Common Grounds for Modeling Mathematics in Educational Software

Introduction to the Special Track "Convergence on Math Assistants"

Walther Neuper

Institute for Softwaretechnology Graz University of Technology

CADGME at Hagenberg Jul.11 09

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

Variety of Mathematics Assistants (MAs)

- MAs and Doing Mathematics
- Example: Bending Lines
- MAs and In/Formal Mathematics

- "Step" as a "Most General Unifier" ?
- Formalized (= Coded !) Contexts
- Human Part in Doing Mathematics

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

< < >> < </>

Outline

- MAs and Doing Mathematics
- Example: Bending Lines
- MAs and In/Formal Mathematics

- Step" as a "Most General Unifier" ?
- Formalized (= Coded !) Contexts
- Human Part in Doing Mathematics

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

イロト イポト イヨト イヨト

MAs and Doing Mathematics

Do mathematics at high school ...

Computer Support	Categories of Doing
	(1) Model:
Simulation tools	identify objects, relations,
Coach, InLot	determine methods,
	(2) Operate:
CAS	calculate, simplify, solve,
	differentiate, integrate,
CAS: function graphs	(3) Interpret:
DGS !	place results in context
Spreadsheets	relate (recur ?) to (1)
	(4) Communicate:
Presentation tools	present, discuss,
Internet	argument, reason

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

프 🖌 🛪 프 🕨

э

MAs and Doing Mathematics

Do mathematics at high school ...

Computer Support	Categories of Doing
	(1) Model:
Simulation tools	identify objects, relations,
Coach, InLot	determine methods,
	(2) Operate:
CAS	calculate, simplify, solve,
	differentiate, integrate,
CAS: function graphs	(3) Interpret:
DGS !	place results in context
Spreadsheets	relate (recur ?) to (1)
	(4) Communicate:
Presentation tools	present, discuss,
Internet	argument, reason

Outline

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

< < >> < </>

Variety of Mathematics Assistants (MAs)

- MAs and Doing Mathematics
- Example: Bending Lines
- MAs and In/Formal Mathematics

- Step" as a "Most General Unifier" ?
- Formalized (= Coded !) Contexts
- Human Part in Doing Mathematics

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

イロト イポト イヨト イヨト

Example: Bending Lines

From a textbook for Technical High Schools (HTL)

Determine the beding line of a beam of length L, which consists of homogenous material, which is clamped on one side and which is under constant line load q_0 .

Hint: Use the constraints y(0) = 0, y'(0) = 0, $V(0) = q_0 \cdot L$, $M_b(L) = 0$.

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

Outline

Variety of Mathematics Assistants (MAs)

- MAs and Doing Mathematics
- Example: Bending Lines
- MAs and In/Formal Mathematics

- Step" as a "Most General Unifier" ?
- Formalized (= Coded !) Contexts
- Human Part in Doing Mathematics

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

ヘロト 人間 ト ヘヨト ヘヨト

3

MAs and In/Formal Mathematics

Do mathematics at high school ...

Simulation tools Coach, InLot	(1) Model: identify objects, relations, determine methods,	specify formally
CAS	(2) Operate: calculate, simplify, solve, differentiate, integrate,	prove theorems ? do steps and justify
CAS: function graphs DGS ! Spreadsheets	(3) Interpret: place results in context relate (recur ?) to (1)	
Presentation tools Internet	(4) Communicate: present, discuss, argument, reason	

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

ヘロト 人間 ト ヘヨト ヘヨト

3

MAs and In/Formal Mathematics

Do mathematics at high school ...

(1) Model:	
identify objects, relations,	
determine methods,	
(2) Operate:	prove theorems ?
calculate, simplify, solve,	
differentiate, integrate,	
(3) Interpret:	
place results in context	
relate (recur ?) to (1)	
(4) Communicate:	
present, discuss,	
argument, reason	
	 (1) Model: identify objects, relations, determine methods, (2) Operate: calculate, simplify, solve, differentiate, integrate, (3) Interpret: place results in context relate (recur ?) to (1) (4) Communicate: present, discuss, argument, reason

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

ヘロト 人間 ト ヘヨト ヘヨト

3

MAs and In/Formal Mathematics

Do mathematics at high school ...

intuitively, informally		formally
	(1) Model:	10 C 11
Simulation tools	identify objects, relations,	
Coach, InLot	determine methods,	
	(2) Operate:	prove theorems ?
CAS	calculate, simplify, solve,	
	differentiate, integrate,	
CAS: function graphs	(3) Interpret:	
DGS !	place results in context	
Spreadsheets	relate (recur ?) to (1)	
	(4) Communicate:	
Presentation tools	present, discuss,	
Internet	argument, reason	

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

ヘロト 人間 ト ヘヨト ヘヨト

3

MAs and In/Formal Mathematics

Do mathematics at high school ...

intuitively, informally		formally
	(1) Model:	
Simulation tools	identify objects, relations,	
Coach, InLot	determine methods,	
	(2) Operate:	prove theorems ?
CAS	calculate, simplify, solve,	
	differentiate, integrate,	
CAS: function graphs	(3) Interpret:	
DGS !	place results in context	
Spreadsheets	relate (recur ?) to (1)	
	(4) Communicate:	
Presentation tools	present, discuss,	
Internet	argument, reason	

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

ヘロト 人間 ト ヘヨト ヘヨト

3

MAs and In/Formal Mathematics

Do mathematics at high school ...

intuitively, informally		formally
	(1) Model:	
Simulation tools	identify objects, relations,	
Coach, InLot	determine methods,	
	(2) Operate:	prove theorems ?
CAS	calculate, simplify, solve,	
	differentiate, integrate,	do steps and justify
CAS: function graphs	(3) Interpret:	
DGS !	place results in context	
Spreadsheets	relate (recur ?) to (1)	
	(4) Communicate:	
Presentation tools	present, discuss,	
Internet	argument, reason	

MAs and Doing Mathematics Example: Bending Lines MAs and In/Formal Mathematics

ヘロト 人間 ト ヘヨト ヘヨト

3

MAs and In/Formal Mathematics

Do mathematics at high school ...

intuitively, informally		formally
	(1) Model:	
Simulation tools	identify objects, relations,	specify formally
Coach, InLot	determine methods,	
	(2) Operate:	prove theorems ?
CAS	calculate, simplify, solve,	
	differentiate, integrate,	do steps and justify
CAS: function graphs	(3) Interpret:	
DGS !	place results in context	
Spreadsheets	relate (recur ?) to (1)	
	(4) Communicate:	
Presentation tools	present, discuss,	
Internet	argument, reason	

"Step" as a "Most General Unifier" ? Formalized (= Coded !) Contexts Human Part in Doing Mathematics

Outline

Variety of Mathematics Assistants (MAs)

- MAs and Doing Mathematics
- Example: Bending Lines
- MAs and In/Formal Mathematics

- "Step" as a "Most General Unifier" ?
- Formalized (= Coded !) Contexts
- Human Part in Doing Mathematics

A "Step" in doing math

A *step* starts from a *Context* and produces a result which can be **justified**

step : Context \times State \times Interact \longrightarrow Context \times State \times Result

... where State concerns technicalities of MAs and

Interaction: compound operation

- draw a geometric object (e.g. ortho-center of a triangle)
- call a CAS command (e.g. *Integrate* $x^3 + x^2 + x + 1 dx$)
- . . .

atomic operation

- substitute a value for a variable
- apply a rule (e.g. $\int 2x \, dx = x^2 + c$) to transform a formula

• . . .

A "Step" in doing math

A *step* starts from a *Context* and produces a result which can be **justified**

 $\textit{step}:\textit{Context} \times \textit{State} \times \textit{Interact} \longrightarrow \textit{Context} \times \textit{State} \times \textit{Result}$

... where State concerns technicalities of MAs and

Interaction: compound operation

- draw a geometric object (e.g. ortho-center of a triangle)
- call a CAS command (e.g. *Integrate* $x^3 + x^2 + x + 1 dx$)
- ...

atomic operation

- substitute a value for a variable
- apply a rule (e.g. $\int 2x \, dx = x^2 + c$) to transform a formula

• . . .

A "Step" in doing math

A *step* starts from a *Context* and produces a result which can be **justified**

 $\textit{step}:\textit{Context} \times \textit{State} \times \textit{Interact} \longrightarrow \textit{Context} \times \textit{State} \times \textit{Result}$

... where State concerns technicalities of MAs and

Interaction: compound operation

- draw a geometric object (e.g. ortho-center of a triangle)
- call a CAS command (e.g. *Integrate* $x^3 + x^2 + x + 1 dx$)
- . . .

atomic operation

- substitute a value for a variable
- apply a rule (e.g. $\int 2x \, dx = x^2 + c$) to transform a formula

• . . .

A "Step" in doing math

A *step* starts from a *Context* and produces a result which can be **justified** ...

 $\textit{step}:\textit{Context} \times \textit{State} \times \textit{Interact} \longrightarrow \textit{Context} \times \textit{State} \times \textit{Result}$

... where State concerns technicalities of MAs and

Interaction: compound operation

- draw a geometric object (e.g. ortho-center of a triangle)
- call a CAS command (e.g. *Integrate* $x^3 + x^2 + x + 1 dx$)
- ... atomic operation
- substitute a value for a variable
- apply a rule (e.g. $\int 2x \, dx = x^2 + c$) to transform a formula

• ...

A "Step" in doing math

A *step* starts from a *Context* and produces a result which can be **justified** ...

 $\textit{step}:\textit{Context} \times \textit{State} \times \textit{Interact} \longrightarrow \textit{Context} \times \textit{State} \times \textit{Result}$

... where State concerns technicalities of MAs and

Interaction: compound operation

- draw a geometric object (e.g. ortho-center of a triangle)
- call a CAS command (e.g. *Integrate* $x^3 + x^2 + x + 1 dx$)
- ... atomic operation
- substitute a value for a variable
- apply a rule (e.g. $\int 2x \, dx = x^2 + c$) to transform a formula
- ...

"Step" as a "Most General Unifier" ? Formalized (= Coded !) Contexts Human Part in Doing Mathematics

Outline

Variety of Mathematics Assistants (MAs)

- MAs and Doing Mathematics
- Example: Bending Lines
- MAs and In/Formal Mathematics

- "Step" as a "Most General Unifier" ?
- Formalized (= Coded !) Contexts
- Human Part in Doing Mathematics

イロト イポト イヨト イヨト

Formal specification

Specification of the problem on the bending line:

- in : length L, function q_0
- pre : $L > 0 \land q_0$ is_integrable_in x
- out : function y(x)
- *post* : $y(0) = 0 \land y'(0) = 0 \land V(0) = q_0 L \land M_b(L) = 0$

where V and M_b are constant function symbols in the theory of "bending lines".

Formal Specification required for mechanical steps !

ヘロト ヘ戸ト ヘヨト ヘヨト

Formal specification

Specification of the problem on the bending line:

- in : length L, function q_0
- pre : $L > 0 \land q_0$ is_integrable_in x
- out : function y(x)
- post : $y(0) = 0 \land y'(0) = 0 \land V(0) = q_0 L \land M_b(L) = 0$

where V and M_b are constant function symbols in the theory of "bending lines".

Formal Specification required for mechanical steps !

"Step" as a "Most General Unifier" ? Formalized (= Coded !) Contexts Human Part in Doing Mathematics

< □ > < □ > < □

Outline

Variety of Mathematics Assistants (MAs)

- MAs and Doing Mathematics
- Example: Bending Lines
- MAs and In/Formal Mathematics

- "Step" as a "Most General Unifier" ?
- Formalized (= Coded !) Contexts
- Human Part in Doing Mathematics

ヘロト 人間 とくほとくほとう

The human part in formulas

(i) Problem solving creates a *Result*:

 $\textit{solve}:\textit{Theory} \times \textit{Context} \times \textit{Specification} \longrightarrow \textit{Context} \times \textit{Result}$

where Specification = Input × Precondition × OutputVar × Postcondition and post(in, res) holds for pre(in)

(ii) Theorem proving constructs a *Theorem*:

 $\textit{prove}: \textit{Theory} \times \textit{Context} \times \textit{Predicate} \longrightarrow \textit{Theory} \times \textit{Theorem}$

(i) expands knowledge *outside* the formal model - "applied mat"
 (ii) expands knowledge *within* the formal domain – "pure math"

ヘロン ヘアン ヘビン ヘビン

The human part in formulas

(i) Problem solving creates a *Result*:

 $\textit{solve}:\textit{Theory} \times \textit{Context} \times \textit{Specification} \longrightarrow \textit{Context} \times \textit{Result}$

where

 $Specification = Input \times Precondition \times Output Var \times Postcondition$ and post(in, res) holds for pre(in)

(ii) Theorem proving constructs a *Theorem*:

 $\textit{prove}:\textit{Theory} \times \textit{Context} \times \textit{Predicate} \longrightarrow \textit{Theory} \times \textit{Theorem}$

(i) expands knowledge *outside* the formal model - "applied mat"
 (ii) expands knowledge *within* the formal domain – "pure math"

ヘロア 人間 アメヨア 人口 ア

The human part in formulas

(i) Problem solving creates a *Result*:

 $\textit{solve}:\textit{Theory} \times \textit{Context} \times \textit{Specification} \longrightarrow \textit{Context} \times \textit{Result}$

where

 $Specification = Input \times Precondition \times Output Var \times Postcondition$ and post(in, res) holds for pre(in)

(ii) Theorem proving constructs a *Theorem*:

 $\textit{prove}:\textit{Theory} \times \textit{Context} \times \textit{Predicate} \longrightarrow \textit{Theory} \times \textit{Theorem}$

(i) expands knowledge *outside* the formal model - "applied mat"(ii) expands knowledge *within* the formal domain - "pure math"

ヘロト 人間 ト ヘヨト ヘヨト

The human part in formulas

(i) Problem solving creates a *Result*:

 $\textit{solve}:\textit{Theory} \times \textit{Context} \times \textit{Specification} \longrightarrow \textit{Context} \times \textit{Result}$

where

 $Specification = Input \times Precondition \times Output Var \times Postcondition$ and post(in, res) holds for pre(in)

(ii) Theorem proving constructs a *Theorem*:

 $\textit{prove}:\textit{Theory} \times \textit{Context} \times \textit{Predicate} \longrightarrow \textit{Theory} \times \textit{Theorem}$

(i) expands knowledge *outside* the formal model - "applied mat"(ii) expands knowledge *within* the formal domain – "pure math"

"Common Grounds" ? Some particular answers ...:

- Convergence on concepts for learning with MAs ?
 - Step is a basic notion, less or more formal !
 - • •
- Onvergence on technology of MAs ?
 - Serve MAs with Logic-based math-engines !
 - • •
- Onvergence on principles of e-learning ?
 - We need a formal domain model of e-learning !
 - • •

... looking forward to many other answers in the track !

"Common Grounds" ? Some particular answers ...:

- Convergence on concepts for learning with MAs ?
 - Step is a basic notion, less or more formal !
 - • •
- Convergence on technology of MAs ?
 - Serve MAs with Logic-based math-engines !
 - • •
- Onvergence on principles of e-learning ?
 - We need a formal domain model of e-learning !
 - • •

... looking forward to many other answers in the track !

"Common Grounds" ? Some particular answers ...:

- Convergence on concepts for learning with MAs ?
 - Step is a basic notion, less or more formal !
 - ...
- Convergence on technology of MAs ?
 - Serve MAs with Logic-based math-engines !
 - • •
- Onvergence on principles of e-learning ?
 - We need a formal domain model of e-learning !
 - • •

... looking forward to many other answers in the track !

"Common Grounds" ? Some particular answers ...:

- Convergence on concepts for learning with MAs ?
 - Step is a basic notion, less or more formal !
 - ...
- Onvergence on technology of MAs ?
 - Serve MAs with Logic-based math-engines !
 - ...
- Onvergence on principles of e-learning ?
 - We need a formal domain model of e-learning !
 - • •

... looking forward to many other answers in the track !

(日)

"Common Grounds" ? Some particular answers ...:

- Convergence on concepts for learning with MAs ?
 - Step is a basic notion, less or more formal !
 - ...
- Onvergence on technology of MAs ?
 - Serve MAs with Logic-based math-engines !
 - ...
- Onvergence on principles of e-learning ?
 - We need a formal domain model of e-learning !
 - ...

... looking forward to many other answers in the track !

"Common Grounds" ? Some particular answers ...:

- Convergence on concepts for learning with MAs ?
 - Step is a basic notion, less or more formal !
 - ...
- Onvergence on technology of MAs ?
 - Serve MAs with Logic-based math-engines !
 - ...
- Onvergence on principles of e-learning ?
 - We need a formal domain model of e-learning !
 - ...

... looking forward to many other answers in the track !