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Proofs in high school math today

• Proofs are of central importance for understanding mathematics

• But writing proofs is seen as difficult in (Finnish) high school math today, and is usually
avoided

• Students are not taught how to write proofs. The few proofs that are given are intuitive
and informal, and varying in style and rigour.

– The best students will still pick out the basic idea of doing mathematics: to derive a
result by a sequence of well-justified steps.

– The rest will see mathematics as just a collection of templates to memorize, solving
problems with these without any deeper understanding.

• We need to change this situation: teach how to build proofs in practice, how to use logic
in proofs, how to organizing proofs and how to check that the proofs are correct
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Calculational proof style

• Calculational proofs is a way of presenting mathematical derivations and proofs devel-
oped by Edsger Dijkstra, Wim Feijen, Nettie van Gasteren and others in the 1980s.

• A calculational proof is essentially a chain of relational statements

t1 ∼ t2 ∼ t3 ∼ . . .∼ tn−1 ∼ tn

but written in a special way:

• t1

∼ {motivation for why t1 ∼ t2 holds}

t2

∼ {motivation for why t2 ∼ t3 holds}

...

∼ {motivation for why tn−1 ∼ tn holds}

tn

Calculational proofs emphasize

• justification of each proof step,

• use of logical notation, and

• use of logical inference rules
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Structured derivations

• Structured derivations is a further development of the calculational style, by me and
Joakim von Wright in the middle of the 90s. Originally presented in book

– Back & von Wright: Refinement Calculus: A Systematic Introduction, Springer Ver-
lag1998

• Extends calculational proofs with a number of new features, in particular

– sub derivations,

– inherited assumptions, and

– observations

• A different mathematical basis: Gentzen like proof systems rather than equational logic

– A structured derivation is equivalent to a Gentzen like proof in higher order logic.

– But much more user friendly
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Structured derivations provide a unified proof format

• Unifies the three main proof formats used today:

– Forward proofs (Hilbert-style, classic Euclidean proofs)

– Backward proofs (Gentzen-style, natural deduction), and

– Derivations (Dijkstra-style proofs, algebraic manipulations, calculations)

• Can express any proof in one of these formats as a structured derivation

• Can mix these different proof formats within a single structured derivation

– each sub problem can be handled with the format that is most appropriate for this
task

– can combine forward reasoning, backward reasoning and calculations within a single
proof format
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The importance of explicit justifications

Example 21. Compute the tangent of
17π

3
.

Teachers solution:

tan
17π

3
= tan

(
6 ·2π+5π

3

)
= tan

(
2 ·2π+

5π

3

)
= tan

5π

3
= tan

(
2π− π

3

)
=− tan

π

3
=−
√

3

�



�
	Teacher explains each step verbally.
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Student looking at example at home

Example 21. Compute the tangent of
17π

3
.

Teachers solution:

tan
17π

3
= tan

(
6 ·2π+5π

3

)
= tan

(
2 ·2π+

5π

3

)
= tan

5π

3
= tan

(
2π− π

3

)
=− tan

π

3
=−
√

3

'

&

$

%

The verbal explanations are lost

• student could not follow the explanation,

• was thinking about something else,

• was not even attending the class, etc
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Student looking at example at home

Example 1. Compute the tangent of
17π

3
.

Teachers solution:

tan
17π

3
= tan

(
6 ·2π+5π

3

)
= tan

(
2 ·2π+

5π

3

)
= tan

5π

3
= tan

(
2π− π

3

)
=− tan

π

3
=−
√

3

'

&

$

%

Students has to decipher this derivation:

• find out motivation for each step

• error prone process, guesswork, trial and
error

• wrong guesses can lead to serious prob-
lems of understanding
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Information loss

text 

+ 

verbal 

explanation

text only text only

text

+

guessing, 

searching

classroom home
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Example solution expressed as a structured derivation

• tan 17π

3
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Example solution expressed as a structured derivation

• tan 17π

3

= {factor out 2π in numerator}

tan
(

6 ·2π+5π

3

)
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Example solution expressed as a structured derivation

• tan 17π

3

= {factor out 2π}

tan
(

6 ·2π+5π

3

)
= {write angle in the form n ·2π+α}

tan
(

2 ·2π+
5π

3

)
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Example solution expressed as a structured derivation

• tan 17π

3

= {factor out 2π}

tan
(

6 ·2π+5π

3

)
= {write angle in the form n ·2π+α}

tan
(

2 ·2π+
5π

3

)
= {we can ignore full circles 2 ·2π}

tan
5π

3
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Example solution expressed as a structured derivation

• tan 17π

3

= {factor out 2π}

tan
(

6 ·2π+5π

3

)
= {write angle in the form n ·2π+α}

tan
(

2 ·2π+
5π

3

)
= {we can ignore full circles 2 ·2π}

tan
5π

3

= {the angle is in the 4th quadrant, so we can write it in the form 2π−α0}

tan
(

2π− π

3

)



14

tan
(

2π− π

3

)
= {tangent is negative i 4th quadrant and π

3 is basic angle}

− tan
π

3
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tan
(

2π− π

3

)
= {tangent is negative i 4th quadrant and π

3 is basic angle}

− tan
π

3

= {tangent of 30 - 60 - 90 triangle}

−
√

3
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tan
(

2π− π

3

)
= {tangent is negative i 4th quadrant and π

3 is basic angle}

− tan
π

3

= {tangent of 30 - 60 - 90 triangle}

−
√

3

�



17

No information loss

explaining 

derivation

text

+

motivations

text 

+

motivations

understanding

derivation

classroom home
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Advantages of this proof format

• Ample space for both terms and for justifications for each step

• Forces the teacher to write the justifications out explicitly, not just stating them verbally

• Forces the student to write out his justifications for each step

• Helps the student to understand the idea of a proof (each step must be justified)

• Student can check his own derivation and find errors in it

• Teacher can identify what the student has not understood

• Easier for teacher to check correctness of students solutions
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Structured derivations in teaching

• Structured derivations were originally developed for research purposes (explaining rather
complex proofs in programming logic) in 1995 - 2000 (Back and von Wright)

• Turned out to be very useful in teaching mathematics at different educational levels.

• We have been carrying out teaching experiments since 2000 (Back, von Wright, Salakoski,
Peltomäki, Mannila, Sibelius, Sallasmaa, Wallin ...):

– Most teaching experiments carried out in high school math (age group 16 - 18)

– Experiments on teaching at university freshman level (CS students, age group 18 -)

– Some experiments on teaching in polytechnic (CS students, age group 19 -)

– Now starting experiment with teaching structured derivations in junior high (age
group 14 - 15)

• Method has been continuously modified and adapted to requirements imposed be teaching
in practice
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Structured derivations in a nutshell

• Fixed format for structuring proofs and derivations (a proof language)

– teaches the idea of a proof, provides a standard template for how to write down
mathematical proofs and derivations in a user friendly way

• Format for reasoning about the underlying domain is not fixed

– can be used for any kind of mathematical reasoning, because the underlying theory
does not have to be formalized

• Use of logical notation and inference rules in proofs

– promotes the use of explicit logical notation and logical argumentation in proofs

• Easy to build computer support for the method

– can build editors that support writing structured derivations, with syntax checking,
checking correctness of derivations automatically, integration with teaching environ-
ments, etc.
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Structured derivations syntax

derivation::=

• task
- assumption

...
+ justification

observation
...


 justification

term
rel justification

term
...

�

justification::=

{motivation}

derivation
derivation
...
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Logic in high school mathematics

A mathematical proof is a logical argumentation, but logical notation is not used much in high
schools, and logical inference rules are seldom given explicitly

When logic is given as a course, it is taught as a separate (mathematical) topic, not as a tool for
solving mathematical problems.

What we need is

logical mathematics rather than mathematical logic

Logic is abundant in high school math, but not usually recognized

Example 2: Solve the equation
(x−1)(x2 +1) = 0
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Example 2

• (x−1)(x2 +1) = 0
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Example 2

• (x−1)(x2 +1) = 0

≡ {zero product rule: ab = 0 ≡ a = 0∨b = 0}

x−1 = 0∨ x2 +1 = 0



25

Example 2

• (x−1)(x2 +1) = 0

≡ {zero product rule: ab = 0 ≡ a = 0∨b = 0}

x−1 = 0∨ x2 +1 = 0

≡ {add 1 to both sides in left disjunct}

x = 1∨ x2 +1 = 0
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Example 2

• (x−1)(x2 +1) = 0

≡ {zero product rule: ab = 0 ≡ a = 0∨b = 0}

x−1 = 0∨ x2 +1 = 0

≡ {add 1 to both sides in left disjunct}

x = 1∨ x2 +1 = 0

≡ {add −1 to both sides in right disjunct}

x = 1∨ x2 =−1
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Example 2

• (x−1)(x2 +1) = 0

≡ {zero product rule: ab = 0 ≡ a = 0∨b = 0}

x−1 = 0∨ x2 +1 = 0

≡ {add 1 to both sides in left disjunct}

x = 1∨ x2 +1 = 0

≡ {add −1 to both sides in right disjunct}

x = 1∨ x2 =−1

≡ {a square is never negative}

x = 1∨F
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Example 2

• (x−1)(x2 +1) = 0

≡ {zero product rule: ab = 0 ≡ a = 0∨b = 0}

x−1 = 0∨ x2 +1 = 0

≡ {add 1 to both sides in left disjunct}

x = 1∨ x2 +1 = 0

≡ {add −1 to both sides in right disjunct}

x = 1∨ x2 =−1

≡ {a square is never negative}

x = 1∨F

≡ {disjunction rule}

x = 1
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Sub derivations

There is often a need to do an auxiliary calculation, side proof or check a hypothesis while
working on the main proof. This can be carried out in a nested derivation (a sub derivation).

Example 3: Determine the values of x for which the expression x−1
x2−2 is well-defined.
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Example 3

• x−1
x2−1 is well-defined
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Example 3

• x−1
x2−1 is well-defined

≡ {definedness of rational expressions}

x2−1 6= 0
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Example 3

• x−1
x2−1 is well-defined

≡ {definedness of rational expressions}

x2−1 6= 0

≡ {switch to logic notation}

¬(x2−1 = 0)
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Example 3

• x−1
x2−1 is well-defined

≡ {definedness of rational expressions}

x2−1 6= 0

≡ {switch to logic notation}

¬(x2−1 = 0)

≡ {solve equation in brackets}

• x2−1 = 0
≡ {factorization rule}

(x+1)(x−1) = 0
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Example 3

• x−1
x2−1 is well-defined

≡ {definedness of rational expressions}

x2−1 6= 0

≡ {switch to logic notation}

¬(x2−1 = 0)

≡ {solve equation in brackets}

• x2−1 = 0
≡ {factorization rule}

(x+1)(x−1) = 0
≡ {rule for zero product}

x =−1∨ x = 1
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Example 3

• x−1
x2−1 is well-defined

≡ {definedness of rational expressions}

x2−1 6= 0

≡ {switch to logic notation}

¬(x2−1 = 0)

≡ {solve equation in brackets}

• x2−1 = 0
≡ {factorization rule}

(x+1)(x−1) = 0
≡ {rule for zero product}

x =−1∨ x = 1

. . . ¬(x =−1∨ x = 1)
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¬(x =−1∨ x = 1)

≡ {de Morgans laws}

¬(x =−1)∧¬(x = 1)
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¬(x =−1∨ x = 1)

≡ {de Morgans laws}

¬(x =−1)∧¬(x = 1)

≡ {change notation}

x 6=−1∧ x 6= 1
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¬(x =−1∨ x = 1)

≡ {de Morgans laws}

¬(x =−1)∧¬(x = 1)

≡ {change notation}

x 6=−1∧ x 6= 1

�
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Hiding the sub derivation

• x−1
x2−1 is well-defined

≡ {definedness of rational expressions}

x2−1 6= 0

≡ {switch to logic notation}

¬(x2−1 = 0)

≡ {solve equation in brackets}

. . . ¬(x =−1∨ x = 1)

≡ {de Morgans laws}

¬(x =−1)∧¬(x = 1)

≡ {change notation}

x 6=−1∧ x 6= 1
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Explicit task and assumptions

The previous derivations are essentially just proofs:

• the task to be solved is not stated explicitly,

• nor are the assumptions that the proof may rely on listed explicitly.

The following example illustrates explicit tasks and assumptions in structured derivations.

Example 4: We show that if a, b and c are non-negative real numbers, then

(1+a)(1+b)(1+ c)≥ 1+a+b+ c
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Example 4

• Show that (1+a)(1+b)(1+ c)≥ 1+a+b+ c

- when a,b,c≥ 0
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Example 4

• Show that (1+a)(1+b)(1+ c)≥ 1+a+b+ c

- when a,b,c≥ 0




(1+a)(1+b)(1+ c)
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Example 4

• Show that (1+a)(1+b)(1+ c)≥ 1+a+b+ c

- when a,b,c≥ 0




(1+a)(1+b)(1+ c)

= {multiply two last parenthesis}

(1+a)(1+b+ c+bc)
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Example 4

• Show that (1+a)(1+b)(1+ c)≥ 1+a+b+ c

- when a,b,c≥ 0




(1+a)(1+b)(1+ c)

= {multiply two last parenthesis}

(1+a)(1+b+ c+bc)

= {multiply remaining parenthesis}

1+b+ c+bc+a+ab+ac+abc
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Example 4

• Show that (1+a)(1+b)(1+ c)≥ 1+a+b+ c

- when a,b,c≥ 0




(1+a)(1+b)(1+ c)

= {multiply two last parenthesis}

(1+a)(1+b+ c+bc)

= {multiply remaining parenthesis}

1+b+ c+bc+a+ab+ac+abc

≥ {expression ab, ac, bc, and abc are non-negative by assumption, subtract these}

1+a+b+ c
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Example 4

• Show that (1+a)(1+b)(1+ c)≥ 1+a+b+ c

- when a,b,c≥ 0


 {combining = and ≥ gives ≥}

(1+a)(1+b)(1+ c)

= {multiply two last parenthesis}

(1+a)(1+b+ c+bc)

= {multiply remaining parenthesis}

1+b+ c+bc+a+ab+ac+abc

≥ {expression ab, ac, bc, and abc are non-negative by assumption, subtract these}

1+a+b+ c
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Example 4

• Show that (1+a)(1+b)(1+ c)≥ 1+a+b+ c

- when a,b,c≥ 0


 {combining = and ≥ gives ≥}

(1+a)(1+b)(1+ c)

= {multiply two last parenthesis}

(1+a)(1+b+ c+bc)

= {multiply remaining parenthesis}

1+b+ c+bc+a+ab+ac+abc

≥ {expression ab, ac, bc, and abc are non-negative by assumption, subtract these}

1+a+b+ c

�
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Informal reasoning in structured derivations

Structured derivations can be carried out at any level of detail in the proof:

• from very detailed, even axiomatic proofs

• to high level proofs that mainly outline the argumentation

Example 5: Determine the values of constant a such that the function

f (x) =−x2 +ax+a−3

is always negative.
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Parabolas

Parabola with negative coefficient for the
squared term

Parabola with positive coefficient for the
squared term
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Example 5

• Determine the values of constant a such that the function f (x) =−x2+ax+a−3 is always
negative.:


 (∀x ·−x2 +ax+a−3 < 0)
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Example 5

• Determine the values of constant a such that the function f (x) =−x2+ax+a−3 is always
negative.:


 (∀x ·−x2 +ax+a−3 < 0)

≡ {the function is a parabola that opens downwards, as the coefficient for x2 is negative; such
a function is always negative if it does not intersect the x- axis (figure above on the left)}

(∀x ·−x2 +ax+a−3 6= 0)
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Example 5

• Determine the values of constant a such that the function f (x) =−x2+ax+a−3 is always
negative.:


 (∀x ·−x2 +ax+a−3 < 0)

≡ {the function is a parabola that opens downwards, as the coefficient for x2 is negative; such
a function is always negative if it does not intersect the x- axis (figure on the left)}

(∀x ·−x2 +ax+a−3 6= 0)

≡ {this is equivalent to the discriminant D for the equation being negative}

D < 0
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≡ {compute D}

• D
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≡ {compute D}

• D

= {the discriminant for the equation Ax2 +Bx+C = 0 is B2−4AC}

a2−4(−1)(a−3)
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≡ {compute D}

• D

= {the discriminant for the equation Ax2 +Bx+C = 0 is B2−4AC}

a2−4(−1)(a−3)

= {simplify}

a2 +4a−12
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≡ {compute D}

• D

= {the discriminant for the equation Ax2 +Bx+C = 0 is B2−4AC}

a2−4(−1)(a−3)

= {simplify}

a2 +4a−12

. . . a2 +4a−12 < 0
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≡ {the function a2 + 4a− 12 is a parabola that opens upwards, because the coefficient for
a2 is positive; such a function is negative between the intersection points with the x- axis
(figure above on right)}
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≡ {the function a2 + 4a− 12 is a parabola that opens upwards, because the coefficient for
a2 is positive; such a function is negative between the intersection points with the x- axis
(figure on right)}

• Compute the places where a2 +4a−12 intersects the x - axis:


 a2 +4a−12 = 0
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≡ {the function a2 + 4a− 12 is a parabola that opens upwards, because the coefficient for
a2 is positive; such a function is negative between the intersection points with the x- axis
(figure on right)}

• Compute the places where a2 +4a−12 intersects the x - axis:


 a2 +4a−12 = 0

≡ {square root formula}

a = −4±
√

42−4·1·(−12)
2·1
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≡ {the function a2 + 4a− 12 is a parabola that opens upwards, because the coefficient for
a2 is positive; such a function is negative between the intersection points with the x- axis
(figure on right)}

• Compute the places where a2 +4a−12 intersects the x - axis:


 a2 +4a−12 = 0

≡ {square root formula}

a = −4±
√

42−4·1·(−12)
2·1

≡ {simplify}

a = 2∨a =−6
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≡ {the function a2 + 4a− 12 is a parabola that opens upwards, because the coefficient for
a2 is positive; such a function is negative between the intersection points with the x- axis
(figure on right)}

• Compute the places where a2 +4a−12 intersects the x - axis:


 a2 +4a−12 = 0

≡ {square root formula}

a = −4±
√

42−4·1·(−12)
2·1

≡ {simplify}

a = 2∨a =−6

. . . −6 < a < 2

�
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Complete derivation

• Determine the values of constant a such that the function f (x) =−x2+ax+a−3 is always
negative.:


 (∀x ·−x2 +ax+a−3 < 0)

≡ {the function is a parabola that opens downwards, as the coefficient for x2 is negative; such
a function is always negative if it does not intersect the x- axis (figure on the left)}

(∀x ·−x2 +ax+a−3 6= 0)

≡ {this is equivalent to the discriminant D for the equation being less than zero}

D < 0

≡ {substitute values for D}

• Compute the discriminant D:

D

= {the discriminant for the equation Ax2 +Bx+C = 0 is B2−4AC}
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a2−4(−1)(a−3)
= {simplify}

a2 +4a−12

. . . a2 +4a−12 < 0

≡ {the function a2 + 4a− 12 is a parabola that opens upwards, because the coefficient for
a2 is positive; such a function is negative between the intersection points with the x- axis
(figure on right)}

• Compute the places where a2 +4a−12 intersects the x - axis:

 a2 +4a−12 = 0
≡ {square root formula}

a = −4±
√

42−4·1·(−12)
2·1

≡ {simplify}
a = 2∨a =−6

. . . −6 < a < 2

�
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Hiding sub derivations

• hiding the sub derivations shows the overall structure and main argumentation of the proof

• an outlining editor that supports collapsing (possible in, e.g., Lyx and TexMacs - two
wysiwyg latex editors) is very useful for writing and browsing structured derivations
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• Determine the values of constant a such that the function f (x) =−x2+ax+a−3 is always
negative.:


 (∀x ·−x2 +ax+a−3 < 0)

≡ {the function is a parabola that opens downwards, as the coefficient for x2 is negative; such
a function is always negative if it does not intersect the x- axis (figure on the left)}

(∀x ·−x2 +ax+a−3 6= 0)

≡ {this is equivalent to the discriminant D for the equation being zero}

D < 0

≡ {substitute values for D}

. . . a2 +4a−12 < 0

≡ {the function a2 + 4a− 12 is a parabola that opens upwards, because the coefficient for
a2 is positive; such a function is negative between the intersection points with the x- axis
(figure on right)}

. . . −6 < a < 2
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�
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Using observations in derivations

A common way of solving problems:

• Write down the task to be solved and the assumptions that we are allowed to make

• Write down some simple observations that can be directly made, based on the assumptions

• Continue with some additional observations based on previous observations

• Derive a solution to the original problem based on these observations.



68

Example: percentages

Example 6. The IOP party got 20 % of the votes last year. This year it got 26 % of the votes.
How many percentages did the relative share of votes grow.

(Original: Oppilaskunnan vaaleissa IOP sai 20 % äänistä viime vuonna. Tänä vuonna 26%
äänistä. Kuinka monta prosenttia suhteellinen osuus äänistä kasvoi.)
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Example 6

• Compute the increase in relative vote share for IOP i(n percentage), when

- original share of votes for IOP = 20%

- new share of votes for IOP = 26%
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Example 6

• Compute the increase in relative vote share for IOP i(n percentage), when

- original share of votes for IOP = 20%

- new share of votes for IOP = 26%

+ {increase in share of votes = new share of votes - original share of votes}

increase in share of votes = 26% - 20% = 6%
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Example 6

• Compute the increase in relative vote share for IOP i(n percentage), when

- original share of votes for IOP = 20%

- new share of votes for IOP = 26%

+ {increase in share of votes = new share of votes - original share of votes}

increase in share of votes = 26% - 20% = 6%

+ {increase in relative share of votes = increase in share of votes/ original share of votes}

increase in relative share of votes = 6 % / 20 % = 0.3
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Example 6

• Compute the increase in relative vote share for IOP i(n percentage), when

- original share of votes for IOP = 20%

- new share of votes for IOP = 26%

+ {increase in share of votes = new share of votes - original share of votes}

increase in share of votes = 26% - 20% = 6%

+ {increase in relative share of votes = increase in share of votes/ original share of votes}

increase in relative share of votes = 6 % / 20 % = 0.3


 {observations above}

increase in relative vote share for IOP (in percentage)
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Example 6

• Compute the increase in relative vote share for IOP i(n percentage), when

- original share of votes for IOP = 20%

- new share of votes for IOP = 26%

+ {increase in share of votes = new share of votes - original share of votes}

increase in share of votes = 26% - 20% = 6%

+ {increase in relative share of votes = increase in share of votes/ original share of votes}

increase in relative share of votes = 6 % / 20 % = 0.3


 {observations above}

increase in relative vote share for IOP (in percentage)

= {increase in relative share (in percentage) = increase in relative share of votes ×100 %}

0.3 ×100 %
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Example 6

• Compute the increase in relative vote share for IOP i(n percentage), when

- original share of votes for IOP = 20%

- new share of votes for IOP = 26%

+ {increase in share of votes = new share of votes - original share of votes}

increase in share of votes = 26% - 20% = 6%

+ {increase in relative share of votes = increase in share of votes/ original share of votes}

increase in relative share of votes = 6 % / 20 % = 0.3


 {observations above}

increase in relative vote share for IOP (in percentage)

= {increase in relative share (in percentage) = increase in relative share of votes ×100 %}

0.3 ×100 %
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= {calculate}

30%

�
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Esimerkki: prosenttilaskenta

• Laske kuinka monta prosenttia suhteellinen osuus äänistä kasvoi, kun

- alkuperäinen ääniosuus = 20%

- uusi ääniosuus = 26%

+ {ääniosuuden kasvu = uusi ääniosuus - alkuperäinen ääniosuus}

ääniosuuden kasvu = 26% - 20% = 6%

+ {suhteellinen osuuden kasvu = ääniosuuden kasvu/ alkuperäinen ääniosuus}

suhteellinen osuuden kasvu = 6 % / 20 % = 0.3

+ {suhteellinen osuuden kasvuprosentti = suhteellinen osuuden kasvu×100 %}

suhteellinen osuuden kasvuprosentti = 0.3 ×100 % = 30%

+ {oletusten tarkkuus on yksi merkitsevä numero, niin vastaus annetaan yhden numeron tarkkuudella}


 {yo laskeman mukaan suhteellinen ääniosuuden kasvuprosentti = 30 %}
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Using observations in structured derivations

In many proofs, it is useful to make some preliminary observations, before one tackles the main
proof. This is particularly useful in forward proofs (common in, e.g., geometry):

Example 7: Consider a right triangle with catheters a and b and hypotenuse c. Assume that the
height of the triangle on the hypotenuse divides the hypotenuse in the proportion 3:7. Determine
the proportion a

b.

c

h

a

b

3x

7x
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Example 7

• Determine a
b , when

- the triangle is right, with hypotenuse c and catheters a and b,

- the height of the triangle on the hypotenuse divides the hy-
potenuse in the proportion 3:7

[1] {from figure}

c = 10x

[2] {figure and Pythagorean theorem}

h2 +9x2 = a2

[3] {figure and Pythagorean theorem}

h2 +49x2 = b2

[4] {figure, observation [1] and Pythagorean theorem}

a2 +b2 = 100x2

c

h

a

b

3x

7x
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[5] {subtract equation [2] from equation [3] and simplify}

b2−a2 = 40x2

[6] {add equations [4] and [5] and simplify}

b2 = 70x2

[7] {substitute equation [6] into equation [5]}

• a2 +b2 = 100x2

≡ {equation [6]}

a2 +70x2 = 100x2

≡ {solve a2}

a2 = 30x2

. . . a2 = 30x2

c

h

a

b

3x

7x
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 a
b

= {square root definition, a and b are positive numbers}√
a2

b2

= {observations [6] and [7]}√
30x2

70x2

= {simplify}
√

3√
7

�

c

h

a

b

3x

7x



81

Research on teaching structured derivations in high school

• Research carried out in Learning and Reasoning laboratory (Departments of Information
Technology at Åbo Akademi University och University of Turku).

• Focus on methods for teaching mathematics and programming

• Experimental approach:

– develop methods, notation, tools and teaching material for mathematics and program
construction (formal methods research)

– try out the methods in practical teaching experiments, measure results qualitatively
and quantitatively

– use the feedback from the experiments to improve the methods, tools, and teaching
material

• We have a web-based resource center, IMPEd (crest.cs.abo.fi/imped/) with research and
teaching material
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Empirical studies on using structured derivations in teaching

• Tried out structured derivations on a large (and unbiased) collection of high school math
problems (Finnish national matriculation exams 1998 - 2009, 180 assignments all to-
gether, tests all math courses in high school).

• Two large comparative studies on using structured derivations throughout the high school
math curriculum: one group of students were taught all math courses in high school using
structured derivations, while a control group was taught the same courses in the standard
way.

• Special elective course in high school (“Logic and number theory”) that introduces struc-
tured derivations together with basic logic, and applies it to number theory. The course
has been lectured appr. 10 times, in different high schools, with very promising results.

• Redesigned first year CS curriculum at the IT department at Åbo Akademi : start with
a course on practical programming (Python) and logic (structured derivations), and then
follow up with course on correct-by-design programming (invariant based programming).

• Teaching experiment in Turku Polytechnic in autumn 2008: a course in trigonometry that
was taught using structured derivations



83

Kupittaa high school experiment (Peltomäki)

• High school math in Finland is given on two levels, advanced (taken by 40% of stu-
dents) and normal (60% of students). Advanced level required for Engineering, Science,
Medicine and Business studies at university.

• Two successive experiments, 2001 - 2004 and 2002 - 2005 at advanced level math

• New students at Kupittaa high school (Turku) were divided into three groups:

– a test group consisting of those who choose IT as specialization and who were taught
math using structured derivations

– a control group was taught math in the standard way

– a third group that did not participate in experiment

• The control group was chosen to be as similar as possible to the test group (but final choice
of which groups to join was free for students)

• The test and control groups had same course content, same assignments and exams, lec-
tures and exams at the same time, but different teachers.
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Results 2001 - 2004, class average grade

1 junior high math grade
2 functions and equations 1
3 functions and equations 2
4 geometry
5 trigonometry and vectors
6 analytic geometry
7 differential equations 1
8 differential equations 2
9 integrals
10 statistics and prob. theory
11 sequences and series
12 matriculation exam
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Results 2002 - 2005, class average grade

1 junior high math grade
2 functions and equations 1
3 functions and equations 2
4 geometry
5 trigonometry and vectors
6 analytic geometry
7 differential equations 1
8 differential equations 2
9 integrals
10 statistics and prob. theory
11 sequences and series
12 matriculation exam
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Matriculation exam 2004 grades

test group control group whole school whole country
N 21 11 50 12 494
laudatur 24% 0% 10% 6%
eximia 43% 9% 22% 15%
laudatur+eximia 67% 9% 32% 21%
average (5 - 10) 8.48 7.00 7.24 6.92
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Matriculation exam 2005 grades

test group control group whole school whole country
N 20 9 40 11 627
laudatur 10% 0% 4% 6%
eximia 50% 0% 20% 16%
laudatur+eximia 60% 0% 24% 22%
average (5 - 10) 8.45 6.22 7.00 6.96
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Interrupted in both studies
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Comparison with previous year IT-group

• same selection
criteria

• same teacher

• same junior
high degree as
test2002
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Summary of Kupittaa experiments

• Test group performed clearly better than the control group

• Matriculation exams in particular much better for test group

• Much lower levels of interrupted studies for test group

• The test groups had in both studies somewhat better junior high school degree in math
compared to the control group. The teacher for the test group has also a good track record.

• Difference in favor of test group persist even if these differences are eliminated
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Ongoing and planned activities

• Finnish National Board of Education has commissioned a number of courses on structured
derivations for high school teachers (continuous training courses, 3 -5 days) in 2008 - 2009

• Teaching experiments in lower secondary education (junior high school) are planned in a
some schools in the Turku region

• A number of training courses for junior high school teachers are planned for 2010

• City of Turku is planning to expand the use of structured derivations to all high schools in
the region

• The Technology Industry Foundation of Finland is funding our resource center for struc-
tured derivations (Imped)

• The Technology Development Fund of Finland (TEKES) is financing a research project
on using computers and structured derivations for teaching math at junior high level.
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Imped resource center (crest.cs.abo.fi/imped)

• Research publications

• Talks and presentations

• Tool support (Lyx editor adapted to structured derivations)

• Courses and course material, support for web based courses

• Tutorials on using structured derivations in teaching mathematics (new lecture notes se-
ries)

• Published 6 tutorials (presently only available in Swedish and Finnish)
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Tool support for structured derivations

• Wysiwyg latex editors: Lyx

– support full mathematical formalism, see almost final text when editing

– support for outlining (hiding and showing sub derivations)

• Adapted LYX to structured derivations

• Plan is to adapt it also to a learning environment (Moodle)

• Automatic checking of structured derivations

– syntax checking of structured derivations

– interface to PVS and Simplify

– proof checker checks each individual step (under construction)

• Checking correctness requires more formalized language than what is common in high
school math
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Thank you for listening !
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Structured derivations in CS education

• Logic course given since 1996 as introductory CS course (based on Gries’ and Schneider’s
book)

• Changed the course to be based on structured derivations in 2006 (same as high school
course on “Logic and number theory”)

• Course went otherwise well, students learned the method, but high school material was
considered to be too simple

• Course was given anew in 2007, but reworked to make the math more challenging (lattice
theory, elementary algebra, discrete math) and include more systematic presentation of
logic (propositional calculus, predicate calculus)

• This now worked well with the students, they liked the course, results were good, and
feedback from students was very positive

• Course now standard and compulsory for first year students.



Structured derivations as a unified proof format
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Syntax for structured derivations

The syntax is recursive:

• Derivations are defined in terms of justifications

• Justifications are defined in terms of derivations

As a consequence, structured derivations can be arbitrarily deeply nested.



98

Intuitive syntax

The syntax should be

• as simple as possible

• as intuitive as possible

• easy to remember and apply

• as few additional symbols as possible

• allow for common shortcuts and abbreviations

• not force a verbose expression where a simple one would do

The intuitive syntax is shown below, the formal is described later
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derivation:

• task

- assumption

...

+ justification

observation

...


 justification

term

rel justification

term

...

�

justification:

{motivation}

derivation

derivation

...
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General form for structured derivations

A derivation consists of four parts:

• The task (problem): what shall we do, what assumptions can we make

• Observations: what facts can we infer directly from the assumptions and previous obser-
vations

• Justification for the solution of the task: why do the observations and the calculation
together solve the original problem

• Calculation: computing the required result
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derivation:

• task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the problem

- assumptions

...

+ justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . justifications

observation

...


 justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . justifying the solution

term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . calculation

rel justification

term

...

� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the proof is complete
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General proof format

The different parts correspond to different proof formats:

• Observations: Hilbert-like proof

• Justifying the solution: Gentzen-like proof

• Calculation: Dijkstra-like proof
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derivation:

• task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the problem

- assumptions

...

+ justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hilbert-like proof

observation

...


 justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gentzen-like proof

term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Dijkstra-like proof

rel justification

term

...

� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the proof is complete
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Common proof formats

The standard proof formats result from leaving out some components of structured derivations

• Omitting observations, the problem (task and assumptions), sub derivations and the justi-
fication for the solution gives us Dijkstra’s original calculational style proofs.

• Omitting the calculation and sub derivations gives us Hilbert-like proofs.

• Omitting observations and calculations gives us Gentzen-like proofs.
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Mixing proof formats

Structured derivations allow all these different proof formats to be freely mixed in a single
derivation. We are then free to choose the specific proof method that is appropriate for the
specific (sub)problem considered.

The mixing is achieved by

1. the fact that a single structured derivation can contain a Hilbert-like part, a Gentzen-like
part and a Dijkstra-like part

2. a sub derivation can use a different proof format from the main derivation, or a combina-
tion of proof formats.
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Dijkstra-like

• term

= {motivation}

term

...

�

Hilbert-like

• task

- assumptions

...

+ {motivation}

observations

...


 {motivation}

�

Gentzen-like

• task

- assumption

...


 justification

�
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Formal syntax definition

Formal syntax is needed for computer support: checking correctness of syntax, analysing cor-
rectness of derivation steps, annotating the derivation, etc.

The syntax is defined on four different levels:

• structure of structured derivations

• layout for structured derivations

• parameters

• dialects
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Structure

derivation ::= derivationId task
(assumptionId assumption)∗

(observationId justi f icationobservation)∗

start proo f proo f [end proo f ]
derivation ::= derivationId calculation [end proo f ]

proo f ::= justi f ication |calculation | justi f icationcalculation
calculation ::= term(relation justi f icationterm)+

justi f ication ::= motivation [startsubderivation+ endsub]
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Layout

derivationId ::= ”• ” | label ” : ”
assumptionId ::= ”− ” |”(” label ”)”
observationId ::= ”+ ” |”[” label ”]”

task ::= tab tasktText ret
assumption ::= tabassumptionText ret
observation ::= tabobservationText ret

term ::= tab termtText ret
relation ::= relationText

motivation ::= tab”{”motivationtText ”}”ret
start proo f ::= ” 
 ” |” 
0 ”
end proo f ::= ”�”ret

startsub ::= indent
endsub ::= dedent” . . .”
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Parameters

label ::= . . . notation for labels . . .

taskText ::= . . . notation for tasks . . .

assumptionText ::= . . . notation for assumptions . . .

observationText ::= . . . notation for observations . . .

termText ::= . . . notation for terms . . .

relationText ::= . . . notation for relations . . .

motivationText ::= . . . notation for motivations . . .
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Dialects

• Informal structured derivations

• Structured derivations with logic

• Axiomatic proofs

• Structured derivations for proof checkers
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Informal dialect

We use structured derivations informally, using whatever ad hoc notation feels most suitable for
the problem at hand.

In this case, we allow any text string for describing the task, the assumptions, the observations,
the terms and the motivations.

Labels are used in a traditional way, and are usually Arabic or roman numerals, or alphabetic
characters.

This format is very loose, it does not even require any systematic use of logical notation in the
derivations, and the motivations can be very informal and intuitive.
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Logic dialect

label ::= . . . notation for labels . . .

taskText ::= imperative proposition
assumptionText ::= propositioncorrection
observationText ::= proposition

termText ::= expression
relationText ::= relationSymbol

motivationText ::= . . . notation for motivations . . .

imperative ::= ... expression for what needs to be done ...
correction ::= (”##” proposition)∗
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Axiomatic dialect

Logic + following definitions

label ::= number
motivationText ::= ruleName [rule]assignment validity

imperative ::= ””
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Proof checker dialect

Logic + following definition

motivationText ::= strategy
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