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Preface

This booklet contains the invited talk by Kiyoshi Asai and the extended abstracts
of the short communications session of the Third International Conference on
Algebraic Biology (AB 2008). Jointly organized by the National Institute of
Advanced Industrial Science and Technology (AIST), Tokyo, and the Research
Institute for Symbolic Computation (RISC), Hagenberg, Austria, it was held
from July 31 to August 2, 2008 in the Castle of Hagenberg.

Algebraic biology is an interdisciplinary forum for research on all aspects
of applying symbolic computation in biology. The first conference on algebraic
biology (AB 2005) was held during November 28–30, 2005 in Tokyo, the second
during July 2–4, 2007 in Hagenberg. The AB conference series is intended as a
bridge between life sciences and symbolic computation: On the one hand, new
insights in biology are found by powerful symbolic methods; on the other hand,
biological problems suggest new algebraic structures and algorithms. While this
profile has been established in the previous proceedings, the papers in the present
volume demonstrate the continuous growth of algebraic biology.

The short communications session was introduced this year for encouraging
the presentation of interesting but “not-yet-polished” ideas, in particular uncon-
ventional proposals carrying the potential of creating new links between biology
and symbolic computation. Despite the late announcement, six communications
were submitted from five countries (Austria, France, Japan, Ukraine, USA), and
five communications were accepted through a peer-viewing procedure by Pro-
gram Committee members.

We hope the reader will enjoy the stimulating presentation of Kiyoshi Asai as
well as the diversity of innovative ideas communicated in the extended abstracts.
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Structural Alignments of RNA Sequences

Kiyoshi Asai12, Hisanori Kiryu2, Yasuo Tabei12, and Toutai Mituyama2

1
Department of Computational Biology, Graduate School of Frontier Science,

University of Tokyo, Kashiwa 277-8561, Japan,
2

Computational Biology Research Center, National Institute of Advanced Science

and Technology, Koto-ku, Tokyo 135-0064, Japan,

Abstract. The information analyses of RNA sequences on the basis of

their secondary structures have been rapidly advanced these few years.

We briefly review the basic concepts related with RNA sequence anal-

yses and introduce our contributions to recent progress in structural

alignments of RNA sequences.

1 Introduction

It has long been believed that protein-coding genes and their regulatory se-
quences are most important information in genomic DNA sequences. Recent
study revealed, however, the existence of a large number of non-protein-coding
RNA transcripts in higher eukaryotic cells. Therefore, the needs for information
analyses of non-coding RNAs are demanding.

Basic algorithms for nucleotide sequences, similarity searches and multiple
alignments, are applicable also to RNA sequences. The evolutional models be-
hind those algorithms assume position-independent occurrences of mutations,
insertions and deletions. However, the positions in functional RNA sequences
are not independent because of their constraints of the base pairs in the sec-
ondary structures. Sequence analysis algorithms that consider their secondary
structures are necessary because it is known that non-coding RNAs often con-
serve their structures rather than their primary sequences.

An obvious approach for analysis of RNA sequences is to use the predicted
secondary structures for similarity searches or alignments along with the se-
quences themselves, but the results are not always reliable because of inaccurate
secondary structure predictions. Another approach is to simultaneously predict
the common secondary structure in the alignment process. The computational
costs of such algorithms, however, were generally expensive. For structural align-
ment for example, Sankoff’s algorithm [1] proposed in 80ś requires O(L4) in
memory and O(L6) in time for a pair of sequences of length L. The situation
drastically has changed because a number of novel algorithms are proposed in
recent few years. In this talk, our contributions to recent progress in algorithms
of structural alignments of RNA sequences are introduced.
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2 Basics on RNA Sequence Analyses

2.1 The energy model and base pairing probabilities

The secondary structure of an RNA sequence comprises the base pairs that are
distantly located in the primary sequence and that form hydrogen bonds. They
are typically either the pairs of G-C, A-U or G-U.

Let E(σ, x) the free energy of the secondary structure σ of a sequence x.
It can be calculated as the sum of all the ”loops”, the areas closed by base
pairs, of the secondary structures, using the energy parameters collected by
experiments (eg. Mathews et al. [2]): According to the theory of thermodynamics,
the probability P (σ|x) that a sequence x forms a secondary structure σ can be
written as Boltzmann distribution,

P (σ|x) =
1

Z(x)
exp

−E(σ, x)

RT

, (1)

where R is the gas constant, T is the temperature, and Z(x) is a partition
function, a sum over a set of all possible secondary structures Ω:

Z(x) =
∑

ξ∈Ω

exp
−E(ξ, x)

RT

. (2)

By taking the sum over all the secondary structures that include (xi, xj) as one
of their base pairs, we can define P

bp(i, j), the probability that position xi and
xj form a base pair, as

P

(bp)
i,j = P ((i, j) ∈ σ|x) =

∑

σ|(i,j)∈σ

P (σ|x). (3)

The matrix {P
(bp)
i,j } is called the base pairing probability (BPP) matrix. Mc-

Caskill [3] introduced an Dynamic Programming (DP) algorithm computing
BPP matrix, which requires O(L2) in space and O(L3) in time for an RNA
sequence of length L.

2.2 Sequence alignments with maximum expected accuracy

The standard procedure to compute the optimal alignment of two sequences is
to compute the alignment that maximize the similarity score of the alignment.
However, the maximum similarity alignment is not the alignment that maximize
the accuracy of the alignment.

The Maximum Expected Accuracy (MEA) alignment was originally proposed
for sequence alignment by Miyazawa [4] in 1995 and re-introduced by Holmes
and Durbin [5] and a textbook [6]. The idea was implemented in ProbCons [7],
one of the most accurate multiple sequence alignment programs.

The substitution matrix for sequence alignments is defined according to sub-
stitution rates of residues, typically based on an evolutional model. Therefore,
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the score of an alignment is interpreted as the log probability that two sequences
are obtained from an ancestor sequence, and the probability of the alignment A

can be written as:

P (A) =
1

Z(x, y)
exp

S(A)

k

(4)

where k is a constant and Z(x, y) is a partition function written as

Z(x, y) =
∑

A

exp
S(A)

k

. (5)

It can be observed that (4) has the same form of (1) and that S(A) behaves as
negative of the energy. By taking the sum over all the alignments that include
the match of xi and yj , we can define the posterior probability

P (xi ∼ yj|x, y) =
∑

A|xi∼yj

P (A) (6)

where xi ∼ yj means that xi and yj are aligned in the same column in the align-
ment. This posterior probability can be calculated by DP, typically implemented
by pair hidden Markov models.

The accuracy of the alignment are defined according to the number of cor-
rectly aligned pairs of the characters. The expected number of correctly aligned
positions in the alignment A can be written as

E

c(A) =
∑

xi∼yj∈A

P (xi ∼ yj |x, y) (7)

where xi ∼ yj denote that xi and yj are aligned.
The alignment that maximize E

c(A) can be obtained by very simple DP
whose recursion is:

E

c
i,j = max







E

c
i−1,j−1 + P (xi ∼ yj|x, y)

E

c
i,j−1

E

c
i−1,j−1

(8)

with initial conditions E

c
0,∗ = E

c
∗,0 = 0.

2.3 Secondary structure prediction of RNAs

The prediction of the secondary structure of an RNA sequence, estimation of all
base pairs in its secondary structure, is a classical problem in bioinformatics.

Nussinov and Jacobson [8] proposed a DP algorithm that maximizes the
number of base pairs for a given RNA sequence. For an RNA sequence x, the
recursion of DP can be written as

Mi,j = max















Mi−1,j

Mi,j−1

Mi−1,j−1 + 1
Mi,k + Mk+1,j for i < k < j − 1,

(9)
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where Mi,j is the maximum number of base pairs in the subsequence xi . . . xj ,
and Mi,i = 0 for 1 ≤ i ≤ |x|. The computational complexities are O(L2) in
memory for DP matrix M , and O(L3) in time for the iteration of the fourth
term of max-operator in (9).

Zuker and Stiegler [9] proposed a DP algorithm that finds the Minimum
Free Energy (MFE) structure of an RNA sequence and implemented it to mfold
program [10]. The MFE secondary structure is interpreted as the maximum
likelihood extimator (MLE) because minimum E(σ, x) gives maximum P (σ|x)
in (1). Zuker and Stiegler’s algorithm is much more complicated than that of
Nussinov and Jacobson, because it uses two DP matrices and handles the stack-
ing energy. The order of the computational complexities, however, is the same
O(L2) in memory for DP matrix M , and O(L3) in time.

In the evaluation of the secondary structure predictions, the accuracy is eval-
uated by the number of correctly predicted base pairs. Do et al. [11] proposed the
CONTRAfold, a secondary structure prediction program based on MEA princi-
ple. They define the accuracy according to the sum of the number of correctly
predicted paired positions and γ times of the number of correctly predicted un-
paired bases. The maximized expected accuracy is obtained by simple DP with
a recursion, which is very similar to Nassinov et al.’s:

Mi,j = max















qi + Mi+1,j

qj + Mi,j−1

2γP

(bp)
i,j + Mi−1,j−1

Mi,k + Mk+1,j for i < k < j,

(10)

where P

(bp)
i,j is the BPP matrix and qi = 1−

∑

j P

(bp)
i,j . The parameter γ controls

the balance of the sensitivity and the specificity of the prediction.

3 Structural alignment of RNA sequences and their

common structures

3.1 Previous works

Though there are a number of programs for secondary structure prediction from
a single RNA sequence, the predictions are often inaccurate for further analy-
sis. Therefore, structural sequence alignments based on the predicted secondary
structure of each sequence are not reliable. In a structural sequence alignment,
it is desirable to simultaneously optimize the alignment and the associated com-
mon secondary structure. To solve this problem Sankoff [1] proposed an algo-
rithm with O(L2N ) memory and O(L3N ) time for N sequences of length L. The
computational complexity is hardly acceptable even for a pair of RNA sequences,
which require O(L4) in memory and O(L6) in time, because the required mem-
ory 8.1GB for the sequences of length 300nt exceeds the capacity of the standard
computers.
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Therefore, a number of practical variants of Sankoff’s algorithm have been
studied. They can be categorized into two groups by the ways of scoring sec-
ondary structures in the algorithms.

The first group of the algorithms score the structures using the free energy
parameters extracted from experiments [2]. The advantage of those algorithms is
that their structure predictions are relatively accurate and the drawback is the
difficulty of combining information of sequence similarities. This group includes
Foldalign [12], Dynalign [13] and PMMulti [14]. Foldalign restrict the difference
of the length of the regions to be compared. PMMulti directly compare the BPP
matrices. Dyanalign restricts the DP path of the pairwise alignment within W

bases from the original position in the sequence and achieved the computational
complexity of O(L4) memory and O(L3

W

3) time. L is the length of the shorter
sequence. The time complexity approaches to (L6) when the difference of the
lengths of the two sequences increases.

The second group stochastically score the structures by the pair SCFG. The
advantage is capability to automatically determine the parameters that reflect
both the alignments and structures from a training dataset. The drawback is
their limited accuracies of structure predictions compared with those in the first
group. This group comprises the work of Grate in 1995 [15], Stemloc [16] and
Consan [17]. Stemloc combines the constraints in the structure space and those
in the alignment space, using suboptimal alignment algorithm. Consan restricts
the DP region by anchoring points in the DP matrix that have high posterior
probabilities in simple sequence alignment.

Until very recent years, there had been proposed a number of methods for
structural alignment, but there were no software with practical computational
costs AND reasonable accuracy. In these three years, however, there appeared
practical solutions for this problem. Here we introcude our own contributions.

3.2 Murlet: A practical variant of Sankoff’s algorithm

Kiryu et al. [18] developed Murlet, a practical program for aligning multiple RNA
sequences based on Sankoff’s algorithm with marked reduction of computation.
The key ideas for the reduction are the restrictions of DP region and the efficient
scoring functions. In order to reduce the DP region, Murlet restricts the matches
of the residues that have higher posterior probabilities, which is calculated by
non-structural alignment, than a threshold ǫ. In the structural alignment, the
scoring function should include both the alignment score and the secondary
structure probabilities. For the match of two base pairs, for example, we need
the joint posterior probability that xi forms a base pair with xj (denoted by
xi ⋄ xj hereafter), yk ⋄ yℓ, xi is aligned to yk (denoted by xi ∼ yk hereafter) and
xj ∼ yℓ. The computation of this joint posterior probability, however, require
full O(L6) in time. An approximated probatility,

P̂ (xi ⋄ xj , yk ⋄ yℓ, xi ∼ yk, xj ∼ yℓ|x, y)

= P (xi ⋄ xj |x)P (yj ⋄ yℓ|y)P (xi ∼ yk|x, y)P (xj ∼ yℓ|x, y) (11)
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is instead used in Murlet. First two factors are BPPs, which can be calculated
with O(L3) in time by McCaskill’s Algorithm, and the latter two factors are
posterior matching probabilities, which can be calculated with O(L2).

The alignment quality and the accuracy of the consensus structure prediction
from the alignment were the highest among the structural alignment programs.
Additionally, it was shown that the algorithm can align relatively long RNA
sequences that have not been computable by other Sankoff-based multiple align-
ment algorithms.

3.3 Scarna: An heuristic approaches to structural alignment

Tabei et al. [19] developed Scarna, a fast program for structural alignment of a
pair of RNA sequences based on their potential common secondary structures.
In Scarna, the ensemble of the secondary structures are represented by a set of
stem candidates, which can mutually overlap, based on the BPP matrix of each
sequence. In order to reduce the computational costs, the 5’ parts and the 3’ parts
of the stem candidates are aligned separately. Although it breaks the consistency
of the base pairing structures, rough consistency are introduced into the score
function and the engineered DP of the alignment. The score function includes
BPP, the frequency of substitutions as the base pairs, the stacking energy and the
difference of the distance in base pairs. The accuracy of Scarna was better than
sequence-based methods and compatible to structure-based methods, while it
can align a pair of RNA sequences of 1000nt within a minute. The computational
complexities of the DP of Scarna are O(L2) in memory and in time, but it
requires BPP matrix that costs O(L3) in time.

As an extension of Scarna to multiple alignment, Tabei et al. [20] developed
MXSCARNA, a fast program for structural multiple alignments.

MXSCARNA works in the following three steps. First the guide tree for the
progressive alignment is built based on the pairwise similarities of the RNA se-
quences. Second the BPP matrices are calculated for all the RNA sequences by
McCaskill’s algorithm. Those BPPs are used for extracting the potential stems
and for the matching scores in the DP of the alignments. Third the RNA se-
quences are progressively aligned along the guide tree using SCARNA’s pairwise
alignment algorithm with the score function (11) of Murlet. At the first stage of
the progressive alignment, which corresponds to the bottom level of the guide
tree, the pairs of RNA sequences are aligned by engineered DP algorithm of
SCARNA’s pairwise alignment. In each upper-level step of the progressive align-
ment according to the guide tree, potential stems for groups of RNA sequences
are extracted from the averaged BPP matrices.

MXSCARNA’s accuracies were at least comparable to those of current state-
of-art aligners. In addition, the accuracies of MXSCARNA were robust over a
broad range of sequence similarities, whereas the other aligners showed reduc-
tions in SPS or MCC. The computational complexities of MXSCARNA were
evaluated as O(N3

L

3) in time and O(N2
L

2) in memory for N sequences of length
L. In the comparison of execution time for benchmark datasets, MXSCARNA
was by far the fastest among the structural aligners and was fast enough for
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large-scale analyses. MXSCARNA aligns five 1000-base sequences with about
a minute, and even 5000-base RNA sequences with acceptable computational
costs.

4 Concluding Remarks

We have reviewed basic concepts related with RNA sequence analyses and in-
troduced our recent contributions in structural alignments. Murlet and MXS-
CARNA have broken the barrier of computational costs of structural alignments
and opened the possibility for genome-wide analyses of non-coding sequences
based on their potential secondary structures. The source codes and the web
server is available at http://software.ncrna.org with the other developed soft-
ware.
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When modeling interactions between molecules or proteins, the behaviour of
a protein is given by its functional domains that determine which other protein
it can bind to or interact with and these domains are usually abstracted as sites
that can be bound or free, visible or hidden. Hence a protein is characterized by
the collection of interaction sites on its surface and proteins can bind to each
other forming molecular complexes. Based on such structures, we considered
port graphs [1] which are graphs with ports and with multiple edges and loops
attached to ports of nodes. Molecular complexes are port graphs where each port
is connected to at most one other port. Such restricted port graphs are called
molecular graphs and their ports are called sites.

We illustrate below a molecular graph G representing the initial state of the
system modeling a fragment of the EGFR signaling cascade [2, 3]. The protag-
onists of this model are three types of proteins: the signal EGF, the receptor
EGFR, and the adapter SHC . The molecular graph G′ represents a state of the
system where two signal proteins are already bound forming a dimer binding in
turn a receptor. A node is graphically represent as a box with an unique identi-
fier and a name placed outside the box. A site is represented as a filled, empty,
or slashed circle on the surface of the box if its state is respectively bound, free,
or hidden.

7:SHC
12

15:EGFR 2
3 4

1 6:EGFR2
3 4

1.2:EGF.EGF
2

3.4:EGF.EGF

2
2 2

G'

7:SHC
12

15:EGFR 2
3 4

1 6:EGFR2
3 4

1

1:EGF

2
1

2:EGF

2
1

3:EGF

2
1

4:EGF

2

G

1
1

1
1

A molecular graph rewrite rule L ⇒ R is a port graph consisting of two molec-
ular graphs L and R called, as usual, the left- and right-hand side respectively,
and one special node ⇒, called the arrow node with ports connected to the sites
of L and R such that it embeds the correspondence between elements of L and
elements of R. We represent graphically the edges incident to the arrow node
only if the correspondence is ambiguous. In consequence, port graphs represent
a unifying structure for representing both molecular complexes and the reaction
patterns between them.
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The five reaction patterns for the EGFR signalling cascade fragment specify
the followings: (r1) two signaling proteins form a dimer represented as a single
node; (r2) an EGF dimer and a receptor bind on free sites; (r3) two receptors
activated by the same EGF dimer bind creating an active dimer RTK; (r4)
an active dimer RTK activates itself by attaching phosphate groups; (r5) an
activated RTK binds to an adapter protein activating it as well. They are easily
expressible using molecular graph rewrite rules. The first three rules have the
following graphical representation:

k:EGF.EGF

1

i:EGF

j:EGF

1

2

2

22

4

i:EGF.EGF

j:EGFR

i:EGF.EGF

j:EGFR

1

2

4 1

2

r1 r2

i:EGFR
2

j:EGFR
24 4

r3

1 1

k:EGF.EGF

22

i:EGFR
2

j:EGFR
24 4

1 1

2

2 1

1

i.j:EGF.EGF

Let r : L ⇒ R be a molecular graph rewrite rule and G1 a molecular graph
such that there is an injective graph morphism g from L to G1. By replacing the
subgraph g(L) for g(R) and connecting it appropriately in the context, we obtain
a molecular graph G2 which represents a result of one-step rewriting of G1 using
the rule r, written G1 →r G2.3 The formal definition of port graph rewriting
is given in [1]. An example of rewriting in the EGFR fragment is the molecular
graph G′ above obtained from the initial molecular graph G by rewriting it using
twice the rule r1 and once the rule r2.

The chemical computation metaphor emerged as a computation paradigm
over the last three decades. This metaphor describes computation in terms of
a chemical solution in which molecules representing data freely interact accord-
ing to reaction rules. Chemical solutions are represented by multisets and the
computation proceeds by rewritings, which consume and produce new elements
according to conditions and transformation rules. The chemical metaphor was
proposed as a computational paradigm in the Γ language in [4], then used as
a basis for defining the CHemical Abstract Machine (CHAM) [5], and later it
was extended to the γ-calculus and HOCL in [6, 7] for modeling self-organizing
systems in particular.

We extend the chemical model with high-level features by considering a port
graph structure for the data and the computation rules. The result is a port
graph rewriting calculus with higher-order capabilities, called the ρpg-calculus.
The first citizens of the ρpg-calculus are port graphs, port graph rewrite rules,
and rule application. This calculus generalizes the rewriting calculus [8] and the
term graph rewriting calculus [9]. The ρpg-calculus also generalizes the λ-calculus
and the γ-calculus through a more powerful abstraction power that considers for
matching not only a variable but a port graph with variables.

The ρpg-calculus is a suitable formalism for modeling systems whose states
are port graphs and whose transitions are reductions obtained by applying port
graph rewrite rules. Due to the intrinsic parallel nature of rewriting on disjoint
3 There can be different such morphisms g from L to G1 leading to different rewrites.
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redexes and decentralized rule application, we thus model a kind of Brownian
motion, a basic principle in the chemical paradigm. In the following we present
the main features of the syntax and the semantics of the calculus from a bio-
chemical modeling point of view.

Let M denote the class of molecular graphs modeling systems states. We
denote by A the class of abstractions which are port graph rewrite rules whose
left-hand sides are molecular graphs and whose right-hand sides may include
other abstractions as well. Both sides are connected through the arrow node. Let
A+ denote a non-empty set of abstractions. Then the abstractions are graphically
defined as follows:

A ::= ⇒
...

��((M

...

66 FF

M

| ⇒
...

��'' ��''
M

...

66 FF

M A+

The second type of abstraction enriches the expressivity of the calculus by allow-
ing the application of abstractions to create new molecular graph rewrite rules.
This is useful in modeling cellular differentiation: when a particular pattern is
found in the system, the application of such an abstraction introduces new rules
specializing more the behavior of particular molecular complexes.

The structure modeling the state of the system and the current set of ab-
stractions is itself a port graph built with a node [ ] and distinct auxiliary ports
called handlers for each node. The handler of the node [ ] is connected to the
handlers of all nodes of the molecular graphs and to the handlers of the arrows
of all abstractions.

Using a similar mechanism as in the CHAM, an interaction takes place in
a system by heating it up. This process isolates an abstraction (or a list of
abstractions) and a molecular graph for application and connect them with an
application node @. A list of abstractions is defined by a new node 〈 〉 which
connects an abstraction and another list of abstractions, possibly empty.

(Heating) [ ]

yyrrrrrrrrrrrr

��
...

��''

7−→ [ ]

~~||
||

||
||

  A
AA

AA
AA

A

X A M X @

~~}}
}}

}}
}}

...

��''〈A〉 M

All steps computing the application of abstractions to a molecular graph, in-
cluding the matching and the replacement operations, are expressible using port
graph transformations by considering some more auxiliary nodes and extending
the reduction relation. This reduction mechanism is internalized in the calculus.

Instead of having a highly non-deterministic behaviour of molecular graph
rewrite rules application, one may want to introduce some control to compose
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or choose the rules to apply, possibly exploiting failure information. The notion
of abstraction is powerful enough to express such control, thanks to the notions
of strategy and strategic rewriting [10]. Strategies are higher-order functions that
select rewriting derivations. Various strategy languages have been proposed in
ELAN [11], Stratego [12], TOM [13], or Maude [14]. In a strategy language, the
basic elements are the rewrite rules and the identity (id) and failure (fail) strate-
gies. Based on them, strategies expressing the control can be constructed, like
the sequence (seq), the left-biased choice (first), the application of a strategy
only if it is successful (try), and the repeating strategy (repeat).

In the ρpg-calculus, strategies are abstractions, hence objects of the calculus.
Considering also a failure node stk, we encode for instance the strategies id, fail,
and seq as the following abstractions:

id , X ⇒ X fail , X ⇒ stk seq(S1, S2) , X ⇒ 〈S1〈S2〉〉@X

Then the strategies first, try, and repeat are easily defined using the above
strategies and some reduction rules explicitly handling the failure node stk.

Thanks to strategies, the heating rule is reformulated based on a failure
catching mechanism as follows: if 〈S〉@M reduces to the failure, i.e., to the
stk node, then the strategy try(stk ⇒ S M) restores the initial strategy and
molecular graph subjects to reduction.

(Heating′) [X S M ] 7−→ [X 〈seq(S, try(stk ⇒ S M))〉@M ]

After the application of a strategy on a molecular graph successfully takes
place, a cooling rule, the counterpart of the heating rule, is in charge of rebuilding
the state of the system by removing the no longer useful application nodes and
plugging the result of the (strategic) rewriting in the environment.

The successful application of an abstraction or strategy to a molecular graph
produces a new graph, built according to one chosen matching solution.4

At this level of definition of the calculus, the strategies are consumed by a
non-failing interaction with a molecular graph. One advantage is that, since we
work with multisets of port graphs, a strategy can be given a multiplicity, and
each interaction between the strategy and the molecular graph consumes one
occurrence of the strategy. This permits controlling the maximum number of
times an interaction can take place. But sometimes, it may be suitable to have
persistence of the information concerning the available abstraction and thus the
persistence of a given possible interaction. In this case, the abstraction should
not be consumed by the reduction. For that purpose, we define the persistent
strategy that applies a strategy given as argument and, if successful, replicates
itself. Again, we encode this strategy as an abstraction:

S! , X ⇒ 〈seq(S, first(stk ⇒ stk, Y ⇒ Y S!)〉@X

4 An alternative would be to consider a structure of all graphs corresponding to the
different matching solutions. This would assume a new node for composing possible
results with appropriate reduction rules considering such structures. This is not
developed here.
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Using the capability of strategic rewriting to generate all possible states of a
system, the framework can already be used for the verification of some properties
(like the presence or the absence of certain molecular graphs) as soon as such
properties can be encoded as objects of the calculus. In [15] we showed how the
principles of the ρpg-calculus are expressive enough for modeling systems with
self-organizing and emergent properties and illustrated it on a mail delivery
system.

For future work, we plan to identify conditions on abstractions for accessibil-
ity of stable states of modeled systems, or for imposing fairness on the application
of abstractions, and to integrate verification techniques in the calculus. Another
interesting feature worth and quite natural to be defined in the calculus rep-
resents the possibility of modifying or deleting abstractions as objects of the
calculus, with application in modeling cellular dedifferentiation for instance.
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7. Banâtre, J.P., Fradet, P., Radenac, Y.: Programming Self-Organizing Systems with

the Higher-Order Chemical Language. International Journal of Unconventional
Computing 3(3) (2007) 161–177

8. Cirstea, H., Kirchner, C.: The rewriting calculus - Part I and II. Logic Journal of
the IGPL 9(3) (2001) 427—498

9. Bertolissi, C., Baldan, P., Cirstea, H., Kirchner, C.: A Rewriting Calculus for
Cyclic Higher-order Term Graphs. ENTCS 127(5) (2005) 21–41

10. Kirchner, C., Kirchner, F., Kirchner, H.: Strategic computations and deductions.
In: Festchrift in honor of Peter Andrews. (2008)
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We solve systems of multivariate polynomial equations in order to understand
flexibility of three dimensional objects, including molecules.

Generic protein flexibility has been a major research topic in computational
chemistry for a number of years and it has a key role for many important func-
tions of proteins as molecular machines [10]. In general, a polypeptide backbone
can be modeled as a polygonal line whose edges and angles are fixed while some
of the dihedral angles formed by successive triplets of edges can vary freely. It
is well known that a segment of backbone both of whose ends are fixed will be
(generically) flexible if it includes more than six free torsions. Resultant meth-
ods have been applied successfully to this problem, see [3], [4] and the references
therein. In this work we focus on non-generically flexible structures that are rigid
but become continuously movable if certain symmetries and relations exist. In
1812, Cauchy considered flexibility of three dimensional polyhedra, where each
joint can pivot or hinge. He proved that if the polyhedron is convex it must
be rigid [2]. But following Bricard’s study of flexible non-convex intercrossing
octahedra [1], in 1978 Connelly and others found non-convex flexible polyhedra
[5] that can be imbedded in 3 dimensions without self-crossing faces.

In our previous work [8], we began a new approach to understanding flexi-
bility, using symbolic computation instead of numerical calculation. We describe
the geometry of the object or molecule with a set of multivariate polynomial
equations. Solving a system of multivariate polynomial equations is a classic, dif-
ficult problem. The approach via resultants was pioneered by Bezout, Sylvester,
Dixon [7], and others [6]. The resultant res appears as a factor of the determi-
nant det of a matrix containing multivariate polynomials. But often det is too
large to compute or factor, even though res is relatively small. We developed a
heuristic that overcomes the problem [9]. Given the resultant, we described [8]
an algorithm that examines res and determines relations for the structure to be
flexible.

We discovered in this way the conditions of flexibility for a significant ar-
rangement of quadrilaterals in [1]. The system in our original formulation had
six equations in six variables and eleven parameters. The resultant res, a func-
tion of one variable ca and the eleven parameters, has 190981 terms. If the
figure is flexible, there are infinitely many possible values for ca. That implies
that every coefficient relative to ca in res must vanish. We developed an algo-
rithm Solve to search for relations among the parameters that will kill these
coefficients and so produce flexibility. As lengths of sides in a geometric figure,
the parameters cannot be zero, nor can there be relations using only negative
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coefficients. These facts simplify the algorithm. Solve succeeds in three minutes
on a desktop computer.

1 First new result

We have now analyzed Bricard’s original formulation of the problem [1] in terms
of three equations, with fifteen parameters. This has several advantages, not
the least of which is that this system of polynomials also describes the con-
formational problem of the octahedron, a special case of which describes the
cyclohexane molecule [4]. But in contrast to the previous set of equations, some
of the parameters can be negative or zero. We have modified algorithm Solve

to include these cases, with great success. Although the physically meaningful
flexible conformations of the cyclohexane are well known, this appears to be the
first fully algebraic approach for their derivation, as well as for deriving Bricard’s
flexible octahedra.

2 Second new result

Next we consider the cylo-octane molecule, pictured in figure 1. Chemically
relevant solutions fix the (bond) angles between light lines introducing four con-
straint equations in the variables τi.

Fig. 1. Geometry of Octane Molecule.
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To save space, we show one equation here; the other three are similar:
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Here τi = tan(zi/2), tβ = tan(β/2), and tαi = tan(αi/2).
We use the Dixon resultant to eliminate τ2, τ3, and τ4. An important special

case is when the basic quadrilateral (heavy black lines) is planar. The equations
simplify quite a bit, and we describe all the solutions of this case.

In the general case we have also made significant progress. The determinant
of the Dixon matrix here, were it ever computed, would have many billions of
terms. But our techniques [9] discover its hundreds of factors in about 60 hours
of CPU time. We verify some known chemical arrangements. We discuss new
interesting flexible cases.
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1 Introduction

Recently, we have proposed a novel algorithm to select a model that is the most
consistent with the time series of observed data [4]. In the algorithm, first, a
system of differential equations that express the kinetics for a biological phe-
nomenon and a sum of exponentials that are fitted to the observed data are
transformed into the corresponding system of algebraic equations, by the Laplace
transformation. Then, the two systems of algebraic equations are compared by
a algebraic-numeric approach. One of the merits of our algorithm estimates the
model’s consistency with the observed data and the determined kinetic constants.
Furthermore, our algorithm allows a kinetic model with cyclic relationships be-
tween variables that cannot be handled by the usual approaches. In this paper,
we improve the previous algorithm, especially the part of numerical computa-
tion, and address the issue on the selection of model with the feedback loop,
which is regarded as one of the difficult issues in the model selection by numer-
ical approach. Two models, a chain graph and a graph with a feedback loop,
are examined with the corresponding simulated data, and the plausibility of
the improved method is illustrated in comparison with the model selection by
numerical approach.

2 Methods

2.1 Overview of Model Selection Algorithm

The procedure for model selection can be summarized as follows:

(i) We fit the observed data as a sum of exponentials in 2.2.
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(ii) We perform the Laplace-transformation of both the system of differential
equations for the models and the sum of exponentials for the observed data
in 2.3.

(iii) By using the least squares method (abbreviated as LSM), we calculate the
consistency of the model with the observed data.

In what follows, the details of our method will be shown.

2.2 Observed Data Fitting by Genetic Algorithm (GA)

In this paper, we need Laplace-transformed observed data, because we perform
the model selection over the Laplace domain. Let Moi(t) denote the observed
data corresponding to Mi(t) derived theoretically. By genetic-algorithm based
numerical fitting, Moi(t) is expressed in terms of a sum of exponentials as follows:

βb +

n
∑

j=1

βj exp(−αjt), (2.1)

where n is the number of distinct exponentials determined by Mi(t), and βb is
zero in the case of the non-existence of a constant term within Mi(t). Moi(t)
thus fitted is changed into the Laplace-transformed data as follows:

βb

s

+

n
∑

j=1

βj

s + αj

, (2.2)

where L denotes the Laplace transformation. In this problem, each set of pa-
rameter values αi, βi and βb to be estimated is evaluated using the following
procedure: Suppose that Moi(t) is the calculated time-course at time t of i and
that Msi(t) represents sampling data at time t of i. The sum of the square values
of the relative error between Moi(t) and Msi(t) gives the total relative error Ei;

Ei =
T

∑

t=1

(

Msi(t) − Moi(t)

Msi(t)

)2

, (2.3)

where T is the total number of sampling points.
The computational task is to determine a set of parameter values αi, βi and

βb that minimizes the objective function Ei. Instead of the use of NMinimize
command of Mathematica 5.2 in the previous study [4], here, we use the well-
known genetic algorithm (GA). We applied RCGAs with a combination of uni-

modal normal distribution crossover (UNDX) [1] and minimal generation gap

(MGG) [2] as a nonlinear numerical optimization method for estimating con-
stants.

2.3 Laplace-transformation of Model Formula

Suppose that the model formulae are described over the time domain as follows:

dMi(t)

dt

= Fi(
→

M,

→

k ), (2.4)
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where
→

M = {M1, M2, . . . , Mn} and
→

k = {k1, k2, . . . , km}. Function Fi(
→

M,

→

k ) can

be determined according to the graph describing the model, and
→

k denotes the
kinetic constants between the chemicals. We transform this system of differential
equations into a system of algebraic equations over the Laplace domain, and solve
the equations in L[Mi(t)](s) (i = 1, 2, . . . , n).

2.4 Calculation of Consistency Measure

To evaluate the consistency of the model with the observed data, we define con-

sistency measures. If the model is completely consistent with the observed data
and the data lack noise and inaccuracies, then L[Mi(t)](s) = L[Moi(t)](s) (i =
1, 2, . . . , n) holds. This fact has led us to the following definitions of consistency
measure:

Let comp denote the set of polynomials obtained by matching the coefficients
of L[M(t)](s) and L[Mo(t)](s) over the Laplace domain, in which every element
is zero in the case of L[Mi(t)](s) = L[Moi(t)](s) (i = 1, 2, . . . , n); that is, when
Formula L[Mi(t)](s) = L[Moi(t)](s) is an identity in s.

The consistency measure of the model is defined as the smallest sum-square
value of the elements in comp with non-negative kinetic constants. In order to
obtain the smallest value, we have utilized the least squares method using the
following equations:

∂

∂k1
g(

→

k ) =
∂

∂k2
g(

→

k ) = · · · =
∂

∂km

g(
→

k ) = 0, (2.5)

where g(
→

k ) is the sum-square value of the elements in comp.
Then, we survey all of the possible candidates of the minimum by calcu-

lating all of the real positive roots of the system of algebraic equations (2.5).
Several methods and tools exist to calculate all real roots of algebraic equations
adjoined by a zero-dimensional ideal. In the previous study [4], we simply used
a command, NSolve in Mathematica 5.2.

Using the consistency measures, we performed model selection. We, first,
calculated the consistency measures of the candidate models with the observed
data. Then, we listed the smallest consistency measures and the corresponding
values of kinetic constants of each candidate model for the consistent measures.

3 Results

3.1 Models and Formulations

Fig. 1 shows the two models analyzed in this paper. One is a model of a chain
graph with four nodes (M1, M2, M3, and M4) (Fig. 1(a)), and the other is a
model of a graph that a feedback loop between M4 and M1 is added in the chain
graph (Fig. 1(b)). As easily seen from the figure, the former model is a subgraph

of the latter model.
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k12 k23 k34
M1 M2 M3 M4

k12 k23 k34
M1 M2 M3 M4

k41

(a)

(b)

Fig. 1. Models

According to the models in Fig. 1, the kinetics can be expressed by two
systems of differential equations as follows:

Model (A)














d/dt M1(t) = −k12 M1(t),
d/dt M2(t) = k12 M1(t) − k23 M2(t),
d/dt M3(t) = k23 M2(t) − k34 M3(t),
d/dt M4(t) = k34 M3(t).

(3.1)

Model (B)














d/dt M1(t) = −k12 M1(t) + k41 M4(t),
d/dt M2(t) = k12 M1(t) − k23 M2(t),
d/dt M3(t) = k23 M2(t) − k34 M3(t),
d/dt M4(t) = k34 M3(t) − k41 M4(t).

(3.2)

Then the above differential equations are transformed into the corresponding
systems of algebraic equations by the Laplace transformation.

3.2 Data Generation and Fitting

We generated the data for the simulation study. The initial conditions for each
molecules and the kinetic constants are set as follows: M1(0) = 10, M2(0) =
7, M3(0) = 3, M4(0) = 1, k12 = 165/1508, k23 = 1/29, k34 = 1/13 and k41 =
3/1508. By using these kinetic constants, we sampled the data for examining
the models. Since the digits of the constants are different in the above sets of
equations, we sampled the data at 100 points when t is in the range from 0 to
10, at 100 points when t is from 10 to 30, and at 70 points when t is from 30 to
100. Furthermore, 5% of fluctuation is added for each data as the noise of data.

Results of fitting by using GA, two sets of generated data are fitted well to
two different models.

3.3 Model Selection by Algebraic-Numeric Approach

To examine the performance of our method about the feedback-loop model, we
selected one model among the two models with the data generated from one
model. Table 1 shows the consistency of the models with the data from the two
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models by the consistency measure, together with the estimated values of kinetic
constants. As for the selection by data from model (A), the smallest ssq’s and
the kinetic constants show similar values in the two models. However, the values
of k41 is estimated to be exact zero. The exact zero value of k41 indicates that
the consistent structure of model (B) is equal to that of model(A). Thus, when
the data are observed from model (A) and the question is whether there exists
the feedback loop between molecules M4 and M1 in the kinetics, our method
can select a correct model. Unfortunately, our method dose not operate well,
when the data are observed from model (B). Indeed, the ssq is smaller in the
case when the model (A) is examined than when the model (B) is examined.
As for the estimated kinetic constants, the values of k12 and k23 are similar
to the given values for the data generation in the case when the model (B) is
examined, but the value of k34 is similar to a given value when the model (A)
is examined. Thus, in this case, our method does not discriminate the models
with and without the feedback loop.

In summary, our method is useful in the case of the true model without the
feedback loop, but is not in the case of the true model with the feedback loop.
In other words, our method can detect the absence of feedback loop but fails in
the detection of the existence of feedback loop.

data-generating model examined model smallest ssq k12 k23 k34 k41

(A) (A) 0.0142 0.104 0.0329 0.0769 –

(A) (B) 0.0172 0.106 0.0334 0.0748 0
∗

(B) (A) 0.00210 0.0996 0.0276 0.0653 –

(B) (B) 0.00324 0.109 0.0304 0.0625 0.0135

Table 1. Consistency measure with kinetic constants. The given values of kinetic

constants are k12 = 165/1508(∼ 0.109), k23 = 1/29(∼ 0.0345), k34 = 1/13(∼ 0.0769)
and k41 = 3/1508(∼ 0.00199). The symbol ‘0

∗

’ indicates the exact value of zero.

4 Discussion

We examined the performance of our improved method for selecting the model
with the feedback loop by using two models and the corresponding simulated
data, we have partly succeeded in selecting the model with the feedback loop.

Note that the present performance is examined by one set of data gener-
ated from the given values of kinetic constants. In particular, the present kinetic
constants for the feedback effect are relatively small in comparison with the re-
maining kinetic constants (see in Table 1). This small effect might cause the
partial success in the present study. At any rate, we should further test the per-
formance of our method for the generated data by different kinetic constants as
well as for actually observed data. Furthermore, we should test the performance
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of our method for various structures of models, such as the five network motifs
classified by Shen-Orr, S. S. et al[3].
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Abstract. In the modelling of genetic signalling, communication and switching
(GSCS) at the cellular level, there is a need to identify the various mechanistic
models, which nature has discovered, in terms of simple positional information
rules (Wolpert (1969)) with the fate of cells being determined by their neighbours
(Pennell et al. (1999)). The discovery of such simple rules, however, is a highly
non-trivial process; in part, because of the complexity of the plethora of organs
and organisms that such protocols are able to construct; and, in part, because the
rules will not be universal (e.g. in leaves, the genetic dynamics within epidermal
cells is different to that within their trichomes).

Based on Young’s model (1983) for pea leaf development, we propose a frame-
work for the explorative recursive algebraic mechanistic modelling of the GSCS
control of the specific plant development process related to the positioning of
trichomes on Arabidopsis leaves. In this framework, the leaf is represented as an
array of hexagonal tiles (Figure 1). The tile can be seen as either a single cell or
a collection of cells. The quantative characteristic of the tile is, as we will call
it, a hexagonal number. As in Young’s paper, the relation of this number to a
measured quantity is currently not specified. (It can however be surmized that
this number is related to the concentration of the expression of the gene GL1
(Larkin et al (2003))). In order to have an effective reference to these numbers,
we introduce the concept of the horizontal layer of tiles that is the collection of
tiles whose centers lie on the same line. Then, the hexagonal number is denoted
by P (i, j), where i is the position of the layer counting from the top and j is the
position of the tile within the layer counting from the left.

For the tile (i, j), let nl = nl(i, j) and nr = nr(i, j) denote the position of
the tile on the layer (i − 1) of the left and right of this tile, and nc = nc(i, j)
denote the position on the layer (i − 2) of the tile immediately above. This is
illustrated in Figure 2. We propose the following recursive rules for determining
values of P (i, j):

1. P (1, 1) = P (2, 1) = P (2, 2) = 1.
2. If the tile (i, j) is located on the periphery of the leaf, then P (i, j) = 1.
3. If the hexagonal number in one of the neighbors of the tile (i, j) exceeds

some threshold Tgl1 (i.e. if P (i − 1, nl) ≥ Tgl1, or P (i − 1, nr) ≥ Tgl1, or
P (i − 2, nc) ≥ Tgl1), then the hexagonal number in this tile is reset to 1
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Fig. 1. Representation of the leaf as an array of hexagonal tiles.

(i.e. P (i, j) = 1). Otherwise P (i, j) is determined by the following algebraic
formula:

P (i, j) = P (i − 1, nl) + P (i − 2, nc) + P (i − 1, nr).

As shown in Figure 3, the algorithm starts with three hexagonal tiles (Fig-
ure 3(a)) and then progressively generates successive layers with the hexagonal
numbers determined according to the above rules. Figures 3(b)-(h) show this pro-
gression at different stages. The tricomes will initiate in the tiles whose hexagonal
number exceeds the threshold.

In Figure 4, it is shown how the regular pattern of trichome initiation, using
the above rules, is sensitive to the value of the threshold Tgl1. Figure 4(a) shows
the hexagonal leaf pattern with trichomes everywhere. Figures 4(b)-(f) show the
changing pattern of the trichome initiation when the threshold Tgl1 varies. As the
value of Tgl1 increases, the number of trichomes decreases (non-monotonically),
the positions of the tichomes move down from the leaf tip and the spacing
between the various trichomes increases.

The proposed framework has the potential to provide models that simulate
not only the development of the wild type but also of known and unknown
mutants. This is achieved through small changes in the threshold values, which
determine the switching from one cell fate to another. This is fully consistent
with the known biology of development.

The overall goal of the above computational modelling is an illustration of
how, for an algebraic model of some biological process, to utilize, in an iterative
manner, the available biological knowledge in the formulation of a model that
captures the essence of the biology being investigated. In particular, it illustrates
how, when all factors are taken into account, the resulting model, though quite
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Fig. 2. A tile (i, j) (black one) and its left (i − 1, nl), right (i − 1, nr), and central

(i − 2, nc) neighbours.

elementary, is able to generate a plethora of possibilities as occurs in the genetic
manipulation of plants.

Consequently, the analysis and interpretation of such a model is not necessary
straightforwardly simple. For example, there is a need, on the basis of published
results about trichome initiation, positioning, and development, to give a bio-
logical interpretation of the threshold(s) and to modify the model (Pereverzyev
Jr. and Anderssen (2008)). In addition, the relationship between the number
of generated trichomes and the value(s) of the threshold(s) requires further in-
vestigation, as does the dependence of this relationship on the total number of
cells.
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Fig. 3. An example of the leaf development at different stages. Hexagonal numbers

are determined according to the introduced rules. The color of the tile represents the

corresponding hexagonal number with white corresponding to zero and black to some

maximal value. The tiles where the hexagonal number exceeds the prescribed threshold

are marked green. In this example, Tgl1 = 10.
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Fig. 4. Final distribution of hexagonal numbers for different values of the threshold

Tgl1. (a) Tgl1 = 1; (b) Tgl1 ∈ [2, 3]; (c) Tgl1 ∈ [4, 5]; (d) Tgl1 ∈ [6, 7]; (e) Tgl1 ∈ [8, 9]; (f)

Tgl1 ∈ [10, 13].
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Abstract. We propose a symbolic-numeric method for estimating the

ratio of kinetic constants in a biological network including hidden vari-

ables which mean that the behaviors of corresponding molecules cannot

be directly measured. In the present method, an algebraic manipulation

of the differential equations over the Laplace domain, formulated based

on the assumption of linear relationships between the variables, is com-

bined with the numerical fitting of the sampling data. The performance

of the method is illustared for a part of MAPK network with the data

measured by the transfection cell array in combination of the gene inter-

ference by siRNAs.

Key words: Network Dynamics, Hidden Variable, Time-series Data,

Laplace Transform, Linear Differential Equation, Bi-fan Structure

1 Introduction

The clarify of the dymanics of a complex network is one of the important issues
in systems biology. By the recent advances of the experimental technology in
molecular biology, the behaviors of a large numbers of genes such as gene ex-
pression levels can be measured simultaneously in different conditions. However,
it is still difficult to measure the time series of gene expression levels in living
cells. Indeed, the transfection cell array[1] is one of most advanced technology for
measuring the time series of gene expressions in a living cell, but even by using
these experiments, the gene expressions are measured for only a small number of
repoter genes, in which the fluorescence protein is artificially encoded. In usual,

⋆⋆
Corresponding author.
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it encounters frequently the difficulty for measuring the molecule behaviors in
biological experiments, and for analyzing the network including hidden variables
in the biological networks. Thus, it is challenging to clarify the dynamics of whole
network only from the measurement of a small fraction of constituent molecules.

In this paper, we propose a symbolic-numeric approach for estimating kinetic
constant in the case when the time series of expressions of reporter genes are
measured by the transfection cell array in combination of the interference of the
remaining genes by siRNAs[2]. In this case, the number of the reporter genes
are limited, and thus time-dependent behaviors are not measured in most con-
stituent genes. Here, by using our approach, we present a solution for estimating
the network dynamics in a partial model including hidden variables of MAPK
pathway.

u1(t) u2(t)

k11

k12

k21

k22

kd2kd1

R1 R2

p1 p2

Fig. 1. Network model analyzed in the present study

2 Materials and methods

2.1 Model

We consider a network in Fig. 1 which is called ‘bi-fan’ structure[3]. In the net-
work, we assume that the expression levels of two molecules, R1 and R2, can be
measured by their reporter genes. These two molecules degrade with respective
known constant rates, kd1 and kd2. We also assume that any expression levels can
not be measured in two molecules, p1 and p2, which change by unknown external
forces, u1(t) and u2(t). The kinetic constants between them are k11, k12, k21, and
k22.

2.2 Formulation over Laplace domain

The dynamics of the molecules in Fig. 1 is expressed by the following ordinary
differential equations:
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where R

0
i and R

−X
i indicate the expression levels when no genes are suppressed

and that when gene X is surpressed by the corresponding siRNA, respectively.

Then, Eqns. (1) are also expressed as a system of the corresponding algebraic
equations, by Laplace transformation, i.e.,
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where L[R(t)] is function in s obtained by Laplace transformation of R(t).

Apart from the network model, we fit the measured data of expression levels
by exponential polynomials, i.e.,

R(t) =
n

∑

i=1

ai exp(−mit). (3)

Then, Eqn. (3) are expressed as a system of the corresponding algebraic
equations by Laplace transformation, i.e.,

L[R(t)] =
n

∑

i=1

ai

s + mi

. (4)

2.3 Estimation of kinetic constants over the Laplace domain

We eliminate L[p1(t)] and L[p2(t)] from the Eqns. (2), and we obtain the follow-
ing equations:
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(5)

Note that the right sides of Eqns. (5) are composed of the terms related with the
repoter genes. Thus, we substitute Eqn. (4) obtained by fitting of Eqn. (3) into
Eqns.(5), and we obtaine the equations in the form as c = F (s)/G(s), where
F (s) and G(s) are polynomials in s, and c is a constant value.

In the actual case, however, the equation, c = F (s)/G(s), does not always
hold, due to the noise of data. Thus, we estimate c so as to minimize the following
formula:

M(c) =

∫ umax

0

(cG(s) − F (s))2ds. (6)

By solving ∂M(c)
∂c

= 0, we obtain the following equation:

c =

∫ umax

0 G(s)F (s)ds

∫ umax

0 G(s)2ds

. (7)

The values of kd1 and kd2 are known as the constant values for each reporter
gene, and the value of umax is estimated so as to minimize the following equation:

N(umax) = (

∫ umax

0 Gkd1(s)Fkd1(s)ds

∫ umax

0
Gkd1(s)2ds

−kd1)
2+(

∫ umax

0 Gkd2(s)Fkd2(s)ds

∫ umax

0
Gkd2(s)2ds

−kd2)
2
.

(8)
By using the value of umax, all constants, kd1, kd2, k12/k11, and k21/k22 are
estimated from Eqns. (7). Note that we should check the consistency between
estimated and known values of kd1 and kd2.

3 Results

We analyzed actual data measured by transfection cell arrays for a part of a
network related with apoptosis in mouse[4]. In the actual network, the reporter
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genes are p53 and jun (R1 and R2 in Fig. 1), and are known to be associated
with MAPK8 and MAPK14 (p1 and p2) by the same way as those in Fig. 1.

In this study, we set n=4 in Eqn. (3), and the examples of curve fitting to
the actual data by the differential evolution algorithm which implemented as the
NMinimize function in Mathematica 6 are shown in Fig. 2.
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Fig. 2. Examples of curce fitting to actual data

Table 1 shows the estimated values of kd1, kd2, k12/k11, and k21/k22, when the
estimated value of umax and ±10% values are used. Note that both values of kd1

and kd2 are given as 0.00192541. This value shows quite similar to the estimated
kd1 and kd2. This indicates that kinetic constants are successfully estimated in
the present method.

Table 1. Estimation of kinetic constants

umax kd1 kd2 k12/k11 k21/k22

-10% 0.00182164 0.00250274 0.642616 2.45827

+ 0% 0.00211409 0.00208827 0.476623 3.16587

+10% 0.00237544 0.00182634 0.38048 3.82652

4 Discussion

Our appoach is summarized as follows: i) The relationship between the molecules
in the analyzed network is modeled by a system of ordinary diffrential equations.
ii) The time series data of the measurable molecules in the network are numer-
ically fitted by a system of exponential polynomials. iii) The kenectic constant
values and ratios of kinetic constants are expressed by fractions of fitted poly-
nomials in s by symbolic (algebraic) computation. iv) Finally, ratios of kinetic
constants are estimated employing the least square method for the known ki-
netic constants. The present approach will be applied to various issues on the
biological networks including hidden variables.
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In the present study, only the ratio of the kinetic constants is obtained. In
near future, explict values of kinetic constants will be reduced by the symbolic-
numeric approach in the similar way to the present study.
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