Teaching logic using ProofWeb

Cezary Kaliszyk, Freek Wiedijk Radboud University Nijmegen cek@cs.ru.nl

July 11, 2009

Outline

Motivation

Teaching logic with a computer Web interface for proof assistants

ProofWeb

Coq Display Styles Working with ProofWeb

MathWiki

Project Comparison with QED Conclusion

logic course for math/computer science students :

propositional logic predicate logic predicate logic with equality

logic course for math/computer science students :

propositional logic predicate logic predicate logic with equality

practising natural deduction proofs

- on paper
- with the computer

logic course for math/computer science students :

propositional logic predicate logic predicate logic with equality

practising natural deduction proofs

• on paper

students does not learn to be precise

with the computer

logic course for math/computer science students :

propositional logic predicate logic predicate logic with equality

practising natural deduction proofs

• on paper

students does not learn to be precise

• with the computer

student does not learn to do it all himself

logic course for math/computer science students :

propositional logic predicate logic predicate logic with equality

practising natural deduction proofs

on paper

students does not learn to be precise

with the computer

student does not learn to do it all himself

both necessary: complement each other

Web interface for proof assistants

- No installation for a user (not even browser plug-in)
- Responsive, fast interaction
- Resembles and behaves like a local interface
- Multiple proof assistants (like ProofGeneral)
 - Updated on the server, with extensions
- Secure environment

Outline

Motivation

Teaching logic with a computer Web interface for proof assistants

ProofWeb

Coq Display Styles Working with ProofWeb

MathWiki

Project Comparison with QED Conclusion

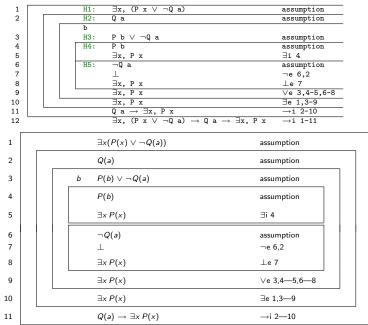
ProofWeb features

- built on top of serious proof system: Coq
 - students work with an industrial strength system
 - proofs look exactly like in a traditional textbook compatible with: Huth & Ryan, Login in Computer Science
- web-based
 - students don't need to install anything
 - students can access their work from anywhere
 - teacher has at all times full info on student's work
- · comes with a manual explaining the system
- comes with a set of graded exercises

proof assistant based on constructive logic developed at INRIA, France 1984 until today

used for impressive proofs:

- four color theorem, Georges Gonthier
- verified C compiler, Xavier Leroy


power of Coq also makes ProofWeb attractive for education

natural deduction (Fitch style)

1			$\exists x (P(x) \lor \neg Q(a))$	assumption
2			Q(a)	assumption
3		Ь	$P(b) \lor \neg Q(a)$	assumption
4			P(b)	assumption
5			$\exists x P(x)$	∃i 4
6			$\neg Q(a)$	assumption
7			\perp	¬e 6,2
8			$\exists x P(x)$	⊥e 7
9			$\exists x P(x)$	∨e 3,4—5,6—8
10			$\exists x P(x)$	∃e 1,3—9
11			$Q(a) \to \exists x P(x)$	→i 2—10

8/18

natural deduction (Fitch style)

natural deduction (Gentzen style)

$$\frac{\left[\exists x(P(x) \lor \neg Q(a))\right]^{H1}}{\left[\exists x P(x) \\ \overline{Q(a) \to \exists x P(x)} \\ \overline{\exists x P(x)} \\ \overline{i x$$

natural deduction (Gentzen style)

$$\frac{\left[\exists x(P(x) \lor \neg Q(a))\right]^{\text{H}1}}{\left[\exists x(P(x) \lor \neg Q(a))\right]^{\text{H}1}} \frac{\left[P(b) \lor \neg Q(a)\right]^{\text{H}3}}{\exists x P(x)} \frac{\left[P(b)\right]^{\text{H}4}}{\exists x P(x)} \frac{\left[\neg Q(a)\right]^{\text{H}5}}{\left[\neg Q(a)\right]^{\text{H}2}} \frac{\left[Q(a)\right]^{\text{H}2}}{\downarrow} \downarrow e}{\exists x P(x)} \forall e_{[\text{H}4,\text{H}5]} \\ \frac{\exists x P(x)}{Q(a) \to \exists x P(x)} \xrightarrow{\rightarrow i_{[\text{H}2]}}{\exists x(P(x) \lor \neg Q(a)) \to Q(a) \to \exists x P(x)} \xrightarrow{\rightarrow i_{[\text{H}1]}}$$

user input

Require Import ProofWeb.

```
Variable P Q : D -> Prop.
Variable a : D.
Theorem example : exi x, (P(x) \/ Q(a)) -> Q(a) -> exi x, P(x).
Proof.
```

Qed.

user input

```
Require Import ProofWeb.
Variable P Q : D -> Prop.
Variable a : D.
Theorem example : exi x, (P(x) \/ Q(a)) -> Q(a) -> exi x, P(x).
Proof.
imp_i H1.
imp_i H2.
f_exi_e H1 b H3.
f_dis_e H3 H4 H5.
f_exi_i H4.
fls_e.
f_neg_e H5 H2.
Qed.
```

Working with ProofWeb

<u>File Edit View Web Go Bookmarks Tabs H</u> elp	
Back - Porward - Anne - http://proofweb.cs.ru.nl/	index.html 💌 🛒 🛛 📸 Stop
🕀 🏠 轮 👱 🚡 File Display Templates	Backward Forward Query Debug Help Logout
(* Exercise 1 *)	1 subgoal
Require Import ProofWeb.	Н:АЛВ
Variables A B : Prop.	Ĥ
Theorem prop_001 : (A ∧ B) -> A. Proof. imp_i H.	
Qed.	
	$\frac{\frac{\dots}{A}}{A \land B \Rightarrow A} \Rightarrow i[H]$
all http://proofweb.cs.ru.nl/iI08/course_iI08.html	

exercise colors

possibilities for an exercise :

- Not touched
- Incomplete
- Correct
- Solved

Elle Edit View Veeb Go Bookmarks Jabs Help							
Predicaatlogica_061.v	Easy	Solved	Reset Predicaatlogica_061.v		P		
Predicaatlogica_062.v	Easy	Incomplete (why?)	Reset Predicaatlogica_062.v				
Predicaatlogica_063.v	Medium	Not touched	Reset Predicaatlogica_063.v				
Predicaatlogica_064.v	Medium	Not touched	Reset Predicaatlogica_064.v				
Predicaatlogica_065.v	Difficult	Not touched	Reset Predicaatlogica_065.v				
Predicaatlogica_066.v	Difficult	Not touched	Reset Predicaatlogica_066.v				
Predicaatlogica_067.v	Medium	Not touched	Reset Predicaatlogica_067.v				
Predicaatlogica_068.v	Easy	Solved	Reset Predicaatlogica_068.v				
Predicaatlogica_069.v	Medium	Not touched	Reset Predicaatlogica_069.v				
Predicaatlogica_070.v	Easy	Solved	Reset Predicaatlogica_070.v		ł		
Predicaatlogica_071.v	Easy	Correct (<u>why?</u>)	Reset Predicaatlogica_071.v				

trying ProofWeb

three possibilities :

http://proofweb.cs.ru.nl/

- 1. guest access (no registration needed)
- 2. host course in Nijmegen (free)
- 3. download (open source) and host course on your own system

Outline

Motivation

Teaching logic with a computer Web interface for proof assistants

ProofWeb

Coq Display Styles Working with ProofWeb

MathWiki

Project Comparison with QED Conclusion

A future project: MathWiki

- ▶ 4 year project, 2009-2013
 - Post-doc and PhD student
- Combine an encyclopedia with a proof assistant environment
 - Semantically annotated high-level knowledge

A future project: MathWiki

- 4 year project, 2009-2013
 - Post-doc and PhD student
- Combine an encyclopedia with a proof assistant environment
 - Semantically annotated high-level knowledge
- Web-based, interactive, collaborative environment
 - For multiple proof assistants

A future project: MathWiki

- 4 year project, 2009-2013
 - Post-doc and PhD student
- Combine an encyclopedia with a proof assistant environment
 - Semantically annotated high-level knowledge
- Web-based, interactive, collaborative environment
 - For multiple proof assistants
- Supports large joint formalisations in a distributed way
- Search and retrieval
 - informal and formal
 - high level and proof assistant specific

00	Binomial coefficient - MathWiki - Ice	weasel				
<u>F</u> ile <u>E</u> dit <u>V</u> iew Histe	ory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp	a ^{bl} er.				
► C × G	Whttp://mathwiki/Binomial_coefficient.html	RSS 📀 🔹 Qr Google				
		Log in / create account				
	article discussion edit this page history					
MathWiki	Binomial coefficient					
	In mathematics, particularly in combinatorics, a binomial coefficien	t is a coefficient of any of the terms in the expansion of				
	the binomial $(x+y)^n$. Colloquially given, say there are <i>n</i> pizza toppin	gs to select from, if one wishes to bake a pizza with				
navigation	exactly k toppings, then the binomial coefficient expresses how man	y different types of such k-topping pizzas are possible.				
 Main Page Contents 	Definition	[edit]				
 Featured content 		[cuit]				
 Current events 	Given a non-negative integer n and an integer k , the binomial coefficient is defined to be the natural number					
 Random article 	$\binom{n}{k} = \frac{n \cdot (n-1) \cdots (n-k+1)}{k \cdot (k-1) \cdots 1} = \frac{n!}{k!(n-k)!} \text{if } n \ge k \ge 0$					
syntactic search	$\binom{k}{k} = k \cdot (k-1) \cdots 1 = k!(n-k)!$					
l	and					
Article Search	$\binom{n}{k} = 0$ if $k < 0$ or $k > n$					
semantic search	where $n!$ denotes the factorial of n .					
	where <i>n</i> : denotes the factorial of <i>n</i> .					
Theorem Proof	Definition in Coq (edit formalization)					
toolbox	Definition C (n p:nat) : R :=					
 What links here Related changes 	(fact n) / ((fact p) * (fact (n - p))).					
 Upload file 	Definition in Mizar (edit formalization)					
 Special pages 	definition					
 Printable version Permanent link 	<pre>let k,n be natural number; func n choose k means</pre>					
 Cite this page 	:: NEWTON:def 3					
formalizations	<pre>for l be natural number st l = n-k holds it = (n!)/((k!) * (l!)) if n >= k</pre>					
http://mathwiki/mmm		🖺 Tor Disabled 오 🍃				

QED 15 years later?

- Success of the Wiki approach
 - Collaborative approach as a good way of developing bodies of shared knowledge
- Semantic Web technology can provide the presentation layer

QED 15 years later?

- Success of the Wiki approach
 - Collaborative approach as a good way of developing bodies of shared knowledge
- Semantic Web technology can provide the presentation layer
- Proof assistants provide mathematical semantics
 - Solid systems
 - Substantial formal developments
 - Coverage of a wide range of Proof Assistants:
 - initial proposed ones: Coq, Isabelle and Mizar
 - Type Theory, Higher Order Logic and Set Theory
 - classical and intuitionistic
 - de Bruijn style, LCF-style and batch-mode interaction

QED 15 years later?

- Success of the Wiki approach
 - Collaborative approach as a good way of developing bodies of shared knowledge
- Semantic Web technology can provide the presentation layer
- Proof assistants provide mathematical semantics
 - Solid systems
 - Substantial formal developments
 - Coverage of a wide range of Proof Assistants:
 - initial proposed ones: Coq, Isabelle and Mizar
 - Type Theory, Higher Order Logic and Set Theory
 - classical and intuitionistic
 - de Bruijn style, LCF-style and batch-mode interaction

▶ Web 2.0

Future plans

other proof display styles

other logics

- modal logics
- temporal logics
- logic in Dijkstra style

MathWiki