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Abstract

Structured derivations were introduced by Back and von Wright as an extension
of the calculational proof style originally proposed by E.W. Dijkstra and his col-
leagues. Structured derivations added nested subderivations and inherited assump-
tions to the original calculational style. This paper introduces a further extension
of the structured derivation format, and gives a precise syntax and semantics for
the extended proof style. The extension provides a unification of the tree main
proof styles used in mathematics today: Hilbert-style forward chaining proofs,
Gentzen-style backward chaining proofs and algebraic derivations and calcula-
tions (in particular, Dijkstra’s calculational proof style). Each of these proof styles
can be directly modelled as an extended structured derivation. Even more impor-
tantly, the three proof styles can be freely intermixed in a single structured deriva-
tion, allowing different proof styles to be used in different parts of the derivation,
each time choosing the proof style that is most suitable for the (sub)problem at
hand.

We describe here (extended) structured derivations, feature by feature, and
illustrate each feature with examples. We show how to model the three main
proof styles as structured derivations. We give an exact syntax for this proof style
and define the semantics of structured derivations. The latter is done by showing
how each structured derivation can be automatically translated into an equivalent
Gentzen-style derivation.

Structured derivations have been primarily developed for teaching mathemat-
ics on secondary and tertiary education level. The syntax of structured derivations
determines the general structure of the proof, but does not impose any restrictions
on how the basic constructs of the underlying mathematical domain are expressed.
Hence, the style can be used for any kind of mathematical proofs, calculations,
derivations, and general problem solving found in mathematics education at these
levels. The exact syntax makes it easy to provide computer support for structured
derivations.

Keywords: Teaching mathematics, logical reasoning, proof styles, Gentzen, Hilbert,
Dijkstra, calculational proofs, structured derivations, high school mathematics
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1 Introduction

Mathematics is based on proofs. The proof shows the logical reasoning behind a
theorem, allows us to understand the meaning of it, its limitations and its conse-
quences. Without a proof, a theorem is like magic, with a proof it is (sometimes
more, sometimes less) self evident. But proofs are considered difficult in mathe-
matics education at the secondary level and are therefore usually avoided. When
proofs are given, they are often informal and the underlying logic is not explicated.
Logical notation is used to some extent in high school mathematics, but reason-
ing with logical expressions is treated very cursorily, or not at all. When logic is
taught, it is often seen as a separate object of study (mathematical logic), rather
than as a useful tool for solving mathematical problems (logical mathematics).

We describe here an alternative approach to teaching mathematics that is based
on a systematic format for writing proofs and derivations and the explicit use of
logical notation and logical inference rules in these proofs. Our starting point is
the calculational proof style originally developed by E.W. Dijkstra and his col-
legues (Wim Feijen, Nettie van Gasteren, and Carel Scholten) [7, 23] (see [8] for
a nice overview of the approach). They present a proof in a fixed format, as a
sequence of calculation steps, with an explicit justification for each step, and they
emhasize the use of formal logical notation and reasoning in the calculations. A
mathematical assertion is proved by calculating its truth value, step by step.

Back and von Wright extended the calculational proof style to structured
derivations, by adding nested derivations and a mechanism for handling and prop-
agating assumptions in derivations [4, 1]. Structured derivations were originally
developed in order to present proofs in programming logic (the refinement cal-
culus). Later, this proof style was found to be quite useful also for teaching
mathematics in school, particularly at the secondary and tertiary education level
[5, 2, 17].

The syntax for structured derivations has been gradually modified by our ex-
periences of teaching mathematics using the structured derivation style. The aim
has been to make the syntax as intuitive and transparent as possible. We describe
here an extension of the original structured derivations style which provides a
standard format for different kinds of mathematical arguments, from numerical
calculations and algebraic derivations to mathematical proofs and general prob-
lem solving. The extension provides a unification of the tree main proof styles
used in mathematics today: Hilbert-style forward chaining proofs, Gentzen-style
backward chaining proofs and algebraic derivations and calculations (in particu-
lar, Dijkstra’s calculational proof style). This means that a proof in any of these
three proof styles can be directly written as a structured derivations. But even
more importantly, these three proof styles can be freely intermixed within a single
structured derivation. Different parts of a derivation can be carried out in different
proof styles, choosing the proof style that is most suitable for the task at hand.

The extended structured derivations style described here is more or less com-
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patible with the original proof style, but there are some differences, in particular
on how assumptions are treated. We will refer to the original structured deriva-
tion proof style as SDS-1 (Structured Derivation Style 1) and to the extension
described in this article as SDS-2 when we need to distinguish between these two
versions.

The primary application for structured derivations is in teaching mathematics
at different educational levels, from junior high school and high school to fresh-
man courses at the university. This means that the derivation style should be easy
to read, easy to understand, easy to write and easy to check for errors. The main
tool for achieving this is to insist on explicit motivations for each derivation step,
in the tradition of Dijkstra’s calculational proofs. Writing down explicit motiva-
tions for each step in the derivation makes the proof much easier to follow at the
time that it is presented, as well as afterwards, when working on assignments or
preparing for an exam.

Structured derivations are intended to be used for all kinds of mathematics
courses, and at different level of mathematical rigour. Structured derivations fix
a specific format (syntax) for how to present mathematical arguments, and gives
an exact meaning (semantics) to any proof constructed in this format, by describ-
ing how that proof can be translated into an equivalent Gentzen-style proof. But
it does not fix the underlying mathematical domain, which can be chosen freely.
A derivation uses the standard notation and definitions of the underlying domain,
together with the available theorems. The level of rigour at which the argumen-
tation is carried out can vary from informal argumentation to precise and exact
mathematical proofs. In the extreme, we can use structured derivations to express
completely axiomatic, machine checkable proofs.

Another guiding principle for structured derivations, also inspired by the cal-
culational proof style, is the strong emphasis on using logical notation and explicit
logical inference rules in high school mathematics. Logic is everywhere in school
mathematics, but it is usually hidden behind informal verbal expressions. Logical
notation is used to some extent, but the students are not taught the rules for how to
manipulate logical expressions. Hence, the use of logic remains at the level of in-
formal understanding, and the opportunity to speed up reasoning by manipulating
logical expressions is missed. This contrasts sharply with the strong emphasis on
doing arithmetic and algebraic calculations, where a similar speed up is gained by
having a precise notation for arithmetic and algebraic expressions, and routinely
applying algebraic rules in derivations.

Structured derivations have been designed with computer support in mind.
The syntax is defined precisely, so that it can be parsed by a computer. This
makes it possible to check that a proof is syntactically correct. The computer
can translate a structured derivation automatically into a standard Gentzen-style
proof. This opens up the possibility to use computers to automatically check that
a derivation is correct. If a structured derivation is carried out over a completely
mechanized domain (say integers and reals in HOL, Isabelle or PVS), then the
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Gentzen-style proof that results from the translation can be directly checked by an
interactive or automatic proof checker. If the underlying domain is less formal,
then some natural language understanding processing may be needed.

Structured derivations are intended to also support the construction of larger
proofs, as well as reading, understanding and checking the correctness of such
proofs. The format is based on a hierarchical notation of a derivation, where a
main derivation can be split up into a number of more detailed subderivations,
which in turn can be split up into even more detailed subderivations, and so on.
The ideal tool for working with structured derivations is an outlining editor, where
the user can selectively show and hide subproofs at different levels of detail.

Structured derivations should be seen as a new for describing mathematical ar-
guments, but it is not a new logical framework. The formalism is ultimately based
on Gentzen-style proofs, and axioms and inference rules in Gentzen-style proof
frameworks can be used freely in structured derivations. We are also not trying
to change the way professional mathematicians carry out and present their mathe-
matical derivations; they have a strong intuitive understanding of the logic behind
mathematical derivation, and can quickly grasp the ideas behind a mathematical
argument in a traditional form. The structured derivations style may provide an
alternative for some professional mathematicians, in the same way as Dijkstra’s
calculational style has been readily adapted by a number of researchers within the
Formal Methods community, but the traditional way of doing mathematics is a fast
and efficient way of communication between professionals. We are instead target-
ing the novices in mathematics, the students who need more detailed and explicit
explanations of proofs and derivations, to help them comprehend the material they
are being taught with less guesswork and false starts.

Related work The calculational proof style has been adopted quite widely in
articles and text books on programming methods, in particular in the context of
formal (or logical, mathematical) methods for constructing correct programs, see
e.g. the textbook by David Gries and Fred Schneider [12] and by Jan van de Snep-
scheut [22]. Gries and Schneider have also studied the use of calculational proofs
in high school teaching [11, 10, 13], making a strong case for the advantages of
this method in practical mathematics education.

There has been some work on making the other proof styles also more attrac-
tive in teaching mathematics. Lamport proposed a style for more human readable
Gentzen-like proofs, where indentation was used as a structuring device [14]. The
Hilbert-like proof style for geometry has been tried in schools using a two-column
proof format (see e.g. en.wikibooks.org/wiki/Geometry/Chapter_2). Interactive
theorem provers like Isabelle [16] (e.g., the Isar front end [24]), Mizar [20, 21]
and PVS [19] have also been equipped with more user friendly front ends for
reading and writing proofs. However, these front ends usually target power users,
and are not suitable as such for teaching mathematical proofs on secondary edu-
cation levels.
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The original motivation von Wright and I had in developing the structured
derivations style was to try to make proofs in programming logic more transpar-
ent and easier to read. Structured derivations are used throughout in our book on
refinement calculus [4], where we use this style to present a large number of more
or less complex proofs in algebra and logic. The method was also presented sep-
arately in a journal article [1]. Dijkstra introduced his own logic for calculational
proofs, and explained his proof style in terms of Hilbert-style proofs, whereas
structured derivations were seen as a variant of Gentzen-style proofs. This gives
more support for working with explicit assumptions in derivations. Our basic
framework was higher order logic. This framework is originally due to Alonzo
Church [6], but we based our approach on a variant of this logic developed by
Michael Gordon and Tom Melham [9], used as the basis for the interactive theo-
rem prover HOL.

Contents of article The paper is structured as follows. The next section in-
troduces structured derivations informally, as a style for presenting mathematical
proofs, calculations, derivations, and argumentations, feature by feature. We il-
lustrate each feature with a standard mathematics problem from high school. We
also give an overview of our experiences from using structured derivations in prac-
tice, with pointers to articles where these experiences are explained in more detail.
Section 3 discusses the relationship between structured derivations and the main
proof styles considered here: calculational style proofs, Hilbert-style proofs and
Gentzen-style proofs. Section 4 gives a more precise and detailed overview of the
syntax of structured derivations, and discusses different dialects of the style. Sec-
tion 5 presents a more formal definition of the meaning of structured derivations,
by showing how a structured derivation can be translated into a standard Gentzen-
style proof. We end with summarizing the main results and discussing some work
ahead.

2 Structured derivations

We describe here the main features of structured derivations, one by one. We
take the calculational proof style introduced by Dijkstra and his colleagues as the
starting point, and show how to extend it to a general proof style that also covers
Hilbert like proofs and Gentzen like proofs. We could equally well have taken
any of the two other proof styles as the starting point, but we choose to start from
the calculational style because this has been the historical development for us. We
illustrate the features of structured derivations with examples taken from ordinary
upper and lower secondary school mathematics. Our intention is to show how
traditional mathematical arguments, used in standard mathematics education, can
be expressed in a new way that is clearer and easier to understand .
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2.1 Calculations
A calculation is essentially a relation chain of the form

term0 rel1 term1 rel2 term2 . . . termk−1 relk termk

where each reli, i = 1, . . . , k, is either equality or some specific reflexive transi-
tive relation rel. The chain stands for the proposition

term0 rel1 term1 ∧ term1 rel2 term2 ∧ . . . ∧ termk−1 relk termk

From this we conclude by transitivity that

term0 rel termk

A simple example is the following calculation:

(x + 1)(x + 2)+ ≥ (x + 1)(x + 2)

= x2 + x + 2x + 2

= x2 + 3x + 2

≥ x2 + 3x

= x(x + 3)

where the reflexive transitive relation is ≥. This shows that

(x + 1)(x + 2) + 1 ≥ x(x + 3)

Syntax of calculational proofs The general structured derivation syntax for a
calculation is as follows (with k ≥ 1).

derivation ::=

• term0

rel1 justification1

term1

...

termk−1

relk justificationk

termk

¤

justification ::=

{motivation}
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We reserve one line for each term in the derivation, and one line for the relation
between the terms together with the motivation for why the relation holds between
the terms. The motivation is given in curly brackets. More than one line can be
used for a term or for a motivation, if needed. This is essentially the calculational
proof style originally introduced by Dijkstra. The proof is laid out in two columns,
where the first column is reserved for the relation symbols, and the second col-
umn is reserved for the terms and the motivations. The start of the derivation is
indicated by a bullet and the end of the derivation by an optional square.

Dijkstra combines this basic format with the explicit use of predicate calculus
in mathematical arguments. This allows him to give beautiful logical derivations
of sometimes quite sophisticated mathematical theorems. He was particularly
fond of calculations with equivalence between logical formulas, but also used im-
plication and backward implication quite frequently. The format obviously works
for any reflexive transitive relation between any kinds of mathematical entities,
like equality or ordering between arithmetic and algebraic expressions, or equal-
ity and inclusion ordering between set expressions. The underlying logic assumed
by Dijkstra for calculational derivations is first order logic with an underlying
Hilbert-style reasoning.1

Example 1 We exemplify calculations with a classical problem in high school
mathematics: solving arithmetic equations. This example illustrates both the for-
mat for calculations and the use of explicit logical notation in mathematical deriva-
tions. The problem is to solve the equation

x3 − x2 + x − 1 = 0

The solution is found as follows:

• x3 − x2 + x − 1 = 0

≡ {grouping}

x2(x − 1) + (x − 1)s = 0

≡ {factorization}

(x − 1)(x2 + 1) = 0

≡ {zero product rule: ab = 0 ≡ a = 0 ∨ b = 0}

x − 1 = 0 ∨ x2 + 1 = 0

≡ {add 1 to both sides in left disjunct and simplify}

x = 1 ∨ x2 + 1 = 0

1Check original writing by Dijkstra and by van Gasteren
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≡ {add −1 to both sides in right disjunct and simplify}

x = 1 ∨ x2 = −1

≡ {a square is never negative}

x = 1 ∨ F

≡ {disjunction rule: p ∨ F ≡ p}

x = 1

¤

The answer is thus that there is exactly one solution to the equation, x = 1. Note
that the use of equivalence is important here. If we only had forward implication,
then we might get too many values for x, and if we only had backward implication,
we could get too few values for x.

Discussion The advantages of the calculational proof style is that the derivation
steps are very clearly laid out, and that there is ample room for both terms and
motivations for each step. The explicit justification of each step is a characteristic
property of this proof style, and makes it very easy to follow the derivation, step by
step. Checking the correctness of a calculational proof style is local: we only need
to check that each relation step is true, for the reasons indicated in the justification
for the step. If that is the case, then the overall conclusion holds.

Compare this to how the example derivation would be carried out in a more tra-
ditional way on the blackboard. The relationship between the proof steps (equiva-
lence) would probably not be indicated explicitly, and the motivation for each step
would be terse and often omitted. The argument would break up into two different
subderivations, one for the first term and one for the second term, without explicit
indication of how the two cases are related. The use of explicit disjunction in our
example allows us to keep the two cases together.

The main perceived disadvantages of the calculational style is that proofs be-
come longer and they take longer to write down and explain. However, in a peda-
gogical setting this is often an advantage. It is much easier for students to follow
the proof as it is constructed step by step on the blackboard in this fashion: the
motivation for each step is explicitly written down, and the teacher takes more
time in explaining each step (because writing down the motivation takes time).

There is also a definite advantage in forcing the student to write down the
motivations for each step when he solves a problem on his own. This helps drive
home the lesson that a calculation is a proof, where each step has to be carefully
justified, in order to be certain that the result is correct. The explicit justifications
also help the teacher to see where the students derivation has gone astray, and
what the student has and has not understood.
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2.2 Explicit task and assumptions
Dijkstra’s calculational style focuses on the calculation or proof itself. The orig-
inal problem statement is given elsewhere, usually in the surrounding text. Our
first extension to the calculational style is to add the problem statement as an ex-
plicit part of the derivation: we state the task to be solved (or conjecture to be
proved) and list the assumptions that we are allowed to make in the derivation.

Syntax for structured derivation A structured derivation with explicit task and
assumptions has the following syntax (here m ≥ 0 and k ≥ 0):

derivation ::=

• task

− assumption1

...

− assumptionm

° justification

term0

rel1 justification1

term1

...

termk−1

relk justificationk

termk

¤
The task is given on the first line of the derivation. The task is usually expressed
in an imperative way, as something that needs to be done: “Show that . . . ” ,
“Compute a such that . . . ”, “Solve equation . . . ”, etc. The task is followed by
the assumptions, each assumption on a line of its own. The default symbol for an
assumption is a dash.

The start of the derivation is indicated as before with a bullet and the end of
the derivation with an optional square. The start of the proof is indicated with the
proof symbol “°“ (“is proved by”). The proof symbol is followed by a justifica-
tion that explains why the calculation that follows does in fact solve the task. In
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many cases this trivial and may be omitted, but sometimes we need to justify this
last step more carefully.

This style tries to enforce a systematic method for solving problems. The
student reads the problem carefully, and extracts from the problem formulation
the specific task that needs to be solved, as well as the assumptions that he or she
is allowed to make. This should be done before starting to solve the problem.

Naming tasks and assumptions The default symbols for the task and assump-
tions are fine in many cases, when we do not want to make the derivation overly
formal. However, we can replace the bullet with a task identifier (followed by
a colon) when we need to be more specific in our reference (like in “Theorem
1: . . . ”, or “Problem 5a: . . . ”, etc.). Similarly, we may replace the dash with
an assumption identifier (in round brackets) when we need to refer to a specific
assumptions in a derivation.

We could, of course, have turned the defaults around, and assumed that all
tasks and assumptions are uniquely identified by default (e.g., by numbering them
explicitly). However, there are usually not that many assumptions in school math-
ematics problems, so it is quite sufficient to indicate that a specific derivation step
follows from the assumptions. Moreover, not having explicit numbering for as-
sumptions makes it easier to change the assumptions (adding, modifying or delet-
ing assumptions) during the derivation, without having to change all references to
them. We can still choose to identify some crucial assumption explicitly, while
leaving the other assumptions anonymous.

Example 2 Show that

(1 + a)(1 + b)(1 + c) ≥ 1 + a + b + c

when a, b and c are non-negative real numbers.
The following derivation starts with the task to be solved (the conjecture that

we want to prove), then lists the assumptions that we are allowed to make, and
finally proves that the conjecture is indeed correct.

• Show that (1 + a)(1 + b)(1 + c) ≥ 1 + a + b + c

- when a, b, c ≥ 0

° {combining = and ≥ gives ≥, transitivity}

(1 + a)(1 + b)(1 + c)

= {multiply two last parenthesis}

(1 + a)(1 + b + c + bc)
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= {multiply remaining parenthesis}

1 + b + c + bc + a + ab + ac + abc

≥ {expression ab + ac + bc + abc is non-negative by assumption}

1 + a + b + c

This example illustrates the use of structured derivations for non-logical relations.
The motivation following the proof symbol (“combining = and ≥ gives ≥”) ex-
plains why the calculational proof does prove the conjecture. The motivation is
trivial in this case, and would usually be omitted.

Calculations as structured derivations We have two different forms of struc-
tured derivations, the short calculational derivation and a derivation with explicit
task and assumptions. The latter is useful when teaching a more systematic ap-
proach to problem solving, and when solving more complex problems. A simple
calculation is, however, often sufficient in situations where the task is more or less
evident from the context, and there are no assumptions (or the assumptions are
given in the preceding text or derivation).

The shorter format is then seen as an abbreviation for the longer format, where
the task and the justification after the proof symbol are left implicit. The cor-
respondence is shown below. On the left, we have derivation in the form of a
calculation, on the right its translation into a derivation with explicit task and as-
sumptions.

• term0

rel1 justification1

term1

...

termk−1

relk justificationk

termk

¤

stands for • Show that term0 rel termk

° {transitivity}

term0

rel1 justification1

term1

...

termk−1

relk justificationk

termk

¤
We assume here that each reli is either equality or some specific reflexive transi-
tive relation rel.
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2.3 Nested derivations
Dijkstra’s calculational style assumes that each derivation step can be motivated
with one or more sentences within brackets. A motivation that requires a more de-
tailed argument, or a subproof, has to be given somewhere else. This breaks up a
single proof into a number of separate proofs, and the context in which these sub-
proofs are carried out is lost. This is in particular problematic when the subproofs
are to be carried out under the same assumptions as in the main proof.

The original form for structured derivations (SDS1,[4]), introduced subderiva-
tions as a way of justifying more complex derivation steps in a proof, and also in-
troduced assumptions in calculational proofs (the task to be solved was not, how-
ever, explicitly stated). The extended structured derivations style (SDS2) com-
bines explicit tasks and explicit assumptions with nested derivations.

Syntax with nested derivations We generalize the previous syntax for deriva-
tions by extending the definition of a justification, as shown below (l ≥ 0).

justification ::=

{motivation}

derivation1

...

derivationl

In other words, the justification for a derivation step is a motivation (inside curly
brackets) as before, but the motivation may optionally be followed by one or more
subderivations. These subderivations establish additional facts that are needed for
the motivation. The nested derivations are indented one step to the right, so that
they stand out clearly from the main derivation.

Example 3 We want to determine when (i.e., for which values of x) the expres-
sion x−1

x2−1
is well-defined.

• Determine when x−1
x2−1

is well-defined

° x−1
x2−1

is well-defined

≡ {definedness of rational expressions}

x2 − 1 ̸= 0

≡ {switch to logic notation}

¬(x2 − 1 = 0)
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≡ {solve equation in brackets}

• x2 − 1 = 0

≡ {factorization rule}

(x + 1)(x − 1) = 0

≡ {rule for zero product}

x = −1 ∨ x = 1

. . . ¬(x = −1 ∨ x = 1)

≡ {de Morgans laws}

¬(x = −1) ∧ ¬(x = 1)

≡ {change notation}

x ̸= −1 ∧ x ̸= 1

¤

The outer derivation uses the long format, with explicit task, whereas the nested
derivation is just a short calculation.

We write “. . .” at the start of the first term following the subderivation, to
indicate where the main derivation continues. We may also have an end of proof
symbol after a subderivation, but the “. . .” notation seems to be more useful (and
concise, it saves one line).

Selectively hiding and revealing subderivations The use of nested derivations
allows much more complex proofs to be handled in a single derivation. The proof
is structured at different levels of detail: the overall proof idea is shown on the
outermost level, while nested subderivations show more and more of the details
needed to understand the proof.

An outlining text editor with a capability to selectively hide and show the
nested subderivations will allow a reader to see the the derivation at different levels
of detail. A derivation step with one or more subderivations might be hidden at
first reading, when one is trying to get an overall understanding of the proof.
The subderivation can later be shown and checked in more details, if needed.
Similarly, we may write a derivation so that at first stage, we just indicate the major
proof steps, and later fill in the details of the proof as subderivations. Structured
derivations support both this kind of top-down proof construction and the dual
bottom-up proof construction (described later).

The above derivation looks as follows when the subderivation is hidden.

• Determine when x−1
x2−1

is well-defined
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° x−1
x2−1

is well-defined

≡ {definedness of rational expressions}

x2 − 1 ̸= 0

≡ {switch to logic notation}

¬(x2 − 1 = 0)

≡ {solve equation in brackets}

. . . ¬(x = −1 ∨ x = 1)

≡ {de Morgans laws}

¬(x = −1) ∧ ¬(x = 1)

≡ {change notation}

x ̸= −1 ∧ x ̸= 1

¤

The three dots indicates that the subderivation for this step is hidden.

2.4 Inherited assumptions

The proof symbol “°” indicates that the preceding assumptions are implicitly
available in all subderivations (in addition to the assumptions that are explicitly
listed in the subderivation). This is the preferred way to treat assumptions in
structured derivations. In case we want to have more control over the assumptions,
we can use the proof symbol °0 in stead of the default symbol °. This prevents
the assumptions of the outer level from being inherited by the subderivations. Any
assumption we want to make in the subderivation has then to be explicitly listed,
including assumptions from the outer level that we want to reuse.

The following example, taken from analytic geometry, illustrates inheritance
of assumptions and subderivations with additional assumption, as well as how to
reason about quantifiers in structured derivations.

This derivation also illustrates a technique for calculating the witness needed
to establish an existential term in a subderivation. We write the assumption in the
subderivation below in the form p ## q. The symbol ## should be seen as a
cross-out symbol: initially, we make the assumption p in the proof, but when we
learn more, we cross out p and replace it with the assumption q.
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Example 4 The two vectors ā and b̄ (ā ̸= 0, b̄ ̸= 0) satisfy the equation 3(ā −
b̄) = −4ā + 3b̄. Show that the vectors are parallel.

• Show that vectors ā and b̄ are parallel, when

(1) ā ̸= 0 and b̄ ̸= 0, and

(2) 3(ā − b̄) = −4ā + 3b̄

° Vectors ā and b̄ are parallel

≡ {assumption (1), definition of two vectors being parallel}(
∃r > 0 · ā = rb̄

)
≡ {witness rule, there is a value for r that satisfies this condition}

• Show that r > 0 and ā = rb̄

(3) when r =? ## r = 6
7

° T

≡ {assumption (2)}

3(ā − b̄) = −4ā + 3b̄

≡ {multiply on the left}

3ā − 3b̄ = −4ā + 3b̄

≡ {add 4ā + 3b̄ to both sides}

7ā = 6b̄

≡ {divide by 7}

ā = 6
7
b̄

≡ {make assumption (3), r = 6
7
}

ā = rb̄

⇒ {r = 6
7

> 0}

r > 0 and ā = rb̄

. . . T

The example shows that the assumptions on the outer level are available in the
subderivation. It also shows an example where the subderivation can introduce
new assumptions. The witness rule says that that (∃x · p(x)) is true if we can find
a value x0 for x such that p(x0) is true. The subderivation starts off by wanting
to prove that r > 0 and ā = rb̄ holds for some yet unknown value r (indicated
by first writing r =?). Later in the derivation we find out that this condition will
be true if we choose r = 6

7
. We then replace the original assumption r =? with

the assumption r = 6
7
, to make the subderivation correct. This is indicated in

assumption (3) by writing it as r =? ## r = 6
7
.
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Changing text in proofs The symbol # is used to indicate replacement: p ## q
means that we replace proposition p with proposition q. Think of this as a purely
textual edit, similar to crossing out some text p and writing the correct version q
next to it. We can have a number of changed text like this: p1 ## p2 ## . . . ## pn.
Only the last version pn is taken into account when checking that the proof is cor-
rect, the previous ones are ignored.

We use the ## symbol to indicate that we change some assumption while
constructing the proof. In most cases, one should just overwrite an erroneous
assumption with the correct one, and proceed with the proof. However, in some
cases, it is important to indicate for the reader how the proof was constructed. The
example above illustrates one quite common situation. We could present the proof
linearly, guessing directly in the subderivation that r = 6

7
is a good value for the

existentially quantified variable. However, this would not be pedagogically very
wise, as it teaches the student that the only way to prove an existential formula is
by making very smart and insightful guesses. In stead, we prefer to show that a
better way is to proceed with the derivation with r as yet unknown (r =?), and
try to calculate a suitable value for r. When we find a good value for r, then we
replace the original assumption with a new assumption that gives this value for r.

Assuming r = 6
7

directly at the start of the derivation makes it look like the
person writing the proof had some divine insight into the problem, so that he or
she could directly see that this is the right choice. An ordinary reader would not
necessarily be able to see how this value was figured out, and is lost at this point.
Revealing the trick makes the proof easier to read and understand, and also helps
the reader in constructing similar proofs in the future.

2.5 Choosing the level of rigour
The examples above have all been quite simple. This might give the impression
that the structured derivations are intended to be used only in rather mechanical
calculations on simple domains of discourse (like solving equations and inequa-
tions). This is not the case, rather the opposite. The syntax is designed so that it in
principle can be used for any domain of discourse, and at any level of precision.
The way we write mathematical terms, as well as how we motivate the deriva-
tion steps, can be chosen freely to fit the problem at hand and the level of rigour
desired.

We exemplify this with the following problem, taken from analysis, where the
argumentation is carried out with larger steps than in the previous examples.

Example 5 We want to determine the values of the constant a such that the
function f(x) = −x2 + ax + a − 3 is always negative.

The following structured derivation shows how to solve this problem.

• Determine a such that (∀x · f(x) < 0)
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- where f(x) = −x2 + ax + a − 3

° (∀x · f(x) < 0)

≡ {the function f is a parabola that opens downwards, as the coefficient for
the square term is negative; such a function is always negative if it does not
intersect the x- axis}

(∀x · f(x) ̸= 0)

≡ {this is equivalent to the discriminant Df for the equation being less than
zero}

Df < 0

≡ {determine the discriminant Df}

• Df

= {the discriminant for the equation Ax2 + Bx + C = 0 is B2 − 4AC}

a2 − 4(−1)(a − 3)

= {simplify}

a2 + 4a − 12

. . . a2 + 4a − 12 < 0

≡ {solve equation a2 + 4a− 12 = 0; the function is a parabola that opens up-
wards, because the coefficient for a2 is positive, such a function is negative
between the intersection points with the x- axis}

• a2 + 4a − 12 = 0

≡ {square root formula}

a =
−4±

√
42−4·1·(−12)

2·1

≡ {simplify}

a = 2 ∨ a = −6

. . . −6 < a < 2

Discussion The example illustrates the use of nested subderivations in a non-
trivial way. Both subderivations are necessary, because the computations needed
are too complex to be carried out in head. The problem is solved on the ordinary
level of discourse used in an analysis class in high school. The motivations are
quite detailed, and make use of known facts about parabolas. The first subderiva-
tion also recalls the definition for a discriminant, to help the student to understand
the substitutions that are done.
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2.6 Observations
Solving a problem starts with identifying the task to be solved, as well as the as-
sumptions that we are allowed to make when solving the task. In many situations,
we also want to do some preliminary observations, to explore the solution space
and fix some basic facts that we think will be useful. We add observations of this
kind to structured derivations with the following extension of the syntax. This last
extenion give us the most general form of structured derivations.

Syntax with observations Observations are added immediately after the as-
sumptions, and before the proof symbol. Here m ≥ 0, n ≥ 0, and k ≥ 0.

derivation ::=

• task

- assumption1

...

- assumptionm

+ justification1

observation1

...

+ justificationn

observationn

° justification

term0

rel1 justification1

term1

...

termk−1

relk justificationk

termk

¤
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The idea is that we make one observation after the other. Each observation is
justified by explaining why it follows from the assumptions and the preceding
observations.

The default identification for an observation is the plus symbol. The plus sym-
bol can be replaced with an observation identifier (within square brackets), when
we need to give a specific reference to s the observation. We illustrate obser-
vations with the following problem, taken from classical geometry. This example
illustrates the use of observations, as well as the use of figures in structured deriva-
tions.

Example 6 Consider a right triangle with catheters a and b and hypotenuse c.
Assume that the height of the triangle on the hypotenuse divides the hypotenuse
in the proportion 3:7. Determine the proportion a

b
.

We first draw a figure of the situation, with notation that can be referred to in
the proof.

c

h

a

b

3x

7x

The requested proportion is then derived as follows.

• Determine a
b

, when

- the triangle is right, with hypotenuse c and catheters a and b,

- the height of the triangle on the hypotenuse divides the hypotenuse in the
proportion 3:7, and

- h and x are as defined in the figure

[1] {from figure}

c = 10x

[2] {figure and Pythagorean theorem}

h2 + 9x2 = a2

[3] {figure and Pythagorean theorem}
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h2 + 49x2 = b2

[4] {figure and Pythagorean theorem}

a2 + b2 = 100x2

[5] {subtract equation [2] from equation [3] and simplify}

b2 − a2 = 40x2

[6] {add equations [4] and [5] and simplify}

b2 = 70x2

[7] {substitute equation [6] into equation [4]}

• a2 + b2 = 100x2

≡ {equation [6]}

a2 + 70x2 = 100x2

≡ {solve a2}

a2 = 30x2

. . . a2 = 30x2

° a
b

= {square root definition, a and b are positive numbers}√
a2

b2

= {observations [6] and [7]}√
30x2

70x2

= {simplify}

√
3√
7

¤
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Discussion The example illustrates the classical way of solving a geometry
problem, by making observations inspired by the figure, and finally combining
them into a solution for the problem. The assumptions are followed by altogether
seven observations. The last observation uses a calculational style subderivation
as justification. The proof of the main conjecture is also done with a calculational
derivation. We have chosen this solution because it illustrates how two very dif-
ferent proof styles, a Hilbert-style forward chaining proof and a calculation are
combined in a single structured derivation.

2.7 Reduction proofs
We have previously stated that the justification following the proof symbol can be
omitted when it is obvious from the calculation (e.g., when the justification is that
the relation used in the calculation is reflexively transitive). The proof then just
consists of the calculation. We can also do this the other way around, writing the
justification but omitting the calculation in the proof (omitting both justification
and calculation is, however, not permitted).

Omitting the calculation part, and instead working just with the justification
and its possible subderivations gives us a backward chaining (or reduction) deriva-
tions. Here we start from the given task, and try to reduce it step by step to ever
simpler problems, until we get down to problems that are so simple that they can
be solved directly.

Example 7 We will exemplify this style of proof with a classical induction
proof. The problem is to prove that

0 + 1 + 2 + . . . + n =
n(n + 1)

2

The proof is as follows.

• Show that (∀n ∈ N • 0 + 1 + . . . + n = n(n+1)
2

)

° {induction proof}

Base step: 0 + 1 + . . . + n = n(n+1)
2

- when n = 0

° 0 + 1 + . . . + n = n(n+1)
2

≡ {assumption n = 0, definition of sum }

0 = 0(0+1)
2

≡ {simplification}
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T

Induction step: 0 + 1 + . . . + n′ = n′(n′+1)
2

- when n′ = n + 1 and

- 0 + 1 + . . . + n = n(n+1)
2

° 0 + 1 + . . . + n′

= {assumption }

0 + 1 + . . . + n + (n + 1)

= {induction assumption}
n(n+1)

2
+ (n + 1)

= {write with common denominator}
n2+n+2n+2

2

= {simplify}
n2+3n+2

2

= {factorize}
(n+1)(n+2)

2

= {assumption n′ = n + 1}
n′(n′+1)

2

¤

Here the problem is immediately reduced to proving the two cases in an induction
proof: the base case and the induction step. These two subproblems are again
established with calculational derivations. The base case is proved using equiv-
alences between the equations, while the induction step is proved using equality
between terms. We have identified the two subderivations explicitly, as “basic
step” and “induction step”, to clearly identify the two proof obligations in induc-
tion proofs. This example also illustrates how to combine different proof styles in
a single structured derivation. In this case, we combine a Gentzen-style backward
chaining proof with calculations for solving the subproofs.

2.8 A final example
The examples that we have given above are all taken from a standard high school
mathematics curriculum. In fact, most examples are taken from the collection of
Finnish Matriculation Exam questions for Upper Secondary Level Mathematics
(advanced level). We will end here with a slightly more advanced example, taken
from a university level introductory course on analysis.

The example is to show that a given function is continuous in a given point.
We recall the definition of continuity. Consider two sets of real numbers, I and
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D, and a function f : I → D. The function f is continuous in point c ∈ I , if for
all ϵ > 0 there exists a δ > 0 such that for all x ∈ I ,

|x − c| < δ ⇒ |f(x) − f(c)| < ϵ

This is the epsilon-delta definition of continuity, originally proposed by Bolzano
and Cauchy. We express this definition as a single logical formula:

(∀ϵ > 0 · ∃δ > 0 · ∀x ≥ 0 · |x − x0| < δ ⇒ |f(x) − f(x0)| < ϵ)

This formulation shows clearly the reason why the epsilon-delta method presents
so much difficulty to beginning math students. The formulation has three alter-
nating quantifiers, when for most people already two quantifiers are quite tough
to master conceptually.

Example 8 Show that the function f(x) =
√

x is continuous for x0 > 0.
The proof is as follows.

• Show that f is continuous in x0, when

(1) f(x) =
√

x, and

(2) x0 > 0

° f is continuous in x0

≡ {definition of continuity}

(∀ϵ > 0 · ∃δ > 0 · ∀x ≥ 0 · |x − x0| < δ ⇒ |f(x) − f(x0)| < ϵ)

≡ {prove for arbitrary ϵ (generalization rule)}

• Show that (∃δ > 0 · ∀x ≥ 0 · |x − x0| < δ ⇒ |f(x) − f(x0)| < ϵ), when

- ϵ > 0

° {find a suitable value for δ (witness rule)}

• Show that δ > 0∧ (∀x ≥ 0 · |x − x0| < δ ⇒ |f(x) − f(x0)| <
ϵ),

(3) when δ =? ## δ = ϵ · √x0

° {conjunction rule}
• Show that δ > 0

° δ

= {assumption}
ϵ · √x0

> {ϵ > 0 by assumption, x0 > 0 by assumption (2)}
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• Show that (∀x ≥ 0·|x − x0| < δ ⇒ |f(x) − f(x0)| < ϵ)

° {show for arbitrary x (generalization rule)}

• Show that |f(x) − f(x0)| < ϵ, when
- x ≥ 0, and
- |x − x0| < δ

° |f(x) − f(x0)|
= {assumption (1), f(x) and f(x0) defined, by as-

sumption x ≥ 0 and (2)}∣∣√x −√
x0

∣∣
= {extend with conjugate value for

√
x − √

x0, i.e.,
with

√
x +

√
x0 > 0}

|x − x0|√
x +

√
x0

≤ {make divisor smaller,
√

x ≥ 0}
|x − x0|√

x0

< {assumption |x − x0| < δ}
δ

√
x0

= {choose δ = ϵ · √x0 in (3)}
ϵ

. . . T

Discussion This example illustrates the way that assumptions are inherited by
subderivations. It also shows how to use basic inference rules for quantifiers.
We have to deal with three alternating quantifiers, so the argumentation looks
quite complex. However, the proof is actually not that complicated, we just need
to apply the obvious quantifier rules to handle the nested quantifiers. The main
calculation is carried out on the innermost level. The value of δ is determined
at the innermost level, and then substituted for the question mark in the outer
assumption. The value of δ is chosen such that the innermost derivation is correct
and that the condition δ > 0 is satisfied.

The structured derivation shown here combines Gentzen like deductions with
Dijkstra like calculations. The outermost and innermost derivations are in calcu-
lational style, while the intermediate derivations are in Gentzen style. The proof
has five levels of nesting: the outermost level states the problem, the following
three levels correspond to the three nested quantifiers, and the innermost level is
used to carry out the actual calculation.

23



2.9 Structured derivations in practice

We finally describe some of the experiences that we have from using structured
derivations in practice. Our work here can be divided into three main categories:
experience of using structured derivations in practice when solving mathematical
problems (mostly on high school level), experiences that we have gained from
teaching mathematics with this method in schools and universities, and experi-
ences that we have gained from building computer support for the method.

Pragmatics Structured derivations are intended to support a careful and system-
atic way of solving mathematical problems. We start by analysing the given task:
identify the problem to be solved, and identify and list the assumptions that we
are allowed to make. Auxiliary figures are drawn when needed, and are annotated
so that we can refer to them in assumptions and in derivation steps. We may also
recall central definitions, theorems and lemmas that we will use in the proof.

We continue by making observations that seem to be relevant to the problem
being solved. It does not matter if these observations are not used in the end,
superfluous observations do not make the proof erroneous, and they can be deleted
once we have solved the problem.

After laying the ground work, we start with the proof itself. The preferred
way is to use backward reasoning, i.e., we start from a logical formulation of the
problem and try to reduce it step by step to simpler problems, until the original
problem is solved. In a reduction proof, we use basic inference rules in a Gentzen-
like proof system. In a calculational proof, we reduce the original problem in a
sequence of calculation steps to a form that shows the solution explicitly.

We can try to first work out the overall proof structure, checking the details
later. But in many cases this may be too difficult, because the way we structure
the proof may crucially depend on some key results that we first need to check
out. In those cases, we can try to make the key results into observations, before
deciding on the overall proof strategy. Or, we just proceed step by step, checking
each step carefully.

We use subderivations to work out the details of some proof step and obser-
vations as a simple lemma mechanism. Results that are needed in two or more
places in the proof should be made into observations. Otherwise, we have to re-
peat the same argumentation in different subderivations. Results that are needed
only once should again be done as subderivations, in order not to clutter up the
overall proof structure (solving equations, calculating results, etc).

We emphasize the use of logical notation throughout. It makes the formulas
simpler to understand and reason about, and avoids logical errors. Derivations
steps should be motivated with explicit logical inference rules (or sequence of
rules), whenever possible.

Simpler mathematical problems can be solved directly in a single derivation.
More complex problems may require a sequence of derivations leading up to the
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required result. The last derivation in this sequence solves the original problem,
whereas the preceding derivations are lemmas. Using a sequence of derivations
provides a more general lemma mechanism than observations. Observations can-
not have their own assumptions, whereas each derivation in a sequence can come
with its own notation and assumptions.

Solving mathematical problems and programming Writing down a solution
to a mathematical problem as a structured derivation becomes much easier if we
use an editor that supports mathematical text and outlining. It is then easy to
change, add, and delete derivation steps, task descriptions, assumptions, or ob-
servations in the different parts of the proof. The analogue between constructing
a mathematical proof and constructing a computer program then also becomes
much stronger. Rather than considering the construction of a proof as a process
that proceeds linearly from start to end, we see a structured derivation as the end
product of the proof process. The proof process proceeds by successive iterations
of the structured derivation, which is repeatedly extended, modified and short-
ened, until it is deemed correct. We can work at different parts of the derivation in
arbitrary order, improving and changing these parts as well as the overall structure
of the derivation, until we are satisfied that the derivation as a whole is correct.

Empirical studies We have done quite a lot of experiments and empirical stud-
ies of structured derivations in high school mathematics. The method has been
extended and refined during the last eight years in a close feedback loop with
experiments where the method has been tested in practice.

We started experimenting with structured derivations by testing the method on
a large sample of standard exercises in high school mathematics. The examples
were all taken from the Finnish Matriculation Exam in Mathematics [3]. This
provides an unbiased collection of examples that all Finnish students are expected
to master after they finish high school. Since then, the method has been tried in a
number of smaller and larger empirical studies in Finnish high schools. The most
comprehensive study was carried out in 2001 - 2004 (and repeated in 2002 - 2005).
The whole mathematics curriculum in a Finnish high school (Kupittaan lukio,
Turku) was taught using structured derivations to one group (the test group), while
a control group was taught in the standard way. The results of this study were
very good, with the test group systematically outperforming the control group
in all mathematics courses, as well as in the final matriculation exam [17, 2].
The method has also been used in individual mathematics courses in high school,
where we have in particular measured students acceptance and attitudes toward
using structured derivations in practice. The results have also here been very
encouraging [18, 15].

The Finnish National Board of Education has a program for continuous ed-
ucation of mathematics teachers. Structured derivations are now being actively
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taught in this program, as a new way of teaching mathematics, and is gaining
support among mathematics teachers at the secondary education level.

Tool support The syntax and layout of structured derivations is defined pre-
cisely, and can be easily parsed by a computer. The precise syntax and semantics
of structured derivations makes it easy to provide computer support for struc-
tured derivations. This includes specialized editors for writing, editing and read-
ing structured derivations, as well as support for using this approach in web-based
teaching. We can also use computers to check the correctness of derivations, with
the help of mechanized theorem provers. Automatic or semi-automatic check-
ing of student assignments would be a great help to all mathematics teachers, as
well as a providing strong support for training and self-studies. Our present work
has focused on building enhancements to Lyx that supports structured derivations.
Lyx is an open source wysiwyg Latex editor, that directly displays a good approx-
imation of the final mathematical text as we write it. The editor is quite stable,
and has a large developer and user base .

3 Combining different proof styles
Structured derivations are an extension of calculational proofs in Dijkstra’s style,
so obviously proofs of this kind can be expressed as structured derivations. We
show here that two other central proof styles, Hilbert-style proofs and Gentzen-
style proofs, also can be expressed in a straightforward way as structured deriva-
tions.

3.1 Hilbert-style proofs
A Hilbert-style proof is constructed by writing down a sequence of propositions,
where each proposition is either an axiom, an assumption, or can be inferred by an
inference rule from previous propositions in the sequence. A Hilbert-style proof
system for predicate calculus usually has only two inference rules, modus ponens
and generalization, together with a small collection of axioms.

Assume that we want to prove that proposition follows from proposition1,
. . . ,propositionm. A typical Hilbert-style proof of this looks as follows:

1. proposition1 (assumption)
...
m. propositionm (assumption)
m + 1. propositionm+1 (inference rule1, from . . . )
...
m + k − 1. propositionm+k−1 (inference rulek−1, from . . . )
m + k. proposition (inference rulek, from . . . )
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The justification “(inference rulek−i, from . . . )” stands for either an axiom or the
application of an inference rule to some preceding propositions.

Hilbert-style proofs as structured derivations We use observations to model
Hilbert-style axiomatic proofs as structured derivations. The proof above, written
as a structured derivation, looks as follows:

• proposition

(1) proposition1

...

(m) propositionm

[m + 1] {inference rule1, from. . .}

propositionm+1

...

[m + k − 1] {inference rulek−1, from. . .}

propositionm+k−1

° {inference rulek, from. . .}

¤
Note that the task is the last proposition proved in the Hilbert-style proof. The
proof itself is here very short, all the work is done by the observations, and there
are no calculations in the proof.

A Hilbert-style proof in its purely axiomatic form is seldom used outside the
domain of mathematical logic. However, most proofs that are written follow in
practice this proof style, in that the proof is seen as a sequence of propositions
that are established one by one, where each proposition may depend on the as-
sumptions and on the propositions proved before. This is sometimes known as
forward chaining derivations: we start from the assumptions and derive more and
more consequences, until we finally establish the result that we are looking for.
Structured derivations provide a formalization of this general proofs style.

3.2 Gentzen-style proofs
We now show that also Gentzen-style proofs can be expressed as structured deriva-
tions. Let us start by defining somewhat more carefully what we mean by a
Gentzen-style proof.
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A sequent is a logical statement of the form A ⊢ con . Here A = ass1, . . . , assm

(the antecendent) is a list of propositions, m ≥ 0, and con (the consequent) is also
a proposition. Intuitively, A ⊢ con says that con can be proved from the assump-
tions A. If the logic is sound, then this means that con holds whenever all the
assumptions in the list A are true. 2

An inference rule R is of the form

A1 ⊢ con1, . . . , An ⊢ conn

A ⊢ con

where n ≥ 0. The sequents above the horizontal line are referred to as the hy-
pothesis and the sequent below the horizontal line is referred to as the conclusion.
Intuitively, a rule of this form says that if we know that all the hypothesis are true,
then we also know that the conclusion is true. An inference rule with n = 0 (no
hypothesis) is an axiom.

A (Gentzen-like) derivation has the following general structure.

der =
der1, . . . , dern

A ⊢ con
{R}

where n ≥ 0.
We say that der is a derivation (proof) of the sequent A ⊢ con, if

1. deri is a derivation of some sequent Ai ⊢ coni, for i = 1, . . . , n,

2. we have an inference rule R such that

A1 ⊢ con1, . . . , An ⊢ conn

A ⊢ con

is an instance of the rule that we get by substituting permitted values for the
meta variables in the rule R, and

3. there are only finitely many sequents in the derivation der.

The last clause says that each branch in the derivation tree must eventually end in
an axiom, i.e., an application of an inference rule that does not have any hypothe-
sis.

2The original formulation by Gentzen assumes that a sequent is of the form A ⊢ C, where
A is as here. but C = con1, . . . , conk. Intuitively, this says that one of the conclusions coni

is true whenever all the assumptions ass1, . . . , assm are true. Our formulation is due to Gor-
don and Melham [9]. We can obviously express the original formulation in our notation, as
ass1, . . . , assm ⊢ con1 ∨ . . . ,∨conk.
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Gentzen-style proofs as structured derivations Let

der =
der1, . . . , dern

ass1, . . . , assm ⊢ con
{R}

be a Gentzen-style proof. Then this proof can be written equivalently as the fol-
lowing structured derivation:

• con

- ass1

...

- assm

°0 {R}

der1

...

dern

¤
The horizontal line in Gentzen-style derivations is here indicated by the symbol
“°0” and by indenting the hypothesis one step to the right. The Gentzen-style
derivation grows upwards, while the equivalent structured derivation grows side-
ways, nesting suderivations inside subderivations. This is a much more convenient
way of presenting a proof on paper or on the computer screen, as has been noticed
many times before.

Note that the translation to structured derivations uses the non-inheriting proof
symbol “°0”, because the assumptions can change at each level in a Gentzen-style
derivation. Note also that the symbol “⊢” in a sequent calculus derivation is im-
plicit in the structured derivation: the task (preceded by a bullet) is the consequent
while the assumptions are the antecendent.

3.3 Combining different proof styles in a single derivation
The fact that calculational proofs, Hilbert-style proofs and Gentzen-style proofs
all can be expressed as structured derivations is useful, but the real power of the
notation comes from the fact that these proof styles can be combined freely in a
single structured derivations. This means that we can use different proof styles in
different parts of the derivation, choosing the proof style that best fits the problem
at hand.

Consider the most general form of a structured derivation:
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derivation ::=

• task

- assumption1

...

- assumptionm

+ justification1

observation1

...

+ justificationn

observationn

°∗ justification

term0

rel1 justification1

term1

...

termk−1

relk justificationk

termk

¤

justification ::=

{motivation}

derivation1

...

derivationl

Here we assume that m ≥ 0, n ≥ 0, k ≥ 0 and l ≥ 0. If m = 0, then there are
no assumptions in the derivation, if n = 0, then there are no observations, k = 0
indicates (by convention) that there is no calculation part, and if l = 0, there are
no subderivations. The symbol °∗ stands for either ° or °0.

The different proof styles are all special cases of the general structured deriva-
tions style. A pure Hilbert-style proof has no calculation part and no subderiva-
tions. A pure Gentzen-style proof has no calculation part and no observation part,
and uses only °0 for subderivations. A pure calculational proof has no observa-
tions and no subderivations.

A combination of Hilbert-style and calculational style has both observations
and calculations but no subderivations. A combination of Hilbert-style and Gentzen-
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style proofs has both observations and subderivations with °0, but no calculations.
A combination of calculational style and Gentzen-style had calculations and sub-
derivations with °0, but no observations. Finally, allowing calculations, observa-
tions and subderivations with ° and °0 gives us the general structured derivations
style, combining all proof styles in a single style.

The general style for structured derivation permit any combination of the three
proof styles on any level of the proof. The examples given earlier illustrate the
power of this combination of different proof styles in a single derivation. Exam-
ples 3 - 8 all use nested derivations, which is a Gentzen-style proof step. Examples
3, 4 and 5 show how to combine calculational style derivations with Gentzen-style
nesting. Example 6 shows how to combine a Hilbert-style main derivation with a
calculational proofs of observations and the main result. Example 7 combines a
main derivation in Gentzen-style with calculational style proofs in the subderiva-
tions. Example 8 combines calculational style proofs at the outermost and inner-
most level, with Gentzen-style proof steps in the intermediate levels.

4 Syntax of structured derivations

We have previously described the syntax of structured derivations in an intuitive
way, and illustrated its use in practice. However, we also need to give a formal
syntactic definition of structured derivations, to fix the notation and to allow com-
puter based syntax checking.

Structured derivations are not primarily intended to be read by computers but
by humans. This puts a somewhat different set of constraints on the language de-
sign. The basic syntax of the language should be very simple and intuitive, so that
users can remember it easily. It is also important that the syntax does not become
too verbose, and that shortcuts are allowed whenever possible. Structured deriva-
tions are also often written by hand, another reason for not being too verbose.

For the same reason, we need clear and unambiguous rules for how to lay out
a structured derivation. A computer parsing a programming language like Java
does not really need to know how the program has been laid out in the text file,
because the programming language syntax contains enough extra information to
determined the structure. The price to pay for this is extra verbosity in the syntax
(begin ... end, if ... then ... else ... end, etc). For structured derivations, this is a
price that is too heavy. In stead, we have opted for describing the basic structure
using indentation, in the same way as in some programming languages (Python,
Occam, etc). There are some well-known problems associated with using inden-
tation as a structuring element in computer programs, like confusion about the
indentation level over page brakes. On the other hand, this kind of problems are
easily solved by using an outlining editor. In addition to indentation, we iden-
tify the different parts of a structured derivation using special notation in the first
column ( “•, -, +,°,¤”, together with assumption and observation identifiers and
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relation symbols).
Another design decision is that we do not want to fix the syntax of the basic

constituents of a structured derivation (tasks, assumptions, observations, moti-
vations, terms, and relations). The user should be allowed to use any specific
notation that he or she is used to, and which he or she deems most suitable for the
problem at hand. This does not mean that it would not make sense to fix a more
specific notation for these basic constituents, but rather that should be a separated
decision (we discuss this issue in more detail below). This design decision means
that almost any text string can occur as a basic constituents. We then need to
clearly delineate where a basic constituent starts and where it ends. Our solution
is to have each constituent (except a relation) occupy the rest of the line (and pos-
sibly more successive lines), on a line of its own, from the first tab-character on
the line to the last return-character.

We will below describe the syntax of structured derivations in three parts.
The first part describes the general structure of structured derivations (the abstract
derivation structure). The second part describes the concrete layout of a structured
derivation. The third part lists the basic constituents of the syntax, which have to
be defined in some way before we can actually parse a derivation. This gives the
parameters of the language definition. Defining these basic constituents in differ-
ent ways gives rise to different dialects of structured derivations. The parameter
defintions has to satisfy some additional constraints, so that the first and second
part definitions are not compromised.

4.1 Structure

The abstract syntax of structured derivations determines the overall structure and
information content of a derivation. The derivation starts with the task to be solved
(theorem to be proved, quantity to be computed, construction to be found). We
then list the assumptions that may be used in the derivation. After the assumptions
comes the observations that we can infer from the assumptions. Each observation
must be justified by reference to assumptions or to previous observations.

Then comes the solution/proof of the task/conjecture itself. The proof may
be either a justification alone, a calculation alone, or a justification followed by
a calculation. The justification alone gives us a Gentzen-like proof of the task.
A calculation alone gives us a Dijkstra-like proof of the task. The calculation is
given in the Dijkstra style, with terms on their own lines, and a relation between
the terms together with a justification on a line of its own. The proof contains
both a justification and a calculation in cases where we need to explain why the
calculation solves the problem, or when there are side conditions to the relations
used in the calculations that need to be verified.

The following is the syntax definition of structured derivations:
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derivation ::= derivationId task

(assumptionId assumption)∗

(observationId justification observation)∗

startproof proof [endproof ]

derivation ::= derivationId calculation [endproof ]

proof ::= justification | calculation | justification calculation

calculation ::= term (relation justification term)+

justification ::= motivation [startsub derivation+ endsub]

The syntax is here defined in terms of five nonterminals. The syntax definition
uses standard conventions, like a star superscript to indicate zero or more repeti-
tions, a plus superscript to indicate one or more repetitions, and square brackets
to indicate optional parts.

4.2 Layout

The next part of the syntax definition describes how to lay out a structured deriva-
tion in two dimensions, with explicit markers to indicate the different sections of
the proof. The proof style is essentially a simple two-column format with indenta-
tion to show subderivations. The first column is for markers that indicate the kind
of information coming next: a bullet “•” to indicate the task (as well as the start
of a new derivation), a minus sign (a dash) to indicate that the following text is
an assumption, a plus sign to indicate the start of an observation, a proof symbol
(“°” or “°0”) to indicate where we start the proof of the task, and an end of proof
symbol “¤” to indicate that the proof is complete.

A subderivation is indicated by indenting the whole derivation one step to the
right. This makes it easy to see where the subderivation starts and ends. Further
indentation is used for nested subderivations. A list of subderivations is followed
by an ellipsis “. . .” in the first column when the outer derivation continues. This is
visible even when the nested derivation is hidden, so we know that there is a hid-
den derivation. The motivation of a justification is written inside curly brackets,
“{ ... motivation ... }”.

The tabbing distance is usually chosen to be the same as the indentation-
dedentation distance, but these need not be the same. In some cases, it might
be pedagogically motivated to explain the difference between the two column for-
mat and the indentation of subderivations by choosing the indentation to be larger
that the tabbing distance.

The layout is defined by the following addition to the syntax above:
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derivationId ::= ” • ” | label ” : ”

assumptionId ::= ” − ” | ”(” label ”)”

observationId ::= ” + ” | ”[” label ”]”

task ::= tab tasktText ret
assumption ::= tab assumptionText ret
observation ::= tab observationText ret

term ::= tab termtText ret
relation ::= relationText

motivation ::= tab ”{” motivationtText ”}” ret
startproof ::= ” ° ” | ” °0 ”

endproof ::= ”¤” ret
startsub ::= indent
endsub ::= dedent ” . . . ”

The terminal symbols are here either character sequences (like ”•",”-”, ... ) or
special characters, like tab (tabulator), ret (return), indent (indent the line one
step to the right) or dedent (indent the line one step to the left).

4.3 Parameters

The syntax leaves the exact syntax of the basic constituents as parameters. The
parameters are the following:

label ::= . . . notation for labels . . .

taskText ::= . . . notation for tasks . . .

assumptionText ::= . . . notation for assumptions . . .

observationText ::= . . . notation for observations . . .

termText ::= . . . notation for terms . . .

relationText ::= . . . notation for relations . . .

motivationText ::= . . . notation for motivations . . .

The syntax of these constructs has to be defined in such a way that it does not
affect the syntax of the previous two parts. None of these constructs may contain
a tab or return character, or an indent or dedent indication. A label may also not
contain brackets (round, square or curly), nor start with a bullet, dash, plus, proof
symbol or square.
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4.4 Dialects

We get different dialects of structured derivations by instantiating the parameters
in different ways. We will consider here four important dialects.

Informal use of structured derivations We often use structured derivations
informally, using whatever ad hoc notation feels most suitable for the problem
at hand. In this case, we allow any text string for describing the task, the as-
sumptions, the observations, the terms and the motivations. Labels are used in a
traditional way, and are usually Arabic or roman numerals, or alphabetic charac-
ters. This style is very loose, it does not even require any systematic use of logical
notation in the derivations, and the motivations can be very informal and intuitive.

Structured derivations with logic The prefered way of using structured deriva-
tions is to insist that we use a systematic logical notation in tasks, assumptions,
observations and terms, and that we motivate our derivation steps with logical in-
ference rules or with explicit results from the underlying domain of discourse. We
can characterize this as structured derivations with logic.

Structured derivations with logic fixes some specific logical framework as the
basis for the argumentation. We prefer to use higher order logic, but one can
also choose set theory or first order predicate calculus, or some more restricted
framework like equational logic. In each case, we can be more precise about the
basic constructs

label ::= . . . notation for labels . . .

taskText ::= imperative proposition

assumptionText ::= proposition correction

observationText ::= proposition

termText ::= expression

relationText ::= relationSymbol

motivationText ::= . . . notation for motivations . . .

imperative ::= ... expression for what needs to be done ...
correction ::= (”##” proposition)∗

The syntax of propositions, expressions and relation symbols is determined by
the specific logical framework that we use, and by the specific logical theory that
we are working in. For ease of writing proofs and derivations, it is often useful
to allow informal natural language expressions in propositions, expressions and
relation symbols, in order to make the proof more readable. We still retain the
possibility to use specific logical inference rules to justify the steps in the proof.
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We have added here a little bit of information to make the derivations more
readable: an imperative that explicitly states what needs to be done, and a correc-
tion facility that can be used to indicate the order in which the derivation is to be
read. Neither of these two features is really needed for the logical correctness of
the derivation, and can be ignored when checking the correctness of a derivation.

Axiomatic proofs The use of a fixed logical framework for structured deriva-
tions is not the same as a fully axiomatic proof. A fully axiomatic proof is in most
cases much too detailed and cumbersome to write down. However, it is important
that one is aware of what is the minimum information that needs to be given in a
fully axiomatic proof. We can get a fully axiomatic proof by fixing the undefined
basic constructs in the previous syntax, as follows:

label ::= number

motivationText ::= ruleName [rule] assignment validity

imperative ::= ””

Here we fix the labels to be (distinct) numbers. The motivation starts by a rule
name (like “Modus ponens”, “Excluded middle”, “Distributivity of multiplication
over addition”, etc.). The rule itself may be optionally given in the motivation.
If the rule is given in terms of meta variables, then the assignment part describes
how these meta variables are instantiated in this application of the rule. Finally,
the validity part states that the side condition for the rule is satisfied. The side
condition is a constraint on the meta variables that must be satisfied before the
rule can be applied in the proof. Violating the side condition may lead to unsound
proofs. There is no imperative expression in the task.

Structured derivations for proof checkers Structured derivations can be seen
as a front end for both mechanized proof checkers like HOL, PVS, Isabelle, etc
and for fully automatic proof checkers like ... . In that case, we choose the syntax
for structured derivations with logic, and chose the logical framework to be the
one used in the proof checker. This means giving precise syntactic definitions for
proposition, expression and relationSymbol. The motivations would in this case
be strategies that the proof checker is asked to follow:

motivationText ::= strategy

Using structured derivations with mechanized proof checkers gives a slightly
different working method than the usual way of doing mathematical proofs by
hand. In most cases, a step would be carried out interactively with the computer.
Starting from some given expression, the user would indicate the strategy to be
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tried out as the motivation for the next step. The computer would then generate the
result of this step, as well as the possible subderivations that need to be carried out.
The user would try to come up with a proof in this way, backtracking whenever
necessary, until the final proof has been constructed.

Alternatively, we can have a structured derivation written in this form, and
we can use a mechanized proof checker to verify that each step in the derivation
is correct. This can be very useful in an educational context, e.g. for automatic
checking of student assignments and exams.

5 Semantics of structured derivations
We have in section 2 shown that structured derivations can be used to express
proofs in three main proof styles: calculational proofs, Hilbert-style proofs and
Gentzen-style proofs. We now show that each structured derivation can be re-
duced to an equivalent Gentzen like proof. In other words, structured derivations
and Gentzen-like proofs are equivalent in proof power. We can see structured
derivations as a more user friendly notation for Gentzen-like proofs. The reduc-
tion of a structured derivation proof to a Gentzen- style proof provides the seman-
tic definition of structured derivations.

5.1 Structured derivations notation for sequent calculus deriva-
tions

Let us start by introducing a very a simple subset of structured derivations, where
we only allow the non-inheriting proof symbol °0 and do not have any obser-
vations or calculations. The syntax of such a basic structured derivation is as
follows:

• con

- ass1

...

- assm

°0 {R}

der1

...

dern

¤
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A structured derivation of this form is just an alternative notation for a sequent
calculus derivation, as explained earlier. Let us make this more precise. For
each basic structured derivation der, we define the corresponding sequent cal-
culus derivation derα, as follows:

derα =
derα

1 , . . . , derα
n

ass1, . . . , assm ⊢ con
{R}

In other words, ass1, . . . , assm ⊢ con can be concluded from the derivations
derα

1 , . . . , derα
n , using the proof rule R. Notice that the transformation is applied

recursively to the subderivations. This transformation gives us a standard sequent
calculus derivation for each structured derivation in the simple format. Vice verse,
any sequent calculus derivation can be written as a basic structured derivation
using this format, as we explained earlier.

5.2 Inheriting assumptions

We now look at the different new features introduced in structured derivations (as
compared to standard Gentzen-style derivations), and explain them one by one,
by showing what they correspond to in a Gentzen-style derivation. We start by
showing how assumptions are inherited in structured derivations.

A structured derivation uses the inheriting proof symbol ° in addition to the
standard proof symbol °0. In practice, the inheriting proof symbol is used almost
exclusively in structured derivations. We define the use of the inheriting proof
symbol by showing how a derivation using this symbol can be translated into an
equivalent derivation that only uses the symbol °0.

Let us first introduce a notation for propagating assumptions in derivations.
Assume that we have a derivation

der =
der1, . . . , dern

A ⊢ con
{R}

Let B = ass1, . . . , assm be a list of assumptions. Then we denote by [B]der the
derivation that we get from der by adding B as assumptions in the conclusion,
i.e.,

[B]der =
der1, . . . , dern

B, A ⊢ con
{R}

Assume that we have an extension of basic structured derivations, where we
allow both the inheriting proof symbol ° and the standard proof symbol °0. Con-
sider now the transformation that removes the inheriting proof symbol, described
below. On the left, we have a derivation der that uses the proof symbol °, on the
right we have the corresponding derivation derβ using only the proof symbol °0.
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• con

- ass1

...

- assm

° {R}

der1

...

dern

¤

−→ • con

- ass1

...

- assm

°0 {R}

([ass1, . . . , assm]der1)
β

...

([ass1, . . . , assm]dern)β

¤
The transformation thus replaces the inheriting proof symbol with the standard
proof symbol. At the same time, it adds the assumptions of the conclusion to all
hypothesis, before (recursively) removing the inheriting proof symbol also from
these hypothesis.

We also need to define what it means to remove the inheriting proof symbol
from a derivation that has the standard proof symbol in the conclusion. This is
necessary, because the inheriting proof symbol may still be used in some sub-
derivations. On the left, we have a structured derivation with a standard proof
symbol, on the right we have the corresponding derivation where all inheriting
proof symbols have been removed.

• con

- ass1

...

- assm

°0 {R}

der1

...

dern

¤

−→ • con

- ass1

...

- assm

°0 {R}

derβ
1

...

derβ
n

¤
In this case, the assumptions are not pushed into the subderivations. However, the
subderivations are transformer as before, so nested inheriting proof symbols will
be treated in the right way.
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The following example shows how the transformation works:

• pp

- aa

° {motpp}

• qq

- bb

° {motqq}

• rr

- cc

° {motrr}

• ss

- dd

°0 {motss}

• tt

- ee

° {mottt}

¤

becomes • pp

- aa

°0 {motpp}

• qq

- aa, bb

°0 {motqq}

• rr

- aa, bb, cc

° {motrr}

• ss

- aa, dd

°0 {motss}

• tt

- ee

° {mottt}

¤

5.3 Observations

We next define derivations with observations, by showing how to transform a
structured derivation that contains observations (but no calculations) to one that
does not contain observations (nor calculations). On the left hand side, we have
a derivation der with observations, on the right we have an equivalent derivation
derγ without observations.
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• con

- ass1

...

- assm

+ {R1}

der1,1

...

der1,n1

. . . obs1

...

+ {Rk}

derk,1

...

derk,nk

. . . obsk

° {R}

der1

...

dern

¤

• con

- ass1

...

- assm

° {lemma rule}

• obs1

° {R1}
derγ

1,1

...

derγ
1,n1

...

• obsk

- obs1

...

- obsk−1

° {Rk}
derγ

k,1

...

derγ
k,nk

...

• con

- obs1

...

- obsk

° {R}

derγ
1

...
derγ

n

¤
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The lemma rule used to justify the transformation is as follows:

A ⊢ obs, A, obs ⊢ con

A ⊢ con
{lemma}

The lemma rule thus says that we can prove that A ⊢ con is true, by first proving
that a lemma obs follows from A, and then proving that the required conclusion
con follows from assumptions A together with the lemma obs. This is the basic
inference rule that justifies using lemmas in proofs.

The general form for the lemma rule is as follows:

A ⊢ o1, A, o1 ⊢ o2, . . . , A, o1, o2, . . . , ok−1 ⊢ ok, A, o1, o2, . . . , ok ⊢ con

A ⊢ con
{lemma}

In other words, if we can prove each proposition oi from the assumptions A and
the preceding propositions o1, . . . , oi−1, for i = 1, . . . , k, and we can prove con
from the assumptions A and the propositions o1, . . . , ok, then A ⊢ con holds.

The derivation that we get after the transformation combines the lemma rule
with the specific rules for proving the conclusion and the observations. The trans-
formed derivation corresponds to the following proof in standard notation:

der11, . . .

A ⊢ o1

{R1}, . . . ,
derk1, . . .

A, o1, . . . , ok−1 ⊢ ok,
{Rk}

der1, . . .

A, o1, . . . , ok ⊢ con
{R}

A ⊢ con
{lemma}

5.4 Calculations

Let us finally define the meaning of calculations, by showing how to transform any
structured derivation der with a calculation to an equivalent structured derivation
derδthat does not contain a calculation. We show der on the left and derδ on the
right:
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• con

- assumptions

+ observations

°x {R}

der1

...

dern

. . . term0

rel1 {R1}

der1,1

...

der1,n1

. . . term1

...

termk−1

relk {Rk}

derk,1

...

derk,nk

. . . termk

¤

• con

- assumptions

+ observations

°x {lemma′}

• con

- term0 rel1 term1

...

- termk−1 relk termk

° {R}

derδ
1

...
derδ

n

• term0 rel1 term1

° {R1}

derδ
1,1

...
derδ

1,n1

...

• termk−1 relk termk

° {Rk}

derδ
k,1

...
derδ

k,nk

¤

In other words, each relational term in the calculation is proved in a separate
subderivation.

Discussion We can justify this transformation with the following variant of the
lemma rule:

A ⊢ b1, . . . , A ⊢ bn, A, b1, . . . , bn ⊢ con

A ⊢ con
{lemma′}
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The difference here, as compared to the previous lemma rule, is that the proofs of
the lemmas b1, . . . , bn are independent of each other. This rule is easily proved
with the lemma rule, by using the rule

A ⊢ con

A, B ⊢ con

This says that we can always add additional assumptions to a sequent without
loosing correctness.

The transformed derivation, written in standard form, is as follows:

der11, . . .

A,O ⊢ t0 r1 t1
{R1}, . . . ,

derk1, . . .

A,O ⊢ tk−1 rk tk
{Rk},

der1, . . . , dern

A,O, t0 r1 t1, . . . ⊢ con
{R}

A,O ⊢ con
{lemma′}

5.5 Semantics of structured derivations
Consider now an arbitrary structured derivation der. The meaning of this deriva-
tion is defined as the equivalent sequent calculus derivation that we get by first
removing all calculations in the derivation, then removing all observations, then
removing all inheriting proof symbols, and finally writing the derivation in the
standard sequent calculus notation. In other words, the meaning der of the struc-
tured derivation der is

der = (((derδ)γ)β)α

The fact that we define the meaning of a structured derivation by a reduction
to a standard Gentzen-style proof means that structured derivations can be seen as
an alternative way to express Gentzen-style derivations. This means, in particular,
that we can freely use all the standard inference rules available in Gentzen-style
systems.

6 Conclusions
We have above described SDS2, an extensions to the original structured deriva-
tion style SDS1 which allows us to unify the three main proof styles in use today:
Gentzen-style backward chaining proofs, Hilbert-style forward chaining proofs
and Dijkstra-style calculational proofs. These three proof styles can be freely
mixed in a single structured derivation, so that one can in each part of the deriva-
tion choose the style that is most suitable for the problem at hand. The main aim
of structured derivations is to provide a human readable and well-structured de-
scription of a mathematical argument, and a style that can be used on any kind of
mathematical domain.

Our primary goal is to try to improve teaching mathematics at secondary and
tertiary education level, by providing the student with a standard format for writ-
ing down the solution to a mathematical problem. Structured derivations require
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that each step in the argumentation is explicitly justified by some accepted mathe-
matical facts or rules of inference. This makes it easier for students to understand
the derivation, both when the teacher presents it at the white board and when he or
she is reading the derivation later, when solving assignments or preparing for an
exam. It also makes it easier for the teacher to understand the students solutions
and to correct errors in them, and to see what the student has has and has not un-
derstood. The structured derivations style has performed well in empirical tests in
Finland, and students at high school and university level have learned to use the
style without much problems.

The exact syntax of structured derivations makes it rather easy to check the
syntax of a derivation, and to build editors for structured derivations that un-
derstand and support the syntax. Building extensive tool support for structured
derivations is one of our main research topics for the moment. This could ulti-
mately pave the way for a more wide spread adaption of computers in mathemat-
ics education, both using computers to write mathematical text, communicating
mathematical texts between teacher and students over the net, and as a tool for au-
tomatically analysing and checking student solutions to mathematical exercises.
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