$$
W=\left(\begin{array}{ccc}
X_{1} & -R_{2} & 0 \\
X_{2} & R_{1} & 0 \\
0 & 0 & I_{p-2}
\end{array}\right)
$$

satisfies det $W=1$ and $R W=\left(\begin{array}{lllll}1 & 0 & R_{3} & \ldots & R_{p}\end{array}\right)$.

- Denoting by $L=\left(R_{3} \ldots R_{p}\right)$, we finally obtain:

$$
\left(\begin{array}{lll}
1 & 0 & L
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -L \\
0 & 1 & 0 \\
0 & 0 & I_{p-2}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right) .
$$

H. A. Park's example

- Let us consider $D=\mathbb{Q}[x, y]$ and $R=\left(\begin{array}{lll}1-x y & x^{2} & y^{2}\end{array}\right)$.
- R admits the right-inverse $S=\left(\begin{array}{lll}x y+1 & y^{2} & 0\end{array}\right)$ over D.
- In particular, the first two entries $R_{1}=1-x y$ and $R_{2}=x^{2}$ of R generate $D: R_{1} X_{1}+R_{2} X_{2}=1$, where $X_{1}=x y+1$ and $X_{2}=y^{2}$.
- Then, the unimodular matrices defined by

$$
W=\left(\begin{array}{ccc}
x y+1 & -x^{2} & 0 \\
y^{2} & 1-x y & 0 \\
0 & 0 & 1
\end{array}\right), \quad Z=\left(\begin{array}{ccc}
1 & 0 & -y^{2} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

satisfy $\operatorname{det} W=1, R W=\left(\begin{array}{lll}1 & 0 & y^{2}\end{array}\right)$ and $R(W Z)=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$.

$$
W Z=\left(\begin{array}{ccc}
x y+1 & -x^{2} & -(x y+1) y^{2} \\
y^{2} & 1-x y & -y^{4} \\
0 & 0 & 1
\end{array}\right) \in \operatorname{GL}_{3}(D)
$$

Particular case: one entry of R is 0

- Let D be a commutative ring.
- Let $R \in D^{1 \times p}$ a row vector admitting a right-inverse $S \in D^{p \times 1}$.
- We suppose that one entry of R (e.g., $\left.R_{1}\right)$ is $0, \sum_{i=2}^{p} S_{i} R_{i}=1$.
- The matrix defined by

$$
W=\left(\begin{array}{cccc}
1 & & & \\
\left(1-R_{1}\right) S_{2} & 1 & & \\
\vdots & & \ddots & \\
\left(1-R_{1}\right) S_{p} & & & 1
\end{array}\right)
$$

satisfies $\operatorname{det} W=1$ and:

$$
R W=\left(R_{1}+\left(1-R_{1}\right) \sum_{i=2}^{p} S_{i} R_{i}=1 \quad R_{2} \ldots R_{p}\right)
$$

The row vector $R W=\left(\begin{array}{lll}1 & R_{2} \ldots & \ldots\end{array}\right)$ can then be reduced to (1 $0 \ldots 0$) by means of elementary operations.

Particular case: first condition on the right-inverse

- Let D be a commutative ring.
- Let $R \in D^{1 \times p}$ a row vector admitting a right-inverse $S \in D^{p \times 1}$.
- Let us suppose that one entry of S, e.g., S_{1} is invertible.
- The matrix defined by

$$
W=\left(\begin{array}{cccc}
S_{1} & & & \\
S_{2} & 1 & & \\
\vdots & & \ddots & \\
S_{p} & & & 1
\end{array}\right)
$$

satisfies $\operatorname{det} W=S_{1} \in U(D)$ and $R W=\left(\begin{array}{lll}1 & R_{2} & \ldots\end{array} R_{p}\right)$.
The row vector $R W=\left(\begin{array}{lll}1 & R_{2} \ldots & R_{p}\end{array}\right)$ can then be reduced to (1 $0 \ldots 0$) by means of elementary operations.

Particular case: second condition on the right-inverse

- Let D be a commutative ring.
- Let $R \in D^{1 \times p}$ a row vector admitting a right-inverse $S \in D^{p \times 1}$.
- Let us suppose that two entries of S, e.g., S_{1} and S_{2} generate D : there exist X_{1} and $X_{2} \in D$ such that $X_{1} S_{1}+X_{2} S_{2}=1$.
- The matrix defined by

$$
W=\left(\begin{array}{ccccc}
S_{1} & -X_{2} & & & \\
S_{2} & X_{1} & & & \\
S_{3} & & 1 & & \\
\vdots & & & \ddots & \\
S_{p} & & & & 1
\end{array}\right)
$$

satisfies det $W=1$ and $R W=\left(1 \quad \star \quad R_{3} \ldots R_{p}\right)$, which can be reduced to (1 $0 \ldots 0$) by means of elementary operations.

Example: locally free modules

- Let us consider the $D=\mathbb{Q}\left[x_{1}, x_{2}\right]$-module $M=D^{1 \times 3} /(D R)$:

$$
R=\left(x_{1}^{2}-x_{2}^{2}-1 \quad x_{1}^{2}+x_{2}^{2}-1 \quad x_{1}-x_{2}\right) .
$$

- The matrix $S=\left(\begin{array}{lll}-1 & 0 & x_{1}+x_{2}\end{array}\right)$ is a right-inverse of R, a fact proving that M is a projective, i.e., free D-module of rank 2 .
- Checking that $\operatorname{ext}_{D}^{1}\left(D /\left(D^{1 \times 3} R^{T}\right), D\right)=0$, we obtain that

$$
Q=\left(\begin{array}{ccc}
x_{1}-x_{2} & -x_{1}+x_{2} & x_{1}^{2}+x_{2}^{2}-1 \\
-x_{1}+x_{2} & -x_{1}+x_{2} & -x_{1}^{2}+x_{2}^{2} \\
2 x_{2}^{2} & 2 x_{1}^{2}-2 & 0
\end{array}\right)
$$

defines a parametrization of M, i.e., $M \cong D^{1 \times 3} Q \subseteq D^{1 \times 3}$.

- The parametrization Q is not injective because $\operatorname{rank}_{D}(M)=2$.

Example: locally free modules

- We have the following 3 minimal parametrizations of M :

$$
\begin{gathered}
Q_{1}=\left(\begin{array}{cc}
-x_{1}+x_{2} & x_{1}^{2}+x_{2}^{2}-1 \\
-x_{1}+x_{2} & -x_{1}^{2}+x_{2}^{2} \\
2 x_{1}^{2}-2 & 0
\end{array}\right), \quad Q_{2}=\left(\begin{array}{cc}
x_{1}-x_{2} & x_{1}^{2}+x_{2}^{2}-1 \\
-x_{1}+x_{2} & -x_{1}^{2}+x_{2}^{2} \\
2 x_{2}^{2} & 0
\end{array}\right) \\
Q_{3}=\left(\begin{array}{cc}
x_{1}-x_{2} & -x_{1}+x_{2} \\
-x_{1}+x_{2} & -x_{1}+x_{2} \\
2 x_{2}^{2} & 2 x_{1}^{2}-2
\end{array}\right)
\end{gathered}
$$

None of them admits a left-inverse over D.

- The annihilators of the torsion D-modules $L_{i}=D^{1 \times 2} /\left(D^{1 \times 3} Q_{i}\right)$

$$
\left\{\begin{array}{l}
\operatorname{ann}_{D}\left(L_{1}\right)=\left(x_{1}^{2}-1\right) \\
\operatorname{ann}_{D}\left(L_{2}\right)=\left(x_{2}^{2}\right) \\
\operatorname{ann}_{D}\left(L_{3}\right)=\left(x_{1}-x_{2}\right)
\end{array}\right.
$$

satisfy the Bézout identity $-p_{1}+p_{2}+\left(x_{1}+x_{2}\right) p_{3}=1$, where:

$$
p_{1}=x_{1}^{2}-1, \quad p_{2}=x_{2}^{2}, \quad p_{3}=x_{1}-x_{2}
$$

Example: locally free modules

- Over the localizations $D_{p_{i}}=\left\{a / p_{i}^{r} \mid a \in D, r \in \mathbb{N}\right\}$ of D, the minimal parametrizations Q_{i} 's admit the following left-inverses:

$$
\begin{gathered}
T_{1}=\frac{1}{2\left(x_{1}^{2}-1\right)}\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & -1 & 0
\end{array}\right), \quad T_{2}=\frac{1}{2 x_{2}^{2}}\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 0
\end{array}\right), \\
T_{3}=-\frac{1}{2\left(x_{1}-x_{2}\right)}\left(\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right),
\end{gathered}
$$

i.e., satisfy $T_{i} Q_{i}=I_{2}, i=1,2,3$.

- Projective D-modules are locally free.
- Computation of minimal parametrizations gives us local bases.

A constructive proof of the Quillen-Suslin theorem

- We shortly explain the idea of a constructive proof of the Quillen-Suslin theorem (Logar and Sturmfels).
- Normalization step: Let us consider $a \in k\left[y_{1}, \ldots, y_{n}\right]$ and let us denote by $m=\operatorname{deg} a+1$, where $\operatorname{deg} a$ is the total degree of a. Using the following reversible transformation
$\left\{\begin{array}{l}x_{n}=y_{n}, \\ x_{i}=y_{i}-y_{n}^{m^{n-i}},\end{array}\right.$

$$
\Leftrightarrow\left\{\begin{array}{l}
y_{n}=x_{n} \\
y_{i}=x_{i}+x_{n}^{m^{n-i}}, \quad i=1, \ldots, n-1
\end{array}\right.
$$

we obtain $a\left(y_{1}, \ldots, y_{n}\right)=c b\left(x_{1}, \ldots, x_{n}\right)$, where $0 \neq c \in k$ and b is a monic polynomial in x_{n}, i.e., the leading coefficient of $b \in E\left[x_{n}\right]$ is 1 , where $E=k\left[x_{1}, \ldots, x_{n-1}\right]$.

- If k is a infinite field, then we can obtain this result by means of a simpler transformation.

A constructive proof of the Quillen-Suslin theorem

- A ring A is called local if it contains only one maximal ideal \mathfrak{m}, namely, a proper ideal \mathfrak{m} of A which is not properly contained in any ideal of A other than A itself.
- Computation of local bases (Horrock's theorem): Let A be a commutative local ring and R a row vector admitting a rightinverse over $A[x]$. If one of the components R_{i} of R is monic, then there exists $U \in \mathrm{GL}_{p}(A[x])$, satisfying:

$$
R U=\left(\begin{array}{llll}
1 & 0 & \ldots
\end{array}\right)
$$

- Constructive proof of Horrock's theorem can easily be obtained and implemented (QuillenSuslin).

A constructive proof of the Quillen-Suslin theorem

- Main algorithm:
- Input: $R \in D^{1 \times p}$ a row vector which admits a right-inverse over D and a monic component in the last variable x_{n}.
- Output: A finite number of maximal ideals $\left\{\mathfrak{m}_{i}\right\}_{i \in l}$ of the ring $E=k\left[x_{1}, \ldots, x_{n-1}\right]$ and unimodular matrices $\left\{H_{i}\right\}_{i \in I}$ over the ring $E_{\mathfrak{m}_{i}}\left[x_{n}\right]$, i.e., $H_{i} \in \operatorname{GL}_{p}\left(E_{\mathfrak{m}_{i}}\left[x_{n}\right]\right)$, satisfying

$$
R H_{i}=(1,0, \ldots, 0)
$$

and such that the ideal defined by the denominators of the matrices H_{i} 's, $i \in I$, generates E.

A constructive proof of the Quillen-Suslin theorem

(1) Let \mathfrak{m}_{1} be an arbitrary maximal ideal of the ring E. Using Horrocks' theorem, compute a unimodular matrix H_{1} over $E_{\mathfrak{m}_{1}}\left[x_{n}\right]$ which satisfies that $R H_{1}=\left(\begin{array}{llll}1 & 0 & \ldots\end{array}\right)$.
(2) Let $d_{1} \in E$ be the common denominator of all the entries of H_{1} and J the ideal of E generated by d_{1}. Set $i=1$.
(3) While $J \neq E$, do:
(1) For $i \longleftarrow i+1$, compute a maximal ideal \mathfrak{m}_{i} of E such that:

$$
J \subset \mathfrak{m}_{i}
$$

(2) Using Horrocks' theorem, compute a matrix H_{i} over the ring $E_{\mathfrak{m}_{i}}\left[x_{n}\right]$ such that det H_{i} is invertible in $E_{\mathfrak{m}_{i}}\left[x_{n}\right]$ and:

$$
R H_{i}=\left(\begin{array}{llll}
1 & 0 & \ldots & 0
\end{array}\right) .
$$

(3) Let d_{i} be the denominator of the matrix H_{i} and consider the ideal $J=\left(d_{1}, \ldots, d_{i}\right)$.
(9) Return $\left\{\mathfrak{m}_{i}\right\}_{i \in I},\left\{H_{i}\right\}_{i \in I}$ and $\left\{d_{i}\right\}_{i \in I}$.

A constructive proof of the Quillen-Suslin theorem

- Patching the local bases: Let $R \in D^{1 \times p}$ be a vector admitting a right-inverse over $D=k\left[x_{1}, \ldots, x_{n}\right]$ and $U \in \operatorname{GL}_{p}\left(E_{\mathfrak{m}}\left[x_{n}\right]\right)$, where \mathfrak{m} is a maximal ideal of $E=k\left[x_{1}, \ldots, x_{n-1}\right]$, which satisfies:

$$
R U=\left(\begin{array}{llll}
1 & 0 & \ldots
\end{array}\right) .
$$

Let $d \in E \backslash \mathfrak{m}$ be a common denominator of the entries of U.
Then, the matrix defined by

$$
\Delta\left(\bullet, x_{n}, z\right)=U\left(\bullet, x_{n}\right) U^{-1}\left(\bullet, x_{n}+z\right) \in \operatorname{GL}_{p}\left(E_{\mathfrak{m}}\left[x_{n}, z\right]\right)
$$

is such that

$$
\forall z \in D, \quad R\left(\bullet, x_{n}\right) \Delta\left(\bullet, x_{n}, z\right)=R\left(\bullet, x_{n}+z\right),
$$

d^{p} is a common denominator of the entries of $\Delta\left(\bullet, x_{n}, z\right)$ and:

$$
\Delta\left(\bullet, x_{n}, d^{p} z\right) \in \operatorname{GL}_{p}\left(E\left[x_{n}, z\right]\right)
$$

A constructive proof of the Quillen-Suslin theorem

- Let $\left\{\mathfrak{m}_{i}\right\}_{i \in I},\left\{H_{i}\right\}_{i \in I}$ and $\left\{d_{i}\right\}_{i \in I}$ be the output of the main algorithm, where $I=\{1, \ldots, m\}$. Let us define the matrices:

$$
\Delta_{i}\left(\bullet, x_{n}, z\right)=H_{i}\left(\bullet, x_{n}\right) H_{i}^{-1}\left(\bullet, x_{n}+z\right), \quad i=1, \ldots, m
$$

Let $a_{n} \in k$. We have $\left(d_{1}, \ldots, d_{m}\right)=E=k\left[x_{1}, \ldots, x_{n-1}\right]$

$$
\Rightarrow \exists c_{i} \in E, i=1, \ldots, m, \quad \sum_{i=1}^{m} c_{i} d_{i}^{p}=1
$$

$$
R\left(\bullet, x_{n}\right) \Delta_{1}\left(\bullet, x_{n},\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p}\right)=R\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p}\right),
$$

$$
R\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p}\right) \Delta_{2}\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p},\left(a_{n}-x_{n}\right) c_{2} d_{2}^{p}\right)
$$

$$
=R\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right)\left(\sum_{i=1}^{2} c_{i} d_{i}^{p}\right)\right)
$$

$$
R\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right)\left(\sum_{i=1}^{m-1} c_{i} d_{i}^{p}\right)\right)
$$

$$
\Delta_{l}\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right)\left(\sum_{i=1}^{m-1} c_{i} d_{i}^{p}\right),\left(a_{n}-x_{n}\right) c_{l} d_{l}^{p}\right)=R\left(\bullet, a_{n}\right)
$$

A constructive proof of the Quillen-Suslin theorem

- We finally obtain that the matrix

$$
\begin{gathered}
U\left(\bullet, x_{n}\right)=\Delta_{1}\left(\bullet, x_{n},\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p}\right) \Delta_{2}\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right) c_{1} d_{1}^{p},\left(a_{n}-x_{n}\right) c_{2} d_{2}^{p}\right) \\
\ldots \Delta_{I}\left(\bullet, x_{n}+\left(a_{n}-x_{n}\right)\left(\sum_{i=1}^{I-1} c_{i} d_{i}^{p}\right),\left(a_{n}-x_{n}\right) c_{l} d_{l}^{p}\right) \in \operatorname{GL}_{p}(D)
\end{gathered}
$$

satisfies $R\left(\bullet, x_{n}\right) U\left(\bullet, x_{n}\right)=R\left(\bullet, a_{n}\right)$.

- Theorem: Let $D=k\left[x_{1}, \ldots, x_{n}\right]$ be a commutative polynomial ring over a field k and $R \in D^{1 \times p}$ a row vector admitting a rightinverse over D. Then, for all $a_{n} \in k$, there exists $U \in \operatorname{GL}_{p}(D)$ s.t.:

$$
R\left(\bullet, x_{n}\right) U\left(\bullet, x_{n}\right)=R\left(\bullet, a_{n}\right) .
$$

- Implementation of the previous theorem was done in the package QuillenSuslin (Fabiańska, Aachen University):
http://wwwb.math.rwth-aachen.de/QuillenSuslin/

Example

- We consider the $D=\mathbb{Q}\left[x_{1}, x_{2}\right]$-module $M=D^{1 \times 3} /(D R)$, where:

$$
R=\left(x_{1} x_{2}^{2}+1 \quad 3 x_{2} / 2+x_{1}-1 \quad 2 x_{1} x_{2}\right) .
$$

- Normalized entry $3 x_{2} / 2+x_{1}-1$ over $D=E\left[x_{2}\right]\left(E=\mathbb{Q}\left[x_{1}\right]\right)$.
- We consider the maximal ideal $\mathfrak{m}_{1}=\left(x_{1}\right)$ of E. Using an effective version of Horrocks' theorem, we get that the matrix

$$
\begin{gathered}
H_{1}= \\
\frac{1}{d_{1}}\left(\begin{array}{ccc}
4 & -2\left(3 x_{1}+2 x_{2}-2\right) & 4 x_{1}\left(3 x_{1}-2\right) \\
2 x_{1}\left(3 x_{1}-2 x_{2}-2\right) & 4\left(x_{1} x_{2}^{2}+1\right) & -4 x_{1}\left(3 x_{1}^{2} x_{2}-2 x_{1} x_{2}+2\right) \\
0 & 0 & 9 x_{1}^{3}-12 x_{1}^{2}+4 x_{1}+4
\end{array}\right),
\end{gathered}
$$

where $d_{1}=9 x_{1}^{3}-12 x_{1}^{2}+4 x_{1}+4 \notin \mathfrak{m}_{1}$, is such that:

$$
\left\{\begin{array}{l}
\operatorname{det} H_{1}=4 / d_{1} \Rightarrow H_{1} \in \operatorname{GL}_{3}\left(E_{\mathfrak{m}_{1}}\left[x_{2}\right]\right) \\
R H_{1}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right.
\end{array}\right.
$$

Example

- We have $J=\left(d_{1}\right) \subsetneq E$. Then, we consider another maximal ideal \mathfrak{m}_{2} such that $J \subseteq \mathfrak{m}_{2}$, e.g., $\mathfrak{m}_{2}=\left(9 x_{1}^{3}-12 x_{1}^{2}+4 x_{1}+4\right)$.
- Using an effective version of Horrocks' theorem, we obtain that

$$
H_{2}=\frac{1}{d_{2}}\left(\begin{array}{ccc}
0 & 0 & 4 x_{1}\left(3 x_{1}-2\right) \\
8 x_{1} & -8 x_{1} x_{2} & -4 x_{1}\left(3 x_{1}^{2} x_{2}-2 x_{1} x_{2}+2\right) \\
-4 & 2\left(3 x_{1}+2 x_{2}-2\right) & 9 x_{1}^{3}-12 x_{1}^{2}+4 x_{1}+4
\end{array}\right)
$$

where $d_{2}=4 x_{1}\left(3 x_{1}-2\right) \notin \mathfrak{m}_{2}$, is such that:

$$
\left\{\begin{array}{l}
\operatorname{det} H_{2}=-1 /\left(x_{1}\left(3 x_{1}-2\right)\right) \Rightarrow H_{2} \in \operatorname{GL}_{3}\left(E_{\mathfrak{m}_{2}}\left[x_{2}\right]\right), \\
R H_{2}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)
\end{array}\right.
$$

- We have the Bézout identity

$$
c_{1} d_{1}+c_{2} d_{2}=1, \quad c_{1}=1 / 4, \quad c_{2}=-\left(3 x_{1}-2\right) / 16
$$

i.e., $\left(d_{1}, d_{2}\right)=E$ and the main algorithm stops.

Example

- The matrix defined by

$$
\begin{gathered}
\Delta_{1}\left(x_{1}, x_{2},-c_{1} d_{1} x_{2}\right)=H_{1}\left(x_{1}, x_{2}\right) H_{1}^{-1}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2}\right), \\
\left(9 x_{1}^{4} / 4-3 x_{1}^{3}+x_{1}^{2}\right) x_{2}^{2}+\left(3 x_{1}^{2} / 2-x_{1}\right) x_{2}+1 \\
-\left(18 x_{1}^{4}-24 x_{1}^{3}+8 x_{1}^{2}\right) x_{1} x_{2}^{3} / 8+\left(27 x_{1}^{5}-54 x_{1}^{4}+36 x_{1}^{3}-20 x_{1}^{2}+8 x_{1}\right) x_{1} x_{2}^{2} / 8-x_{1} x_{2} \\
0
\end{gathered}
$$

satisfies:

$$
\left\{\begin{array}{l}
\Delta_{1}\left(x_{1}, x_{2},-c_{1} d_{1} x_{2}\right) \in \mathrm{GL}_{3}(D), \\
R\left(x_{1}, x_{2}\right) \Delta_{1}\left(x_{1}, x_{2},-c_{1} d_{1} x_{2}\right)=R\left(x_{1}, x_{2}-c_{1} d_{1} x_{2}\right)
\end{array}\right.
$$

Example

- The matrix defined by

$$
\begin{aligned}
& \Delta_{2}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2},-c_{2} d_{2} x_{2}\right)=H_{2}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2}\right) H_{2}\left(x_{2}, 0\right)^{-1}, \\
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \left(3 x_{1}^{2} / 2-x_{1}\right) x_{2}+1 & x_{1}^{2}\left(3 x_{1}-2\right) x_{2} \\
\left(9 x_{1}^{2}-12 x_{1}+4\right) x_{1} x_{2} / 8 & \left(-3 x_{1}+2\right) x_{2} / 4 & \left(-3 x_{1}^{2} / 2+x_{1}\right) x_{2}+1
\end{array}\right),
\end{aligned}
$$

satisfies:

$$
\begin{gathered}
\left\{\begin{array}{l}
\Delta_{2}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2},-c_{2} d_{2} x_{2}\right) \in \mathrm{GL}_{3}(D), \\
R\left(x_{1}, x_{2}-c_{1} d_{1} x_{2}\right) \Delta_{2}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2},-c_{2} d_{2} x_{2}\right)=R\left(x_{1}, 0\right)
\end{array}\right. \\
U_{1}=\Delta_{1}\left(x_{1}, x_{2},-c_{1} d_{1} x_{2}\right) \Delta_{2}\left(x_{1}, x_{2}-c_{1} d_{1} x_{2},-c_{2} d_{2} x_{2}\right) \in \mathrm{GL}_{3}(D), \\
R\left(x_{1}, x_{2}\right) U_{1}=R\left(x_{1}, 0\right)=\left(\begin{array}{lll}
1 & 3 x_{1} / 2-1 & 0
\end{array}\right) .
\end{gathered}
$$

Example

- We easily check that the matrix

$$
U_{2}=\left(\begin{array}{ccc}
1 & -3 x_{1} / 2+1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \in \operatorname{GL}_{3}(D)
$$

satisfies $R\left(x_{1}, 0\right) U_{2}=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$.

- Finally, if we define the matrix $U=U_{1} U_{2} \in \mathrm{GL}_{3}(D)$, namely,

$$
U=\left(\begin{array}{cc}
\left(3 x_{1}^{2} / 2-x_{1}\right) x_{2}+1 & \left(-9 x_{1}^{3} / 4+3 x_{1}^{2}-x_{1}-1\right) x_{2}-3 x_{1} / 2+1 \\
\left(-3 x_{1}^{3} / 2+x_{1}^{2}\right) x_{2}^{2}-x_{1} x_{2} & \left(9 x_{1}^{4} / 4-3 x_{1}^{3}+x_{1}^{2}+x_{1}\right) x_{2}^{2}+\left(3 x_{1}^{2} / 2-x_{1}\right) x_{2}+1 \\
\left(9 x_{1}^{2}-12 x_{1}+4\right) x_{1} x_{2} / 8 & \left(-27 x_{1}^{4} / 16+27 x_{1}^{3} / 8-9 x_{1}^{2} / 4-x_{1} / 4+1 / 2\right) x_{2} \\
-2 x_{1} x_{2} \\
2 x_{1}^{2} x_{2}^{2} \\
& \left(-3 x_{1}^{2} / 2+x_{1}\right) x_{2}+1
\end{array}\right),
$$

we obtain $R U=\left(\begin{array}{lll}1 & 0 & 0\end{array}\right)$!

Application: flat linear OD time-delay control system

- Let us consider the following OD time-delay linear system:

$$
\left\{\begin{array}{l}
\dot{y}_{1}(t)-y_{1}(t-h)+2 y_{1}(t)+2 y_{2}(t)-2 u(t-h)=0, \\
\dot{y}_{1}(t)+\dot{y}_{2}(t)-\dot{u}(t-h)-u(t)=0
\end{array}\right.
$$

- We consider $D=\mathbb{Q}(a)\left[\partial ; \mathrm{id}, \frac{d}{d t}\right][\delta ; \sigma, 0]$ and the two matrices:

$$
R=\left(\begin{array}{ccc}
\partial-\delta+2 & 2 & -2 \delta \\
\partial & \partial & -\partial \delta-1
\end{array}\right), S=\left(\begin{array}{cc}
0 & 0 \\
\frac{1}{2}(\partial \delta+1) & -\delta \\
\frac{1}{2} \partial & -1
\end{array}\right)
$$

- We can easily check that $R S=I_{2}$, which proves that the D-module $M=D^{1 \times 3} /\left(D^{1 \times 2} R\right)$ is free (Quillen-Suslin theorem), and thus, (\star) admits an injective parametrisation.

Application: flat linear OD time-delay control system

- We have the following system equivalence

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{y}_{1}(t)-y_{1}(t-h)+2 y_{1}(t)+2 y_{2}(t)-2 u(t-h)=0, \\
\dot{y}_{1}(t)+\dot{y}_{2}(t)-\dot{u}(t-h)-u(t)=0
\end{array}\right. \\
\Leftrightarrow\left\{\begin{array}{l}
\dot{z}_{1}(t)+2 z_{1}(t)+2 z_{2}(t)=0 \\
\dot{z}_{1}(t)+\dot{z}_{2}(t)-v(t)=0
\end{array}\right.
\end{gathered}
$$

defined by the following invertible transformations:

$$
\left\{\begin{array}{l}
y_{1}(t)=z_{1}(t), \\
y_{2}(t)=\frac{1}{2}\left(\dot{z}_{1}(t-2 h)+z_{1}(t-h)\right)+z_{2}(t)+v(t-h), \\
u(t)=\frac{1}{2} \dot{z}_{1}(t-h)+v(t) . \\
\quad \Leftrightarrow\left\{\begin{array}{l}
z_{1}(t)=y_{1}(t), \\
z_{2}(t)=-\frac{1}{2} y_{1}(t-h)+y_{2}(t)-u(t-h), \\
v(t)=-\frac{1}{2} \dot{y}_{1}(t-h)+u(t),
\end{array}\right.
\end{array}\right.
$$

Application: flat linear OD time-delay control system

- Moreover, we have the following system equivalence

$$
\left\{\begin{array} { l }
{ \dot { z } _ { 1 } (t) + 2 z _ { 1 } (t) + 2 z _ { 2 } (t) = 0 , } \\
{ \dot { z } _ { 1 } (t) + \dot { z } _ { 2 } (t) - v (t) = 0 , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
2 x_{1}(t)+2 x_{2}(t)=0, \\
-w(t)=0,
\end{array}\right.\right.
$$

defined by the following invertible transformations:

$$
\left\{\begin{array} { l }
{ z _ { 1 } (t) = x _ { 1 } (t) , } \\
{ z _ { 2 } (t) = x _ { 2 } (t) - \frac { 1 } { 2 } \dot { x } _ { 1 } (t) , } \\
{ v (t) = w (t) - \frac { 1 } { 2 } \ddot { x } _ { 1 } (t) + \dot { x } _ { 1 } (t) + \dot { x } _ { 2 } (t) , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x_{1}(t)=z_{1}(t), \\
x_{2}(t)=z_{2}(t)+\frac{1}{2} \dot{z}_{1}(t), \\
w(t)=v(t)+\dot{z}_{1}(t)+\dot{z}_{2}(t) .
\end{array}\right.\right.
$$

- We finally obtain the following injective parametrisation:

$$
\left\{\begin{array}{l}
y_{1}(t)=x_{1}(t) \\
y_{2}(t)=\frac{1}{2}\left(-\ddot{x}_{1}(t-h)+\dot{x}_{1}(t-2 h)-\dot{x}_{1}(t)+x_{1}(t-h)-2 x_{1}(t)\right) \\
u(t)=\frac{1}{2}\left(\dot{x}_{1}(t-h)-\ddot{x}_{1}(t)\right)
\end{array}\right.
$$

Application: δ-flat linear OD time-delay systems

- Flexible rod with a mass:

$$
\left\{\begin{array}{l}
\sigma^{2} \frac{\partial^{2} q(\tau, x)}{\partial \tau^{2}}-\frac{\partial^{2} q(\tau, x)}{\partial x^{2}}=0 \\
\frac{\partial q}{\partial x}(\tau, 0)=-u(\tau) \\
\frac{\partial q}{\partial x}(\tau, L)=-J \frac{\partial^{2} q}{\partial \tau^{2}}(\tau, L) \\
y(\tau)=q(\tau, L)
\end{array}\right.
$$

- $q(\tau, x)=\phi(\tau+\sigma x)+\psi(\tau-\sigma x), t=(\sigma / J) \tau, v=\left(2 J / \sigma^{2}\right) u$,

$$
\begin{aligned}
(\star) & \Rightarrow \ddot{y}(t+1)+\ddot{y}(t-1)+\dot{y}(t+1)-\dot{y}(t-1)=v(t) \\
& \Leftrightarrow\left\{\begin{array}{l}
y(t)=\xi(t-1), \\
v(t)=\ddot{\xi}(t)+\ddot{\xi}(t-2)+\dot{\xi}(t)-\dot{\xi}(t-2) .
\end{array}\right.
\end{aligned}
$$

- If y_{r} is a desired trajectoire, then $\xi_{r}(t)=y_{r}(t+1)$ and:

$$
v_{r}(t)=\ddot{y}_{r}(t+1)+\ddot{y}_{r}(t-1)+\dot{y}_{r}(t+1)-\dot{y}_{r}(t-1) .
$$

Application: π-flat linear OD time-delay systems

- Wind tunnel model (Manitius, IEEE TAC 84):

$$
\begin{gathered}
\left\{\begin{array}{l}
\dot{x}_{1}(t)+a x_{1}(t)-k a x_{2}(t-h)=0, \\
\dot{x}_{2}(t)-x_{3}(t)=0, \\
\dot{x}_{3}(t)+\omega^{2} x_{2}(t)+2 \zeta \omega x_{3}(t)-\omega^{2} u(t)=0,
\end{array}\right. \\
\Leftrightarrow\left\{\begin{array}{l}
x_{1}(t)=\omega^{2} a k \xi(t-h), \\
x_{2}(t)=\omega^{2} \dot{\xi}(t)+\omega^{2} a \xi(t), \\
x_{3}(t)=\omega^{2} \dot{\xi}(t)+\omega^{2} a \dot{\xi}(t), \\
u(t)=\xi^{(3)}(t)+(2 \zeta \omega+a) \ddot{\xi}(t)+\left(\omega^{2}+2 a \zeta \omega\right) \dot{\xi}(t)+a \omega^{2} \xi(t) .
\end{array}\right.
\end{gathered}
$$

- Simple network model (Fliess-Mounier, IFAC TDS98):

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ \dot { x } _ { 1 } (t) + u _ { 1 } (t) - u _ { 2 } (t - h _ { 1 }) = 0 , } \\
{ \dot { x } _ { 2 } (t) - u _ { 1 } (t - h _ { 2 }) = 0 , }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
x_{1}(t)=\xi_{1}\left(t-h_{1}\right)-\xi_{2}(t), \\
x_{2}(t)=\xi_{2}\left(t-h_{2}\right), \\
u_{1}(t)=\dot{\xi}_{2}(t), \\
u_{2}(t)=\dot{\xi}_{1}(t) .
\end{array}\right.\right. \\
& \xi_{1}(t)=x_{1}\left(t+h_{1}\right)+x_{2}\left(t+h_{1}+h_{2}\right), \xi_{2}(t)=x_{2}\left(t+h_{2}\right)
\end{aligned}
$$

Conclusion

- We have given a constructive algorithm for computing bases of free modules over the Weyl algebras $D=A_{n}(k)$ and $B_{n}(k)$, when k is a field of $\operatorname{char}(k)>0$.
- This algorithm and the Stafford theorem on the generation of left ideals over the Weyl algebras are implemented in the package Stafford for $k=\mathbb{Q}$ (Q.-Robertz):
http://wwwb.math.rwth-aachen.de/OreModules/
- Algorithms for the computation of projective dimensions and shortest free resolutions are also available in OreModules.
A. Q, D. Robertz, Computation of bases of free modules over the Weyl algebras, Journal of Symbolic Computation, 42 (2007), 1113-1141.

Conclusion

- We have studied stably free and free modules.
- We have briefly explained the Quillen-Suslin theorem.
(1) Constructive computation of bases of free D-modules can be obtained by means of the package QuillenSuslin: http://wwwb.math.rwth-aachen.de/QuillenSuslin/
(2) More applications in mathematical systems theory: constructive solutions of the Lin-Bose's conjectures, effective computation of (weakly) coprime factorizations of rational transfer matrices, reduction and decomposition problems...
A. Fabiańska, A. Quadrat, "Applications of the Quillen-Suslin theorem to multidimensional systems theory", in Gröbner Bases in Control Theory and Signal Processing, H. Park and G. Regensburger, Radon Series on Computation and Applied Mathematics 3, de Gruyter publisher, 2007, 23-106.

