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Content of Talk 

1. Detecting a singleton attractor of a Boolean network

– What is an (AND/OR) Boolean network?

– What is a singleton attractor?
(also called a fixed point)

– The main problem

• Is there a singleton attractor in a given AND/OR 
Boolean network?

• An         time algorithm is presented in this 
talk.
– This improves the previous                time algorithm.  

(Tamura and Akutsu, FCT2007)



What is a Boolean network (BN)?

• Mathematical model of genetic network

• Very simple model

– Each node takes either 0 or 1.

• Node → gene

• 1 → active,  0 → inactive

– States of nodes change synchronously

• According to regulation rules (= Boolean functions)

AND/OR BN
Regulation rules are limited  
to disjunction or conjunction 
of parent nodes.

AND/OR BN
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What is a singleton attractor (fixed point)?

•[V1, V2, V3]=[1, 1, 0] → a singleton attractor
•The state of [1,1,0] never changes.
•[1,1,0] has a self-loop in the state-transition.

•One of the most stable states
•play an important role in biological systems

a singleton
attractor



(cyclic attractor) 

•In this talk, we deal with only singleton attractors.

a singleton
attractor

•[0,1,0]→[1,1,0]→[1,0,0]→[0,1,1]
•An attractor with period 4

•[1,1,0]
•An attractor with period １

（singleton attractor）

a cycle of length 4

Cyclic attractor



Singleton attractor detecting problem

• Is there a singleton attractor in a Boolean network (BN)? 
– For random BN

• An              time algorithm is known with maximum 
indegree 2 (Zhang et al. 2007).

• However, it may take            or more time in the worst case.

• Worst case analysis is necessary.

– For the worst case

• NP-hard (Akutsu et al. 1998)

• If the maximum indegree is K, the problem can be reduced to 
(K+1)-SAT.

• If K is not limited, no                         time algorithms are 
known

– Even for AND/OR BN, no                         time 
algorithms had been known until we proposed
an              time algorithm.   (Tamura and Akutsu, FCT2007)

– In this talk,             time algorithm is presented.
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The consistency checking can 
be done in          time.

Singleton attractor
→values of nodes never change.

Since the main algorithm 
takes exponential time, 
we can ignore the time for 
consistency checking.

① assign values to all nodes
② consistency checking

Consistency checking for node d
-d=1 → OK
-d=0 →  contradiction 

Previous algorithm (Tamura and Akutsu, FCT2007)
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If all assignment are examined,
it takes           time.

If (b,d)=[1,0], the value of
d changes from 0 to 1.
It contradicts the condition
of a singleton attractor.

By using this fact, we can
reduce the computational time.

① assign values to all nodes
② consistency checking

For every node pair, the number

of assignments which we have

to examine is at most 3 of 4 

assignments

Previous Algorithm (Tamura and Akutsu, 2007)
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Initial state:
All nodes are non-assigned 

While there exists 
a non-assigned edge (u,v),
examine all possible 
3 assignments on (u,v).

Possible assignments for
(b,d) are [0,0], [0,1] and [1,1].
Note that [1,0] is not allowed.

Possible assignments for
(f,i) are [0,1], [1,0] and [1,1].
Note that [0,0] is not allowed.When K nodes are assigned, the number 

of cases are bounded by
f(K)=3・f(K-2),   f(2)=3.

STEP 1 of the previous algorithm
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Let W be nodes whose 
values have not been 
determined yet.

If |W| ≦ n -αn, 
examine all possible 
assignments on W

STEP 2

If STEP 2 is executed, the computational time is 
at most                         . 

already
assigned

already
assigned

already
determined

For example,

a,c,g,h ∈W

All      assignments for a,c,g,h

are examined if STEP2 is

executed.

42

of the previous algorithm
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If (b,d)=[0,1] is assigned,
(a∨g)(a∨c)=1 
must be satisfied.

STEP 3

If (f,i)=[1,1] is assigned,
(c∨g∨h)(g∨h)=1 
must be satisfied.

When K nodes are assigned,
the condition of a singleton 
attractor can be represented 
by at most K clauses.

SAT problem with K clauses can be solved in               time.                 
.             (Yamamoto, 2005).

If |W|>n-αn,
solve a SAT problem.

→the overall computational time is bounded by                            .
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After STEP1
if |w|≦n-αn, 

then STEP 2 is executed.

the computational time is                           .

else, STEP 3 is executed.

the computational time is                             .

Theorem 1

By setting K=0.767n  (α=0.767),

are obtained.

The detection of a singleton attractor can be done
in              -time for AND/OR BNs. (worst case)



Improved analysis

In the previous analysis, 
the number of SAT clauses constructed in STEP 1 
is estimated as same as 
the number of assigned nodes in STEP 1.

However, there are cases in which SAT clauses are not constructed.

When 0 is assigned to v4,

no SAT clauses are constructed

When 1 is assigned to v4,

a SAT clause is constructed. 

example



After STEP1
if |w|≦n-αn, 

then STEP 2 is executed.

the computational time is    .

else, STEP 3 is executed.

the computational time is .

Theorem 2

By setting K=0.7877n  (α=0.7877),

are obtained.

Detection of a singleton attractor can be done 
in                -time for AND/OR BNs.  

(Tamura and Akutsu, FCT2007)



While there exist non-assigned neighboring edges,

examine all possible assignment, which are at most 5.

For example, possible assignments for (e,i,j) are

[0,0,0],[0,0,1],[1,0,0],[1,0,1],[1,1,1]

since [0,1,0],[0,1,1],[1,1,0] are impossible assignments.

More improved algorithm (main topic)

examine 5 possible
assignments 

examine at most 5 
possible assignments 

examine 3 possible
assignments 

determined
indirectly



All nodes are non-assigned 

While there exists 
a non-assigned neighboring 
edges {(u,v),(v,w)},
examine all possible 
5 assignments on (u,v,w).

Possible assignments for
(e,i,j) are [0,0,0],[0,0,1],[1,0,0],

[1,0,1] and [1,1,1].

Possible assignments for (d,g,h) 
are [0,0,0],[0,1,0],[0,1,1][1,1,1].
Impossible assignments are
[1,0,0],[1,0,1],[0,0,1],[1,1,0].

When K nodes are assigned, the number 
of cases are bounded by
f(K)=5・f(K-3),   f(3)=5.

STEP 1 of the proposed algorithm

determined
indirectly

examine at most 5 
possible assignments 



While there exists 
a non-assigned edge (u,v),

examine all possible 
3 assignments on (u,v).

For example, 
possible assignments for
(k,l) are [0,0], [0,1] and [1,1].
Note that [1,0] is not allowed.

When L nodes are assigned, the number 
of cases are bounded by
f(L)=3・f(L-2),   f(2)=3.

STEP 2 of the proposed algorithm

examine (at most) 
3 possible 
assignments 



Let W be nodes whose 
values have not been 
determined yet.

If K > α(n-L), 
examine all possible 
assignments on W

STEP 3

If STEP 3 is executed, the computational time is 
at most                                   . 

Note that values of red-circled nodes

may be determined indirectly.

The consistency checking can 
be done in polynomial time.



STEP 4

When K nodes are assigned in STEP1, 
the condition of a singleton attractor can 
be represented  by at most K clauses.

SAT problem with K clauses can be solved in                 time.                 
.             (Yamamoto, 2005).

If K≦α(n-L),
solve a SAT problem.

→the overall computational time is bounded by                                    .

0

0

0

0
0

1

1

1

d=0 →

g=1 →

h=0 →    n=0

e=1 →

i=0 →

j=1 →
Determined indirectly
(in reverse direction)

Note that STEP2 never

adds SAT clauses. 

STEP1 STEP1 

STEP2 



After STEP1 and STEP2
if K>α(n-L), 

then STEP 3 is executed.
the computational time is                                      

else if STEP 4 is executed.
the computational time is

Assume that L is obtained. If n is large enough constant,

→ Monotone decreasing with K

→ Monotone increasing with K

Therefore, the computational time is bounded by that of the case where

holds.   →

Thus the computational time of the proposed algorithm can be bounded by

0 n K

O(computational time)

(1)

(2)

(2)
(1)

0.767(n-L)

STEP4 is

executed

STEP3 is

executed

(1) and (2) are 

represented in

straight lines

for simplicity.



Since

is a monotone decreasing function of L 

if n is a large enough constant.

(3)

Therefore, (3) takes the maximum value when L=0.

Thus, the computational time of the proposed algorithm can be bounded 

by
(by assigning L=0 to (3) )

.

The detection of a singleton attractor can be done
in               -time for AND/OR BNs.

Therefore,

0 n L

O(computational time)

(3)

(3) is  represented in

straight lines for simplicity.



After STEP1
if K>0.767(n-L), 

then STEP 3 is executed.

the computational time is                           .

else if STEP 4 is executed.

the computational time is                             .

Theorem 3

The detection of a singleton attractor can be done
in               -time for AND/OR BNs.



Improved analysis (especially in STEP4)
There are cases where SAT clauses are not constructed.

The worst case is as follows:

(1) One of the five assignments adds one clause.

(2) Three of the five assignments add two clauses.

(3) One of the five assignments adds three clauses.

Note that negations can be 

erased by  De Morgan’s law. 



The number of cases generated by STEP1 is                                 .

For each case of them, the number of added SAT clauses is

determined according to which one of five assignments is selected

in each non-assigned neighboring edges. 

For example, if [v1,v2,v3]=[1,0,0] ,[v4,v5,v6]=[1,1,1],[v7,v8,v9]=[0,1,0]

assigned, the total number of added SAT clauses is 5 (=2+1+2). 

e.g.

K=9 , i=1, j=0

in this case



Therefore, the number of cases where one clause is added i times

and three clauses are added j times is

since  the number of cases where two clauses are added is                 .

Moreover, the total number of added SAT clauses in this case is                       

Therefore, the computational time when STEP4 is executed is bounded by

O(g(K,L))< <

Although the proof is omitted in today’s talk, it can be proved that

Note that STEP2 does not construct any SAT clauses.

STEP2



After STEP1 and STEP2
if K>α(n-L), 

then STEP 3 is executed.
the computational time is                           

else if STEP 4 is executed.
the computational time is

Assume that L is obtained. If n is large enough,

→ Monotone decreasing with K

→ Monotone increasing with K

Therefore, the computational time is bounded by that of the case where

holds. →

Thus the computational time of the proposed algorithm can be bounded by

0 n K

O(computational time)

(4)

(5)

(5)
(4)

0.8286(n-L)

STEP4 is

executed

STEP3 is

executed

(4) and (5) are 

represented in

straight lines

for simplicity.



Since

is a monotone decreasing function of L 

if n is a large enough constant.

(6)

Therefore, (1) takes the maximum value 

when L=0.

Thus, the computational time of the proposed algorithm can be bounded 

by (by assigning L=0 to (1) )

.

The detection of a singleton attractor can be done
in                 -time for AND/OR BNs.

Therefore,

0 n L

O(computational time)

(6)

(6) is  represented in

straight lines for simplicity.



After STEP1
if K>0.8286(n-L), 

then STEP 3 is executed.

the computational time is                           .

else if STEP 4 is executed.

the computational time is                             .

Theorem 4

The detection of a singleton attractor can be done
in               -time for AND/OR BNs.



Concluding remarks
• Is there a singleton attractor in a given AND/OR 

Boolean network (AND/OR BN)? 

– An                time algorithm was presented and then it was 
improved to               time in this talk.

(made use of 3 adjacent nodes)

– The previous known result was               . 
(made use of 2 adjacent nodes, Tamura and Akutsu, 2007)

– It is unclear whether further improvement by making use of 4 or 
more adjacent nodes is possible.
• At least, the algorithm and analysis would be quite involved.

– Thus, improvement of the proposed algorithm is left as an open 
problem.

– AND/OR BN is considered to be a good model since canalizing 
functions and nested canalizing functions, which are slightly more 
involved than AND/OR BN, are known to be one of the most 
suitable models for regulatory rules of eukaryotic genes.

f is a canalizing function if either

or

holds.


