
Tutorial on Model Checking

Modelling and Verification in Computer Science

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

Abstract. This paper serves as background material for an invited tu-
torial on model checking given at the Third International Conference
on Algebraic Biology (AB 2008). The intended audience of the tutorial
were researchers in natural science, particularly life science, but this pa-
per may also serve as a light-weight introduction into model checking
techniques in general.

Introduction

In that part of computer science which is concerned with constructing systems,
modelling usually has a different flavor than modelling in natural science. The
artifacts resp. systems engineered by computer scientists usually do have pre-
cise mathematical semantics and work according to these abstract semantics.
Therefore computer science allows to use precise models, which are conservative
abstractions:

If a model of a computer science system has a certain property,
then the real system has this property as well.

This statement is of course incorrect if the system is not interpreted on an
abstract level. For instance, if a processor on which a program runs has a defect
or even just the compiler that produced the machine code from the original
program, then the system as a whole does not have to be correct and it may
violate the desired property, even though the program, e.g. the computer science
artifact, is correct.

Nevertheless, computer science is able to prove resp. check properties of real
systems, because these systems, in the form of programs or circuit designs, are
still abstract. Using automatic techniques for checking properties of computer
science systems is the purpose of model checking.

Research in model checking is centered around algorithmic aspects, particu-
larly on how to implement model checkers, or related questions, such as which
specification and modelling languages can be model checked efficiently. In this
paper we focus on those approaches that turn out be successful in practice.



Modelling

An important question is where the models come from. There are two radically
different ways to obtain models. In the first scenario a system to be built is mod-
elled using some high-level and abstract modelling language. Usually only one
aspect of the final not yet existing system is modelled, such as synchronization
of parallel components. Then the model can be analyzed through simulation,
i.e. by testing it, or by automatically checking certain properties with the help
of a model checker.

After the designer has a good understanding of all the aspects of the model,
he makes sure that the model is not overly simplistic and also does not contain
any fundamental flaws. Then the model is typically thrown away and the system
reimplemented in detail from scratch, usually in a totally different but more
concrete language. This is a proven technique in industry, particular since the
idea of exploring the design space through an executable model, which can be
simulated, is very useful even without using model checking techniques.

In the second scenario, model checkers are applied to concrete systems, such
as hardware designs, device drivers, or in general software, described in concrete
implementation respectively system description languages. The point is that the
description of the system in this scenario is detailed enough, even though it is still
a model of the real system, that automatic techniques, particularly compilers,
can be used to generate the final product.

Originally, models were finite state. This restriction, at least in principle,
allows model checkers to be fully automatic. Then model checking terminates,
and it either determines that a property holds on the model or the model checker
provides a witness in form of a trace that shows that the property is violated.
But due to the state-explosion-problem, which says that the number of states in
a model is exponential in the size of its description, it may just take too much
time to explore all these states and typically also too much space. Much progress
has been made over the years to ameliorate this situation and improve scalability
of model checking.

Some of the research in model checking also went into the other direction,
and lifted the finiteness restriction. There are various forms of infinite systems,
for which theoretical results are available and practical applications exist. One
direction is to allow continuous variables in the data domain, another to model
continuous time. A third direction is to add probability, and a fourth to param-
eterize the size or the number of components. Another extension is to replace
finite state automata by push down automata. All of these extension have in
common that model checking only remains decidable, and thus an automatic
almost push-button technology, if the class of models allow finite abstractions in
some way or another.

History

Model checking was invented more than 25 years ago in the early 80’ties by E.
Clarke and A. Emerson [5] and independently by J. Queille and J. Sifakis [14].



There was a workshop [16] affiliated to the Federated Conference on Logic in
Computer Science (FLOC’06) dedicated to this anniversary. Beside the proceed-
ings [16] of this workshop, another reference for model checking research is the

model checking book [7]. More recently Clarke, Emerson and Sifakis won the
2007 Turing Award for their pioneering work on model checking.

From a historical perspective it is probably important to mention that ini-
tially these ideas were not immediately embraced by the formal verification com-
munity eagerly, which at that time was still mainly focused on theorem proving
techniques. The main argument was that model checking, as it was described
initially would only work on tiny models and thus would not scale.

On the one hand this argument is still valid, particularly if the goal is to pro-
duce a fully verified concrete system. Without additional manual and automatic
abstraction techniques, model checking alone will fail in such an endeavor due
to the large number of system states, that have to be explored.

On the other hand model checking has been very successful in providing
complementary techniques to simulation and testing in order to partially verify
concrete systems. Particularly in circuit design, where testing costs and also costs
for defects that slip through testing are very high, model checking is applied
routinely nowadays. It was shown recently, that hybrid techniques that combine
model checking with automated theorem proving, can check much larger systems
than each technique alone, even in checking properties of device drivers in an
industrial operating system [1], for which this hybrid technique is actually used
routinely now as well.

Finally, using model checking checking for pure models, e.g. the first scenario
discussed in the previous section, will always be beneficial for systems with
complex interactions, such as communication protocols etc.

Temporal Logic

Another aspect where model checking differs from other formal approaches is the
choice of the specification languages, which are used to describe properties. In
essence model checking is concerned with sequential or temporal behavior of sys-
tems. This kind of properties are particularly important for reactive, distributed
or parallel systems and typically are described in temporal logic. A. Pnueli [12]
is considered to be the first who noticed that specifications of such concurrent
systems would benefit from using temporal logic.

In its simplest form temporal logic allows to specify two kinds of temporal
behavior. A safety property states that a certain error or catastrophic state is not
reachable. A dual formulation is, that a safety property holds, if all reachable
states fulfill a certain invariant, which is valid initially and remains valid no
matter how the system evolves. In terms of programming languages an assertion
is a typical simple safety property.

More complex temporal specifications are liveness properties, also often re-
ferred to as progress properties. They are used to specify reactiveness, progress
or non-starvation etc. A typical example are request/acknowledge properties,



for instance calling the elevator (request), will eventually lead to the elevator
doors to open (acknowledge). Another example is that a system after powering
up will eventually end up in a properly “initialized” state, no matter in what
configuration it started. Liveness usually only makes sense in combination with
additional fairness assumptions, for instance, that each component is allowed to
have its turn infinitely often.

There are various flavors of temporal logic, most notably computation tree
logic (CTL) and linear temporal logic (LTL). Related formalisms, such as omega-
regular languages and µ-calculus are also used quite frequently. More information
on these formalisms can be found in [7]. There are also standardized temporal
logics in industry, e.g. the property specification logic (PSL).

Technology

At the core of model checking are algorithms that implement state space traver-
sal. The reachable state space is traversed to find error states that violate safety
properties, or to find cyclic paths on which no progress is made as counter exam-
ple for liveness properties. In most cases state space traversal can be reformulated
as fix-point computation, which for certain temporal logics is the only way to
describe model checking algorithms.

Initially, model checkers worked on an explicit state space representation.
Each state of the system is represented in the computer explicitly and typically
stored in a large hash table. The size of the hash table is closely related to the
number of reachable states of the system and thus computer memory became
the bottle neck.

There are various techniques to improve space consumption in explicit state
model checkers. The most important one is partial-order reduction, which is
particularly useful for asynchronous models such as loosely coupled software
components, petri-net models etc. Also, if the model is symmetric, these sym-
metries can be factored out during state space traversal. Finally, if the number
of states is still too large to be handled, the idea of bit-state hashing trades scal-
ability for completeness, e.g. model checking becomes a falsification technique,
similar to traditional testing, but unable to prove correctness.

The most successful explicit model checker is the SPIN model checker. Its
main author, G. Holzmann, received the ACM Software System Award in 2002
for his work on SPIN. His latest book [9] on SPIN is probably the best reference
to start learning more about explicit state model checking and its optimizations
mentioned above. There is a yearly workshop series on SPIN as well, which has
more recent results.

For infinite models there are no explicit methods. States have to be repre-
sented symbolically. But even for finite models it is possible to represent states,
more precisely set of states, symbolically. The goal is to overcome the state-
explosion-problem.

In the mid 80’ties Randy Bryant presented reduced ordered binary decision
diagrams (BDDs) as a new data structure for symbolically representing and



manipulating boolean functions efficiently [4]. This paper has turned out to be
one of the most cited papers in computer science.

Also at CMU a couple of years later E. Clarke and his students picked up this
idea and showed that BDDs can also be used to represent set of states with BDDs
and more importantly, how state space traversal techniques based on fix-point
computations can be implemented efficiently using BDD operations. This break
through in the early 90’ties is documented in K. McMillan’s thesis [10] which
also contains a detailed description of his model checker, the symbolic model
verifier SMV. One can even argue that the event of symbolic model checking
started a renaissance of formal verification in general now with a focus on real
applications.

The research in model checking of the 90’ties produced many refinements
of symbolic model checking, both in the core algorithms for finite systems, but
also in applying similar techniques to infinite systems. The literature is too large
to be listed here explicitly. Please refer to the model checking book [7] and in
general to the proceedings of the main conference in model checking research,
the conference of computer-aided verification (CAV).

In the late 90’ties it was observed that techniques for boolean satisfiability
checking, i.e. SAT solvers, could handle much larger formulas than BDDs, and
again researchers at CMU came up with the idea of bounded model checking
(BMC) [2], which applies SAT solvers to the model checking problem. BMC
in its basic form is a falsification technique, at least in practice, i.e. it trades
completeness for scalability. However, follow-up work on BMC improved this
situation, particular the work on k-induction [15] and interpolation [11]. A survey
on these and other related techniques based on using SAT for model checking
can be found in [13].

The improvement in SAT solver technology even accelerated in the last 8
years after the introduction of BMC and made model checking much more useful
in industry. SAT and its extension of satisfiability modulo theories (SMT) are
the working horse in almost all state-of-the-art applications of formal methods in
industry. Again as example consider [1], which uses SMT solvers to automatically
generate abstractions [8] for actual device drivers, which are then checked by
a symbolic model checker. If the abstraction is too coarse the abstraction is
refined [6], again with the help of SMT solvers. For more information on SAT
see the Handbook of Satisfiability [3] and recent proceedings of the yearly SAT
conference.

Conclusion

This short note represents a personal interpretation of the first 27 years of model
checking from a computer science perspective. It summarizes the historical de-
velopment and gives pointers to recent important results. We hope that we con-
tributed to spread these ideas further across the boundaries of computer science.



References

1. T. Ball and S. Rajamani. Automatically validating temporal safety properties of
interfaces. In Workshop on Model Checking of Software (SPIN), volume 2057 of
LNCS. Springer, 2001.

2. A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proc. Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), volume 1579 of LNCS. Springer, 1999.

3. A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfia-
bility. IOS Press, 2008. To be published.

4. R. Bryant. Graph Based Algorithms for Boolean Function Manipulation. IEEE
Trans. on Computers, C(35), 1986.

5. E. Clarke and E. Emerson. Design and Synthesis of Synchronization Skeletons
Using Branching-Time Temporal Logic. In Proc. of the Workshop on Logic of
Programs, volume 131 of LNCS. Springer, 1982.

6. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM, 50(5), 2003.

7. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT press, 1999.
8. S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In

Proc. Intl. Conf. on Computer-Aided Verification (CAV), volume 1254. Springer,
1997.

9. G. Holzmann. The SPIN Model Checker. Addison Wesley, 2004.
10. K. McMillan. Symbolic Model Checking: An approach to the State Explosion Prob-

lem. Kluwer, 1993.
11. K. McMillan. Interpolation and SAT-based Model Checking. In Proc. Conf. on

Computer-Aided Verification (CAV), volume 2725 of LNCS. Springer, 2003.
12. A. Pnueli. The temporal logic of programs. In Proc. IEEE Symp. on Found. of

Computer Science, 1977.
13. M. Prasad, A. Biere, and A. Gupta. A survey on recent advances in SAT-based

formal verification. Software Tools for Technology Transfer (STTT), 7(2), 2005.
14. J. Quielle and J. Sifakis. Specification and verification of concurrent systems in

CESAR. In Intl. Symp. on Programming, volume 137 of LNCS. Springer, 1982.
15. M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induction

and a SAT-solver. In Proc. Intl. Conf. on Formal Methods in Computer-Aided
Design (FMCAD), volume 1954 of LNCS. Springer, 2000.

16. H. Veith and O. Grumberg, editors. 25 Years of Model Checking, volume 5000 of
LNCS. Springer, 2008. To be published.


