

#### Outline

- Rationale for the study
- Research questions
- Research design and data collection
- Outline of results from Phase-I
- Data collection in Phase-II
- Some results from Phase-II

### The slow integration of technology

- Explosion of technology use in schools was predicted in the 1980s (Steen, 1998; Kaput, 1992)
- At the school level the predicted explosion has not taken place (Cuban, Kilpatrick, & Peck, 2001; Ruthven & Hennessy, 2002)
- Several studies attempted to find the reasons behind the slow integration of technology (Becker et. al, 2001; Ruthven & Hennessy, 2002)

#### Importance of teachers' conceptions

- Technology integration is greatly influenced by
  - access to technology
  - teachers' <u>conceptions</u>, <u>beliefs</u>, <u>attitudes</u>, <u>and motivations</u> (of mathematics, mathematics teaching, and technology)
  - and social and cultural factors

## University-level research

- Little attention paid on university-level mathematics mathematicians' beliefs
  - University mathematics teaching considered (non-) problematic
     Mathematicians are not interested in pedagogical issues
  - Mathematics do not value/respect educational research
- But
- There are considerable problems
  - Increased student enrollment
  - Declining student preparedness
  - Problems with STEM subjects
  - Emergence of new technologies
- Mathematicians is an important group and can highlight important issues for teachers



8

#### Research questions

#### Extent – current use

- To what extent and manner are Computer Algebra Systems currently used in university mathematics departments?
- Mathematicians' conceptions
  - What mathematical and pedagogic beliefs and conceptions mathematicians hold with regard to CAS including factors influencing their professional use of CAS? Vision?
- Influence of teaching traditions
  - To what extent nationally situated teaching traditions, frequently based on unarticulated assumptions, influence mathematicians' conceptions of and motivation for using CAS?











#### Questionnaire structure

- Personal characteristics
- Mathematicians' views on the role of CAS in mathematics literacy
- Mathematicians' views on CAS-assisted teaching and learning
- Mathematicians' views on factors hindering CAS integration into teaching learning of mathematics

13

- Actual use of CAS in mathematics teaching
- (30 questions, several (8-12) sub-questions)
  10-12 minute completion time



- Mathematicians are open to collaboration and to teaching
  - issues
  - 1









| I         | Findings — Pl<br>CAS in N<br>Mathematic                                                       | 12<br>Iath | SC<br>nema     | T<br>ntic: | s Li | itera          | cy   | by  | COUI<br>atics lit | 1try<br>eracy |     |                |      |       |       |       |
|-----------|-----------------------------------------------------------------------------------------------|------------|----------------|------------|------|----------------|------|-----|-------------------|---------------|-----|----------------|------|-------|-------|-------|
| Q         | Statement                                                                                     | ¥7         | All            | cm         | N    | US             | CD.  |     | UK                | L cm          | 11  | HU             | Lon  | UK    | UK-   | HU.   |
| CASmut    | (the environment                                                                              |            | Mean           | SD         |      | Mean           | 50   |     | Mean              | 50            | N   | Mean           | SD   | 03    | пе    | U8    |
| Q10h (+)  | Science and engineering graduates should have a<br>working knowledge of CAS                   | 992        | 3.91           | 0.86       | 470  | 3.96           | 0.85 | 315 | 3.79              | 0.78          | 203 | 3.94           | 0.98 | -0.17 | -0.15 | -0.02 |
| Q10a (+)  | Knowing how to use CAS is an essential skill<br>for mathematics graduates                     | 1003       | 3.66           | 1.09       | 475  | 3.61           | 1.14 | 320 | 3.60              | 1.05          | 204 | 3.84           | 1.02 | -0.01 | -0.24 | 0.23  |
| Q10b (+)  | Knowing how to use CAS is beneficial for<br>students' science and engineering courses         | 1001       | 4.15           | 0.75       | 474  | 4.14           | 0.77 | 317 | 4.03              | 0.71          | 206 | 4.37           | 0.73 | -0.11 | -0.34 | 0.23  |
| Q10g.(+)  | Knowing how to use CAS enhances students'<br>future employment prospects                      | 997        | 3.72           | 0.81       | 471  | 3.79           | 0.83 | 320 | 3.54              | 0.75          | 202 | 3.83           | 0.85 | -0.25 | -0.29 | 0.04  |
| CAS chang | es rusearch                                                                                   |            |                |            |      |                |      |     |                   |               |     |                |      |       |       |       |
| Q10e (+)  | CAS is changing the way in which mathematics<br>research is being done                        | 1002       | 3.60           | 0.95       | 475  | 3.64           | 0.97 | 319 | 3.56              | 0.95          | 204 | 3.58           | 0.93 | -0.08 | -0.01 | -0.04 |
| Q10c (+)  | CAS enables mathematicians to work on<br>problems more efficiently                            | 1001       | 3.91           | 0.87       | 475  | 3.89           | 0.89 | 317 | 3.87              | 0.85          | 205 | 4.00           | 0.87 | -0.02 | -0.14 | 0.12  |
| CAS chang | es the curriculum                                                                             |            |                |            |      |                |      |     |                   |               |     |                |      |       |       |       |
| Q10d (•)  | CAS use does not affect the mathematics that<br>has to be learned by students in universities | 997        | 2.85<br>(3.15) | 1.08       | 472  | 2.90<br>(3.10) | 1.09 | 318 | 3.12<br>(2.88)    | 1.01          | 203 | 2.35<br>(3.65) | 0.95 | 0.22  | 0.77  | -0.5  |
| Q10f(+)   | CAS use offers the possibility of introducing<br>new topics into undergraduate mathematics    | 1001       | 3.71           | 0.88       | 475  | 3.80           | 0.90 | 320 | 3.54              | 0.87          | 202 | 3.76           | 0.81 | -0.26 | -0.22 | -0.0  |
|           | Total Mean                                                                                    | 999        | 3.73           | 0.91       | 473  | 3.74           | 0.93 | 318 | 3.60              | 0.87          | 203 | 3.87           | 0.89 |       |       |       |
|           | Total SD                                                                                      | 3.65       | 0.29           | 0.12       | 2.7  | 0.31           | 0.13 | 1.8 | 0.36              | 0.12          | 1.4 | 0.24           | 0.10 |       |       |       |
|           |                                                                                               |            |                |            |      |                |      |     |                   |               |     |                |      |       | 19    |       |



| mu         | ings – i nase n                                                                               | L       |             |       |          |                       |      |      |
|------------|-----------------------------------------------------------------------------------------------|---------|-------------|-------|----------|-----------------------|------|------|
| CASI       | n Mathematics Literacy by u                                                                   | eore    | and         | non.  | ueor     | e of C                | 24   |      |
| UAUI       | Mathematicians' views on the rol                                                              | e of C/ | AS in m     | athem | atics li | teracy                | AU   |      |
|            |                                                                                               | N       | on-Users    |       |          | Non<br>Users<br>Users |      |      |
| Q          | Statement                                                                                     |         | N Mean      |       | Ν        |                       | Mean | SD   |
| CAS part o | f the curriculum                                                                              |         |             |       |          |                       |      |      |
| Q10h (+)   | Science and engineering graduates should have a<br>working knowledge of CAS                   | 401     | 3.61        | 0.89  | 498      | 4.17                  | 0.76 | 0.56 |
| Q10a (+)   | Knowing how to use CAS is an essential skill<br>for mathematics graduates                     | 405     | 3.22        | 1.08  | 502      | 4.06                  | 0.94 | 0.84 |
| Q10b (+)   | Knowing how to use CAS is beneficial for<br>students' science and engineering courses         | 403     | 3.84        | 0.78  | 501      | 4.44                  | 0.61 | 0.60 |
| Q10g (+)   | Knowing how to use CAS enhances students'<br>future employment prospects                      | 404     | 3.50        | 0.8   | 499      | 3.91                  | 0.79 | 0.41 |
| CAS chang  | es research                                                                                   |         |             |       |          |                       |      |      |
| Q10e (+)   | CAS is changing the way in which mathematics<br>research is being done                        | 406     | 3.35        | 0.99  | 502      | 3.83                  | 0.87 | 0.48 |
| Q10c (+)   | CAS enables mathematicians to work on<br>problems more efficiently                            | 404     | 3.62        | 0.88  | 502      | 4.18                  | 0.76 | 0.56 |
| CAS chang  | es the curriculum                                                                             |         |             |       |          |                       |      |      |
| Q10d (-)   | CAS use does not affect the mathematics that<br>has to be learned by students in universities | 401     | 3.04 (2.96) | 1.02  | 501      | 2.71<br>(3.29)        | 1.11 | 0.34 |
| Q10f (+)   | CAS use offers the possibility of introducing<br>new topics into undergraduate mathematics    | 405     | 3.43        | 0.9   | 501      | 3.95                  | 0.8  | 0.52 |
|            | Total Mean                                                                                    | 404     | 3.44        | 0.92  | 501      | 3.98                  | 0.83 | 0.54 |
|            | Total SD                                                                                      | 1.85    | 0.27        | 0.11  | 1 49     | 0.34                  | 0.15 | 0.15 |





# Findings – Phase II

- Mathematicians use technology for teaching more extensively than (at least as much as) school teachers
- Overall mathematicians positively view the role of technology in the mathematics curriculum and literacy
- Most CAS use takes place in science and engineering courses
- Numerous mathematicians are open to enhance their teaching practices with technology and experiment with innovations in mathematics teaching

24

21

#### Findings – Phase II

- Mathematicians have a vast knowledge in using mathematical software and they have already developed astonishing innovations which can be also utilized elsewhere
- Educational researchers should pay more attention to the technology-related teaching practices of mathematicians to better understand and enhance innovations in mathematics teaching at all levels
- Working/collaborating with mathematicians would be beneficial in improving our knowledge in educational technology
- Educational researchers could also contribute to the work of mathematicians

25

#### Findings – Phase II

- However, departments and policies should value the time contributed/required to curriculum development and research on teaching/innovations
- Universities and departments should offer support for technology integration
- Mathematicians and mathematics educators should be open to collaboration and learn from each other
- Mathematicians together with teachers should be more involved in developing successful integration of technology into mathematics education

#### Future research plans

- Analyse the data with more advanced statistics techniques
- Work together with mathematicians to examine and develop CAS-assisted teaching practices
- Identify mathematicians and institutions for research projects
- Close examination of curricula/practices of particular departments (successful, transition, no-CAS)
- Develop a diagnostic instrument for enhancing technology integration for departments
- Focus on transition issues (secondary to university)
- There is an interest to repeat this study in Canada, South Africa, Australia

# Thank you! Questions? Comments?

Project website: http://cus.cam.ac.uk/~zI221/CAS.htm