
The Isabelle/Isar framework
as a “logical operating system”

Makarius Wenzel
TU München

July 2009

1. Isabelle/Pure framework

2. Isabelle/Isar language environment

3. Some system infrastructure

Introduction

Isabelle characteristics

• Fully-foundational mathematics:
formal checking of definition—statement—proof

• Interactive proof development

• Explicit deduction with “correctness by construction”
the “LCF approach” (Robin Milner 1979)

• Integration with SML

• Managed transactions and parallel processing

• Forthcoming integration into Scala/JVM

Introduction 2

Isabelle/Pure

Pure logical framework (Paulson 1989)

Formal system: 3 levels of λ-calculus

α ⇒ β terms depending on terms∧
x . B x proofs depending on terms

A =⇒ B proofs depending on proofs

Rule composition: via higher-order unification

resolution: mixed forward-back chaining

assumption: closing branches

Note: arbitrary nesting of rules, e.g. mathematical induction

P 0

[n][P n]....
P (Suc n)
P n P 0 =⇒ (

V
n. P n =⇒ P (Suc n)) =⇒ P n

Isabelle/Pure 4

Example

Proof script:

theorem example: A ∧ B → B ∧ A
apply (rule impI)
apply (erule conjE)

apply (rule conjI)
apply assumption

apply assumption
done

Proof term:

impI · A ∧ B · B ∧ A ·
(λH : A ∧ B .

conjE · A · B · B ∧ A · H · (λ(H : A) Ha: B . conjI · B · A · Ha · H))

Isabelle/Pure 5

Example — ML version

ML 〈〈 val goal = Goal.init @{cprop A ∧ B → B ∧ A} 〉〉

ML 〈〈
val results = goal |>
(rtac @{thm impI} 1 THEN
etac @{thm conjE} 1 THEN
rtac @{thm conjI} 1 THEN
atac 1 THEN
atac 1) 〉〉

ML 〈〈
val thm =

(case Seq.pull results of
NONE => error "Proof failed"

| SOME (result, _) => Goal.finish result) 〉〉

Isabelle/Pure 6

Isabelle/Pure architecture (≈ LCF)

term

thm rule

tacticgoal

theory

values states operations

• term: simple-typed λ-calculus (modulo αβη conversion)

• theory : monotonic environment, formal certificates

• thm: derivable propositions, relative to theory

• rule: forward inferences thm → thm or thm → thm → thm etc.

• goal, tactic: Prolog-style backward reasoning

Isabelle/Pure 7

Isabelle/Isar

Example

theorem A ∧ B → B ∧ A
proof

assume A ∧ B
show B ∧ A
proof

show B using 〈A ∧ B 〉 ..
show A using 〈A ∧ B 〉 ..

qed
qed

theorem A ∧ B → B ∧ A
proof

assume A ∧ B
then obtain B and A ..
then show B ∧ A ..

qed

Isabelle/Isar 9

Isar proof language (Wenzel 1999)

Main idea: Pure rules turned into proof schemes

from facts1 have props using facts2

proof (rule)
body

qed (finish)

Solving sub-problems: within body
fix vars
assume props
show props 〈proof 〉

Abbreviations: for example

by (method1) (method2) ≡ proof (method1) qed (method2)
.. ≡ by (rule)

then ≡ from this

Isabelle/Isar 10

Example

theorem Knaster-Tarski :
fixes f :: ′a::complete-lattice ⇒ ′a
assumes mono f shows ∃ a. f a = a

proof
let ?H = {u. f u ≤ u} let ?a =

d
?H

show f ?a = ?a
proof (rule order-antisym)

show f ?a ≤ ?a
proof (rule Inf-greatest)

fix x assume x ∈ ?H then have ?a ≤ x by (rule Inf-lower)
with 〈mono f 〉 have f ?a ≤ f x ..
also from 〈x ∈ ?H 〉 have . . . ≤ x .. finally show f ?a ≤ x .

qed
show ?a ≤ f ?a
proof (rule Inf-lower)

from 〈mono f 〉 and 〈f ?a ≤ ?a〉 have f (f ?a) ≤ f ?a ..
then show f ?a ∈ ?H ..

qed
qed

qed

Isabelle/Isar 11

Main Isar concepts

term

thm

attribute

methodproof-state

theory

context

toplevel command

data (private)

document

values states operations

Isabelle/Isar 12

Derived language elements (Pure + HOL library)

Definitions:

• simple definitions: definition, abbreviation

• (co)inductive sets and predicates: inductive, coinductive

• recusive functions: primrec, function

• datatypes: datatype, record

Statements:

• introductions: theorem fixes x assumes A x shows B x
• eliminations: theorem obtains x where B x
Proofs:

• generalized elimination: obtain x where B x
• calculational reasoning: also, finally, moreover, ultimately

• structured induction: case, induct method

Isabelle/Isar 13

Example: derived elements

inductive path for rel :: ′a ⇒ ′a ⇒ bool where
base: path rel x x
| step: rel x y =⇒ path rel y z =⇒ path rel x z

theorem
fixes rel and x z
assumes path rel x z
shows P x z using assms

proof induct
case (base x)

show P x x 〈proof 〉
next

case (step x y z)
note 〈rel x y〉 and 〈path rel y z 〉 and 〈P y z 〉
then show P x z 〈proof 〉

qed

Isabelle/Isar 14

Some system infrastructure

Local theory specifications

Motivation:

• infrastructure for organizing definitions and proofs

• separation of concerns:

1. definitional packages (e.g. inductive, primrec, function)
2. target mechanisms (e.g. locale, class, instantiation)

→ large product space: definitions × targets

• simplification and generalization of Isabelle/Isar concepts

Some system infrastructure 16

Example

locale relation =

fixes rel :: ′a ⇒ ′a ⇒ bool
assumes sym: rel x y =⇒ rel y x

begin

inductive path where
base: path rel x x
| step: rel x y =⇒ path rel y z =⇒ path rel x z

theorem
fixes x z
assumes path rel x z
shows path rel z x
〈proof 〉

end

Some system infrastructure 17

Local theory infrastructure

Context-dependent specifications:

λ-binding let-binding
types fixed α arbitrary β
terms fix x :: τ define c ≡ t [x]
theorems assume a: A note b = 〈B [x]〉

Local theory infrastructure:

auxiliary context target context background theory

• target mechanism moves specifications between contexts

• target can modify type-discipline (“user-space type system”)

Some system infrastructure 18

Parallel proof checking

Proof document structure:

1. definitions and statements

• fast checking (1%)
• sequential dependency (worst case)

2. proofs

• slow checking (99%)
• irrelevant → independent → parallel checking (best case)

lemma a: A 〈proof 〉
lemma b: B 〈proof 〉
lemma c: C 〈proof 〉

Practical speedup: max. 3.2 on 4 cores

Future impact: asynchronous interaction model

Some system infrastructure 19

Scala/JVM system integration

Conceptual view:

Editor: JVM Isabelle: SMLDocument
model

API API

• bridge SML — Scala/JVM

• support GUIs, IDEs, application
servers etc.

• advanced document model:
parallel checking, asynchronous
interaction

Implementation view:
Editor: JVM Isabelle: SML

internalAPI API

S
ca

la

S
M

L

protocol • public API, private protocol

• integral part of future Isabelle
distributions

Some system infrastructure 20

Conclusion

Isabelle 1989: Pure logical framework

Isabelle 2009: general system framework for logic-based applications

(example: Isabelle/HOL)

After 20 years still a lot of potential for further development . . .

Some system infrastructure 21

