The Isabelle/Isar framework as a "logical operating system"

Makarius Wenzel TU München

July 2009

- 1. Isabelle/Pure framework
- 2. Isabelle/Isar language environment
- 3. Some system infrastructure

Introduction

Isabelle characteristics

- Fully-foundational mathematics: formal checking of definition—statement—proof
- Interactive proof development
- Explicit deduction with "correctness by construction" the "LCF approach" (Robin Milner 1979)
- Integration with SML
- Managed transactions and parallel processing
- Forthcoming integration into Scala/JVM

Isabelle/Pure

Pure logical framework (Paulson 1989)

Formal system: 3 levels of λ -calculus

 $\begin{array}{ll} \alpha \Rightarrow \beta & \mbox{terms depending on terms} \\ \bigwedge x. \ B \ x & \mbox{proofs depending on terms} \\ A \Longrightarrow B & \mbox{proofs depending on proofs} \end{array}$

Rule composition: via higher-order unification *resolution*: mixed forward-back chaining *assumption*: closing branches

Isabelle/Pure

Example

Proof script:

theorem example: $A \wedge B \rightarrow B \wedge A$ apply (rule impI) apply (erule conjE) apply (rule conjI) apply assumption apply assumption done

Proof term:

 $impI \cdot A \wedge B \cdot B \wedge A \cdot (\lambda H: A \wedge B).$ $(\lambda H: A \wedge B).$ $conjE \cdot A \cdot B \cdot B \wedge A \cdot H \cdot (\lambda (H: A) Ha: B. conjI \cdot B \cdot A \cdot Ha \cdot H))$

Example — ML version

```
ML (( val goal = Goal.init @\{cprop \ A \land B \to B \land A\} ))
ML 巜
  val results = goal |>
   (rtac @{thm impI} 1 THEN
    etac @\{thm \ conjE\} 1 THEN
    rtac @{thm conjI} 1 THEN
    atac 1 THEN
    atac 1) \rangle\rangle
ML 巜
  val thm = 
    (case Seq.pull results of
      NONE => error "Proof failed"
     | SOME (result, _) => Goal.finish result) \rangle\rangle
```

Isabelle/Pure architecture (\approx LCF)

- *term*: simple-typed λ -calculus (modulo $\alpha\beta\eta$ conversion)
- *theory*: monotonic environment, formal certificates
- thm: derivable propositions, relative to theory
- *rule*: forward inferences $thm \rightarrow thm$ or $thm \rightarrow thm \rightarrow thm$ etc.
- *goal*, *tactic*: Prolog-style backward reasoning

Isabelle/Isar

Example

```
theorem A \wedge B \rightarrow B \wedge A
proof
  assume A \wedge B
  show B \wedge A
  proof
    show B using \langle A \land B \rangle ..
    show A using \langle A \land B \rangle ...
  qed
qed
theorem A \wedge B \rightarrow B \wedge A
proof
  assume A \wedge B
  then obtain B and A...
  then show B \wedge A...
qed
```

Isar proof language (Wenzel 1999)

Main idea: Pure rules turned into proof schemes
from facts1 have props using facts2
proof (rule)
 body
qed (finish)

Solving sub-problems: within *body*

fix *vars* assume *props* show *props* $\langle proof \rangle$

Abbreviations: for example

Example

```
theorem Knaster-Tarski:
 fixes f :: 'a::complete-lattice \Rightarrow 'a
 assumes mono f shows \exists a. f a = a
proof
 let ?H = \{u. f u \leq u\} let ?a = \prod ?H
 show f ?a = ?a
 proof (rule order-antisym)
   show f ?a < ?a
   proof (rule Inf-greatest)
     fix x assume x \in ?H then have ?a \leq x by (rule Inf-lower)
     with \langle mono f \rangle have f ?a \leq f x...
     also from \langle x \in \ ?H \rangle have \ldots \leq x .. finally show f \ ?a \leq x .
   qed
   show ?a < f ?a
   proof (rule Inf-lower)
     from (mono f) and (f ? a \leq ? a) have f(f ? a) \leq f ? a.
     then show f ?a \in ?H ...
   qed
 qed
qed
```

Main Isar concepts

Derived language elements (Pure + HOL library)

Definitions:

- simple definitions: **definition**, **abbreviation**
- (co)inductive sets and predicates: inductive, coinductive
- recusive functions: **primrec**, **function**
- datatypes: datatype, record

Statements:

- introductions: theorem fixes x assumes A x shows B x
- eliminations: theorem obtains x where B x Proofs:
- generalized elimination: obtain x where B x
- calculational reasoning: also, finally, moreover, ultimately
- structured induction: **case**, *induct* method

Example: derived elements

```
inductive path for rel :: a \Rightarrow a \Rightarrow bool where
base: path rel x x
| step: rel x y \Longrightarrow path rel y z \Longrightarrow path rel x z
```

theorem

```
fixes rel and x z
assumes path rel x z
shows P x z using assms
proof induct
case (base x)
show P x x \langle proof \rangle
next
case (step x y z)
note \langle rel x y \rangle and \langle path rel y z \rangle and \langle P y z \rangle
then show P x z \langle proof \rangle
qed
```

Some system infrastructure

Local theory specifications

Motivation:

- infrastructure for organizing definitions and proofs
- separation of concerns:
 - 1. definitional packages (e.g. inductive, primrec, function)
 - 2. target mechanisms (e.g. locale, class, instantiation)
 - \rightarrow large product space: *definitions* \times *targets*
- simplification and generalization of Isabelle/Isar concepts

Example

locale relation = **fixes** rel :: $a \Rightarrow a \Rightarrow bool$ **assumes** sym: rel x y \Longrightarrow rel y x **begin**

inductive *path* where

 $base: path rel x x \\ | step: rel x y \Longrightarrow path rel y z \Longrightarrow path rel x z$

theorem

```
fixes x z
assumes path rel x z
shows path rel z x
\langle proof \rangle
```

end

Some system infrastructure

Local theory infrastructure

Context-dependent specifications:

	λ -binding	<i>let</i> -binding
types	fixed α	arbitrary eta
terms	fix $x :: au$	define $c \equiv t[x]$
theorems	assume a: A	note $b = \langle B[x] \rangle$

Local theory infrastructure:

- target mechanism moves specifications between contexts
- target can modify type-discipline ("user-space type system")

Parallel proof checking

Proof document structure:

- 1. definitions and statements
 - fast checking (1%)
 - sequential dependency (worst case)
- 2. proofs
 - slow checking (99%)
 - irrelevant \rightarrow independent \rightarrow parallel checking (best case)

```
lemma a: A\langle proof \ranglelemma b: B\langle proof \ranglelemma c: C\langle proof \rangle
```

Practical speedup: max. 3.2 on 4 cores **Future impact:** asynchronous interaction model

Scala/JVM system integration

Conceptual view:

Implementation view:

- bridge SML Scala/JVM
- support GUIs, IDEs, application servers etc.
- advanced document model: parallel checking, asynchronous interaction

- public API, private protocol
- integral part of future Isabelle distributions

Conclusion

Isabelle 1989: Pure logical framework

Isabelle 2009: general system framework for logic-based applications (example: Isabelle/HOL)

After 20 years still a lot of potential for further development . . .