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We solve systems of multivariate polynomial equations in order to under-

stand flexibility of three dimensional objects, including molecules.

Protein flexibility is a major research topic in computational chemistry.

In general, a polypeptide backbone can be modeled as a polygonal line whose

edges and angles are fixed while some of the dihedral angles in it can vary

freely. It is well known that a segment of backbone with fixed ends will

be (generically) flexible if it includes more than six free torsions. Resultant

methods have been applied successfuly to this problem, see [3], [4].

In this work we focus on non-generically flexible structures (like a geo-

desic dome) that are rigid but become continuously movable under certain

relations. A long history: Cauchy (1812), Bricard (1896), Connelly (1978).

In our previous work [8], we began a new approach to understanding

flexibility, using not numeric but symbolic computation. We describe the

geometry of the object with a set of multivariate polynomial equations, which

we solve with resultants. Resultants were pioneered by Bezout, Sylvester,

Dixon, and others. The resultant appears as a factor of the determinant

of a matrix containing multivariate polynomials. Given the resultant, we

described [8] an algorithm that examines it and determines relations for the

structure to be flexible. We discovered in this way the conditions of flexibility

for an arrangement of quadrilaterals in Bricard [1], which models molecules.

Here we significantly extend the algorithm and the molecular structures.



• The flavor here is algebraic with symbolic computation of

polynomials and matrices containing polynomials defined over

exact ground rings.

• It is not numerical computing, graph theory, circuits, trees,

Boolean anything.

• One way to solve systems of multivariate polynomial equa-

tions is resultants.

• Big problem: compute determinant of matrix with polyno-

mial entries.

• Potential Application: design of nano-machine.

1 Introduction and Summary of Previous Work

Generic protein flexibility has been a major research topic in

computational chemistry for a number of years, and it has a key

role for many important functions of proteins as molecular ma-

chines [10]. In general, a polypeptide backbone can be modeled

as a polygonal line whose edges and angles are fixed while some

of the dihedral angles formed by successive triplets of edges can

vary freely. It is well known that a segment of backbone both of
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whose ends are fixed will be (generically) flexible if it includes

more than six free torsions. Resultant methods have been ap-

plied successfuly to this problem, see [3], [4] and the references

therein. In this work we focus on non-generically flexible struc-

tures that are rigid but become continuously movable if certain

symmetries and relations exist. This subject has a long history.

In 1812, Cauchy considered flexibility of three dimensional poly-

hedra, where each joint can pivot or hinge. He proved that if the

polyhedron is convex it must be rigid [2]. But following Bricard’s

study of flexible non-convex intercrossing octahedra [1], in 1978

Connelly found genuine non-convex flexible polyhedra [5] that

can live in 3 space (without self-intersections).

In our previous work [8], we began a new approach to under-

standing flexibility, using symbolic computation instead of nu-

merical calculation. We describe the geometry of the object or

molecule with a set of multivariate polynomial equations. Solv-

ing a system of multivariate polynomial equations is a classic,

difficult problem. The approach via resultants was pioneered by

Bezout, Sylvester, Dixon [7], and others [6]. The resultant res

appears as a factor of the determinant det of a matrix contain-

ing multivariate polynomials. But often det is too large to com-

pute, even though res is relatively small. I developed a method
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that overcomes the problem [9], called Dixon-EDF. Given the

resultant, we described [8] an algorithm that examines res and

determines relations for the structure to be flexible.

We discovered in this way the conditions of flexibility for a

significant arrangement of quadrilaterals in [1].

Fig. 1. Bricard’s quadrilaterals.

The system in our original formulation had six equations in

six variables and eleven parameters. The resultant res, a func-

tion of one variable ca and the eleven parameters, has 190981

terms. If the figure is flexible, there are infinitely many possible

values for ca. That implies that every coefficient relative to ca in

res must vanish. We developed an algorithm Solve to search for

relations among the parameters that will kill these coefficients
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and so produce flexibility. As lengths of sides in a geometric fig-

ure, the parameters cannot be zero, nor can there be relations

using only negative coefficients, such as s1 = −s3− s4 s9. These

facts simplify the algorithm. Solve succeeds in three minutes on

a desktop computer.

Briefly, Solve works as follows:

Algorithm Solve(f, x): Given a polynomial f in a variable x

and a number n of parameters si, find relations on the para-

meters that make the entire polynomial vanish. Our problem is

solved by invoking Solve(res, ca), n = 11. Outline:

– Kill each coefficient coef of x in turn, starting at the highest

degree. Do so by looking for contents, linear parameters to

solve for, or a difference of squares. When a substitution is

found, plug it in, reducing the degree of f . Continue.

– Also try to kill the coefficient coef by invoking the entire

algorithm on it, relative to each variable in coef. So, this step

of Solve works by calling Solve(coef, si) within a loop.

– Use suitable data structures to keep track of all the substi-

tutions.

Here is a simple example. If res were

(s9 s8 − 2s7 s6)ca
2 + (s4

2 s9 − 2s3
2 s7)ca + s8 − s6

one solution would be the relations s9 = 2s7, s8 = s6, s4 = s3.
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1.1 First new result

We have now analyzed Bricard’s original formulation of the

quadrilaterals problem [1] in terms of three equations, with fif-

teen parameters and three variables.

a1 t21 t22 + b1 t21 + 2c1 t1 t2 + d1 t22 + e1 = 0,

a2 t22 t23 + b2 t22 + 2c2 t2 t3 + d2 t23 + e2 = 0,

a3 t21 t23 + b3 t21 + 2c3 t1 t3 + d3 t23 + e3 = 0

The ti are the half-angle tangents of the three base angles

α, β, γ. As before, these equations result from elementary ana-

lytic geometry. The parameters ai, bi, ci, . . . are quadratic func-

tions of the eleven sides. For example,

a1 = e2 + s2
2 + s2

7 − s2
5 − 2e s2 + 2e s7 − 2s2 s7

which is a product of two linear terms. This is the form of the

equations as derived by Bricard.

The resultant of this system has 5685 terms. Shall we apply

our flexibility searching algorithm as before? It is more subtle, as

now we must try relations like a1 = 0 or a1 = −d3−e2. When the

parameters were actually the sides, substitutions like this made

no sense and were excluded, thereby streamlining the search.

We have modified algorithm Solve to include these cases, with
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great success. Although the physically meaningful flexible con-

formations of the cyclohexane are well known (“chair” versus

”boat”), this appears to be the first fully algebraic approach for

their derivation, as well as for deriving Bricard’s flexible octa-

hedra. Moreover, the identical set of equations arises in other

contexts, and a variant (which includes the “missing” terms,

such as t21t2, t3, etc.) gives the conformational equations of a

protein or nucleic acid backbone [3] [4].

1.2 Second new result

Next we consider the cylo-octane molecule, pictured in figure 2.

Chemically relevant solutions fix the (bond) angles between

the paler lines, introducing four constraint equations in the vari-

ables τi. To save space, we show one equation here; the other

three are similar.
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Fig. 2. Geometry of Octane Molecule.
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Here τi = tan(zi/2), tβ = tan(β/2), and tαi = tan(αi/2).

We use the Dixon resultant to eliminate τ2, τ3, and τ4. An

important special case is when the basic quadrilateral (heavy

black lines) is planar. The equations then simplify quite a bit,

and we can describe all the solutions of this case. The Dixon

matrix is 24×24. 57% of the entries are 0. On average there are

41 terms per entry. It takes Dixon-EDF 3 minutes 38 seconds

to compute the resultant for τ1, which has 21715 terms. It is

degree 32 in τ1 but has only even degree terms.
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In the general case (three dimensional space) we have also

made significant progress. The Dixon matrix is 64× 64. 64% of

the entries are 0. On average there are 107 terms per entry. The

determinant of the Dixon matrix here, were it ever computed,

would have many billions of terms. But our Dixon-EDF tech-

niques [9] discover its hundreds of factors in about 67 hours of

CPU time. The largest has 4872161 terms. Using some of these

factors, we have verified some known chemical arrangements.

We seem to have found new interesting flexible cases. Work is

ongoing.
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