Constructing a Knowledge Base for Gene Regulatory Dynamics by Formal Concept Analysis Methods

Johannes Wollbold^{1 2} Reinhard Guthke² Bernhard Ganter¹

¹University of Technology, Institute of Algebra, Dresden, Germany http://www.math.tu-dresden.de/alg/algebra.html jwollbold@gmx.de

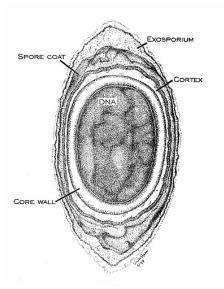
²Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI) Jena, Germany

Algebraic Biology 2008, 1st of August, Hagenberg, AT

Outline

- 1 The Example: Sporulation in Bacillus subtilis
- 2 Introduction of 4 Formal Contexts
- 3 Attribute Exploration of the Transitive Context Representing a Complete Simulation
- Outlook

Bacillus subtilis



- Gram positive soil bacterium.
- Produces single endospores under environmental stress, which can survive ultraviolet or gamma radiation, acid, hours of boiling, or starvation.
- Switch between two completely different genetic programs.
- Model organism.

Boolean Network for the Sporulation Decision [Ste07]

```
AbrB = SigA \overline{AbrB} \overline{Spo0AP}
SigF = (SigH Spo0AP \overline{SinR}) + (SigH Spo0AP SinI)
KinA = SigH \overline{Spo0AP}
Spo0A = (SigH \overline{Spo0AP}) + (SigA \overline{Spo0AP})
\overline{\mathsf{Spo0A}} = (\overline{\mathsf{SigA}} \; \mathsf{SinR} \; \overline{\mathsf{SinI}}) + (\overline{\mathsf{SigH}} \; \overline{\mathsf{SigA}} \; ) + \mathsf{Spo0AP}
Spo0AP = Signal Spo0A \overline{Spo0E} KinA
Spo0E = SigA AbrB
SigH = SigA \overline{AbrB}
Hpr = SigA AbrB Spo0AP
SinR = (SigA \overline{AbrB} \overline{Hpr} \overline{SinR} \overline{SinI} Spo0AP) +
               (SigA AbrB Hpr SinR SinI Spo0AP)
Sinl
           = SinR
SigA = TRUE  (input to the model)
Signal
          = TRUE or FALSE (constant, depending on the input state)
```

Outline

- The Example: Sporulation in Bacillus subtilis
- 2 Introduction of 4 Formal Contexts
- 3 Attribute Exploration of the Transitive Context Representing a Complete Simulation
- Outlook

Formal Contexts and Concepts

Definition

A **formal context** (G, M, I) defines a relation $I \subseteq G \times M$ between objects G and attributes M. For $A \subseteq G$ and $B \subseteq M$, derivation operators ' are defined by:

$$A' := \{ m \in M | gIm \text{ for all } g \in A \}$$

$$B' := \{ g \in G | gIm \text{ for all } m \in B \}$$

Definition

A **formal concept** of the context (G, M, I) is a pair (A, B) with $A \subseteq G$, $B \subseteq M$, A' = B and B' = A. A is the **extent**, B the **intent** of the concept (A, B).

[&]quot; defines closure operators on G and M. (A'', A') and (B', B'') are concepts, for all $A \in G$, $B \in M$.

A State Context Representing a Simulation without Stress

Given: sets E (entities) and F (fluents), states $\varphi \in F_1 \times ... \times F_n, \ n = |E|, \ F_1 = ... = F_n = F$.

Definition

A **state context** is a formal context (G, M, I) with $G \subseteq F^E := \{ \varphi : E \to F \}$ and $M \subseteq E \times F$; its relation I is given as $\varphi I(e, f) : \Leftrightarrow \varphi(e) = f$, for all $\varphi \in G$, $e \in E$ and $f \in F$.

State	KinA	Spo0A	Spo0AP	AbrB	Spo0E	SigH	Hpr	
$arphi_0$	-	+	-	-	-	-	+	
φ_1	-	+	-	+	+	+	-	
φ_2	+	+	-	-	-	-	+	

A state context in the form of a many-valued context.

A State Context Representing a Simulation without Stress

Given: sets E (entities) and F (fluents), states $\varphi \in F_1 \times ... \times F_n$, n = |E|, $F_1 = ... = F_n = F$.

Definition

A **state context** is a formal context (G, M, I) with $G \subseteq F^E := \{ \varphi : E \to F \}$ and $M \subseteq E \times F$; its relation I is given as $\varphi I(e, f) : \Leftrightarrow \varphi(e) = f$, for all $\varphi \in G, e \in E$ and $f \in F$.

State	KinA.off	KinA.on	Q	Spo0A.on	OA	Spo0AP.on	AbrB.off	Ω	Spo0E.off	Spo0E.on	SigH.off	SigH.on	Hpr.off	Hpr.on	
$arphi_0$	x			X	Х		X		Х		Х			Х	
φ_1	x			Х	Х			X		Х		Х	Х		
$arphi_2$		Х		Х	X		Х		Х		Х			Х	

The state context scaled to a one-valued context (corresponding to Def.)

A State Context Representing a Simulation without Stress

Given: sets E (entities) and F (fluents), states $\varphi \in F_1 \times ... \times F_n$, n = |E|, $F_1 = ... = F_n = F$.

Definition

A **state context** is a formal context (G, M, I) with $G \subseteq F^E := \{\varphi : E \to F\}$ and $M \subseteq E \times F$; its relation I is given as $\varphi I(e, f) : \Leftrightarrow \varphi(e) = f$, for all $\varphi \in G$, $e \in E$ and $f \in F$.

State	KinA.off	KinA.on	õ	Spo0A.on	Q	AbrB.off	Q	SigH.off	Hpr.on	Spo0AP.on	\mathbf{B}	Q	SigH.on	Hpr.off	
φ_0	x			Х	Х	Х	Х	Х	Х						
φ_2		X		Х	Х	Х	Х	Χ	Х						
φ_1	x			Х	Х						Х	Х	Х	Х	

Concept = maximal rectangle, after permutation of rows and columns.

Transition Context

Definition

Given a state context (G, M, I) and a relation $R \subseteq G \times G$, a **transition context** \mathbb{K} is the context $(R, M \times \{in, out\}, \tilde{I})$ with the property

$$(\varphi_1, \varphi_2)\tilde{I}(e, f, i) :\Leftrightarrow \begin{cases} \varphi_1(e) = f & \text{for } i = in \\ \varphi_2(e) = f & \text{for } i = out. \end{cases}$$

Transition	KinA.in.off	KinA.in.on	AbrB.in.off	AbrB.in.on	Spo0E.in.off	Spo0E.in.on	SigH.in.off	SigH.in.on	Hpr.in.off	Hpr.in.on	 KinA.out.off	KinA.out.on	AbrB.out.off	AbrB.out.on	Sp0E.out.off	Sp0E.out.on	SigH.out.off	SigH.out.on	Hpr.out.off	Hpr.in.on	
(φ_0, φ_1)	x		х		Х		Х			Χ	x			X		Х		Х	Х		
(φ_1, φ_2)	×			Х		Х		X	Х			X	Х		Х		Х			Χ	
(φ_2, φ_1)		Х	Х		Χ		Χ			Х	х			Х		Х		X	Χ		

Transitive context \mathbb{K}_t : transitively closed relation $t(R) := \bigcup_{n \in \mathbb{N} \setminus \{0\}} R^n$.

The Concept Lattice of the Transitive Context

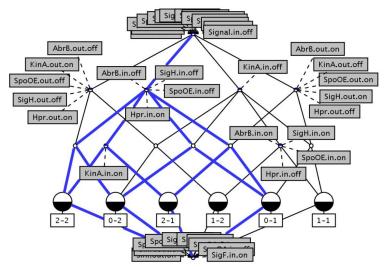


Figure: Signal: starvation; AbrB, Hpr, SigA, SigF, SigH, SinR, Spo0A (phosporylated form Spo0AP): transcription factors; KinA: kinase; Spo0E: phosphatase; SinI inactivates SinR by binding to it.

Boolean Network for the Sporulation Decision [Ste07]

```
AbrB = SigA \overline{AbrB} \overline{Spo0AP}
SigF = (SigH Spo0AP \overline{SinR}) + (SigH Spo0AP SinI)
KinA = SigH \overline{Spo0AP}
Spo0A = (SigH \overline{Spo0AP}) + (SigA \overline{Spo0AP})
\overline{\mathsf{Spo0A}} = (\overline{\mathsf{SigA}} \; \mathsf{SinR} \; \overline{\mathsf{SinI}}) + (\overline{\mathsf{SigH}} \; \overline{\mathsf{SigA}} \; ) + \mathsf{Spo0AP}
Spo0AP = Signal Spo0A \overline{Spo0E} KinA
Spo0E = SigA AbrB
SigH = SigA \overline{AbrB}
Hpr = SigA AbrB Spo0AP
SinR = (SigA \overline{AbrB} \overline{Hpr} \overline{SinR} \overline{SinI} Spo0AP) +
               (SigA AbrB Hpr SinR SinI Spo0AP)
Sinl
           = SinR
SigA = TRUE  (input to the model)
Signal
          = TRUE or FALSE (constant, depending on the input state)
```

Extended State Context

Supplementary temporal attributes always(m), never(m), eventually(m)...

State	KinA	Spo0A	Spo0AP	AbrB	Spo0E	SigH	Hpr	ev(KinA)	alw(KinA)	nev(Spo0AP)	ev(AbrB)	alw(AbrB)	ev(Hpr)	
φ_0	-	+	-	-	-	-	+	х		Х	Χ		Χ	
φ_1	-	+	-	+	+	+	-	х		X	Χ		Х	
φ_2	+	+	-	-	-	-	+	x		X	Χ		Х	

Outline

- The Example: Sporulation in Bacillus subtilis
- 2 Introduction of 4 Formal Contexts
- 3 Attribute Exploration of the Transitive Context Representing a Complete Simulation
- Outlook

The Attribute Exploration Algorithm

- Interactive algorithm.
- Generates implications $A \rightarrow B$ between attribute sets of a given formal context.
- An expert or a computer program decides about the general validity of the rule, e.g. by comparison of a simulation with observed time series.
- Yes \curvearrowright add $A \to B$ to the stem base of the context.
- Sound, complete, non redundant each valid implication is derivable by the Armstrong rules in linear time $(W, X, Y, Z \subseteq M)$:

$$\frac{\top}{X \to X} \qquad \frac{X \to Y}{X \cup Z \to Y} \qquad \frac{X \to Y, \ Y \cup Z \to W}{X \cup Z \to W}$$

 Mathematical foundation: Pseudo-closed sets, Theorem of Duquenne-Guigues [GW99, Theorem 8]

Some Interesting Implications of the Stem Base

- 4224 transitions from all possible $2^{12} = 4096$ initial states.
- 11.700 transitions in the transitive context.
- Stem base: 524 implications with support > 0 (computing time < 12h).
- $11.023.494 \approx 2^{24}$ concepts in the lattice.

SigH.out.off \rightarrow AbrB.out.off, SpoOE.out.off, SinR.out.off, Sinl.out.off All these genes are coregulated: $\overline{gene.out} = \overline{\text{SigA.in}} + \text{AbrB.in} (+ ...)$.

SigF.out.on \rightarrow KinA.out.off, Spo0A.out.off, Hpr.out.off, AbrB.out.off Spo0AP is reported to activate the production of SigF but also to repress its own expression (mutual exclusion). [De 04]

Implications Specific for the Transitive Context

```
< 4500 > Spo0AP.in.on, KinA.out.off \rightarrow Hpr.out.off < 4212 > SigH.in.on. KinA.out.off \rightarrow Hpr.out.off < 3972 > AbrB.in.off, KinA.out.off \rightarrow Hpr.out.off
```

Hpr and KinA are determined by different Boolean functions, but they are coregulated in all states emerging from any input state characterized by the single attributes Spo0AP.on, SigH.on or AbrB.on.

```
< 3904 > AbrB.out.on

→ SigA.in.on, SigA.out.on, SigF.out.off, Spo0A.out.on,

Spo0E.out.on, SigH.out.on, Hpr.out.off, SinR.out.off, SinI.out.off
```

AbrB is an important "marker" for the regulation of many genes, which is understandable from the Boolean rules with hindsight. By a PubMed query, a direct confirmation was found for the downregulation of SigF together with upregulation of AbrB [C. A. Tomas et al. 2003].

Querying the Stem Base

"For example, we know that in the absence of nutritional stress, sporulation should never be initiated [De 04]. We can use model checking to show this holds in our model by proving that no reachable state exists with SigF = 1 starting from any initial state in which Signal = 0, SigF = 0 and Spo0AP = 0." [Ste07, 341]

This is equivalent to the implication following from the stem base:

 $Signal.in.off,\ SigF.in.off,\ Spo0AP.in.off \rightarrow SigF.out.off$

A Query to the PROLOG Knowledge Base

```
on(signal.in)
:- table off/1.
                                      :- on(signal.out).
                                      :- on(signal.in).
:- table on/1.
                      on(signal.out)
off(sigF.in).
                      on(sigA.in)
                                      :- on(sigA.out).
off(spoOAP.in).
                      on(sigA.out)
                                      :- on(sigA.in).
on(sigF.out).
                      off(abrB.out)
                                      :- on(sigF.out).
                      off(kinA.out)
                                      :- on(sigF.out).
   off(spo0AP.out) :- off(spo0A.in),
                                     on(sigF.out).
   on(signal)
                   :- off(sigH.in), on(sigF.out).
```

SigF.in.off Spo0AP.in.off SigF.out.on

 \rightarrow Signal.in.on Signal.out.on SigA.in.on SigA.out.on Spo0AP.out.off Spo0A.out.off AbrB.out.off KinA.out.off Hpr.out.off

The initial presence of the signal and the ubiquitous transcription factor SigA only are necessary for the initiation of sporulation.

Outline

- The Example: Sporulation in Bacillus subtilis
- 2 Introduction of 4 Formal Contexts
- 3 Attribute Exploration of the Transitive Context Representing a Complete Simulation
- Outlook

Towards Realistic Computability

- Attribute exploration is an exponential algorithm.
- Querying the stem base is possible in linear time.
- Background knowledge: state \rightarrow transition \rightarrow transitive context.
- Automatic decision of implications by model checking or automatic text mining.
- Structural and functional analysis of Boolean networks [S. Klamt 2006].
- Conclude dynamical properties of Boolean networks by regarding them as polynomial dynamical systems over finite fields and by exploiting theoretical work in the context of cellular automata [Laubenbacher 2005].

Further Research

- Comparison to observed time series: current work related to the construction and deconstruction of the extracellular matrix in the case of human rheumatoid arthritis. (See also Wollbold 2007.)
- Validation of the simulated transitions: thresholds of support and confidence for the observed transitions.
- Expert based exploration.
- Split attribute exploration into partial problems decomposition theory of concept lattices.

Literature

Qualitative simulation of the initiation of sporulation in *Bacillus* subtilis.

Bulletin of Mathematical Biology, 66:261-299, 2004.

Bernhard Ganter and Rudolf Wille.

Formal Concept Analysis - Mathematical Foundations.

Springer, Heidelberg, 1999.

🔋 L. Jason Steggles et al.

Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach.

Bioinformatics, 23(3):336-343, 2007.