Verification techniques for cryptographic protocols

Véronique Cortier¹

RTA'08

¹LORIA, CNRS - INRIA Cassis project, Nancy Universities

Context A famous attack

Context : cryptographic protocols

- Widely used : web (SSH, SSL, ...), pay-per-view, electronic purse, mobile phone, ...
- Should ensure : confidentiality, authenticity, integrity, anonymity, ...

(*) *) *) *)

A 10

Context A famous attack

Context : cryptographic protocols

- Widely used : web (SSH, SSL, ...), pay-per-view, electronic purse, mobile phone, ...
- Should ensure : confidentiality, authenticity, integrity, anonymity, ...
- Presence of an attacker
 - may read every message sent on the net,
 - may intercept and send new messages.

4 B 6 4 B

Context A famous attack

Example : Credit Card Payment Protocol

- The waiter introduces the credit card.
- The waiter enters the amount *m* of the transaction on the terminal.
- The terminal authenticates the card.
- The customer enters his secret code. If the amount *m* is greater than 100 euros (and in only 20% of the cases)
 - The terminal asks the bank for authentication of the card.
 - The bank provides authentication.

Context A famous attack

More details

4 actors : Bank, Customer, Card and Terminal.

Bank owns

- a signing key K_B^{-1} , secret,
- a verification key K_B , public,
- a secret symmetric key for each credit card K_{CB}, secret.

Card owns

- Data : last name, first name, card's number, expiration date,
- Signature's Value $VS = {hash(Data)}_{K_{p}^{-1}}$,
- secret key K_{CB}.

Terminal owns the verification key K_B for bank's signatures.

(4月) イラト イラト

Context A famous attack

Credit card payment Protocol (in short)

The terminal reads the card :

1. Ca \rightarrow T : Data, {hash(Data)}_{K_B^{-1}}

A 10

A B + A B +

э

Context A famous attack

Credit card payment Protocol (in short)

The terminal reads the card :

1. Ca \rightarrow T : Data, {hash(Data)}_{K_R^{-1}}

The terminal asks for the secret code :

2. $T \rightarrow Cu$: secret code? 3. $Cu \rightarrow Ca$: 1234 4. $Ca \rightarrow T$: ok

Context A famous attack

Credit card payment Protocol (in short)

The terminal reads the card :

1. Ca \rightarrow T : Data, {hash(Data)}_{K_R^{-1}}

The terminal asks for the secret code :

2. $T \rightarrow Cu$: secret code? 3. $Cu \rightarrow Ca$: 1234 4. $Ca \rightarrow T$: ok

The terminal calls the bank :

5.
$$T \rightarrow B$$
: auth?
6. $B \rightarrow T$: N_b
7. $T \rightarrow Ca$: N_b
8. $Ca \rightarrow T$: $\{N_b\}_{K_{CB}}$
9. $T \rightarrow B$: $\{N_b\}_{K_{CB}}$
10. $B \rightarrow T$: ok

Context A famous attack

Some flaws

The security was initially ensured by :

- the cards were very difficult to reproduce,
- the protocol and the keys were secret.

But

- cryptographic flaw : 320 bits keys can be broken (1988),
- logical flaw : no link between the secret code and the authentication of the card,
- fake cards can be build.

Context A famous attack

Some flaws

The security was initially ensured by :

- the cards were very difficult to reproduce,
- the protocol and the keys were secret.

But

- cryptographic flaw : 320 bits keys can be broken (1988),
- logical flaw : no link between the secret code and the authentication of the card,
- fake cards can be build.

 \rightarrow "YesCard" build by Serge Humpich (1998).

Context A famous attack

How does the "YesCard" work?

Logical flaw

- 1. Ca $\rightarrow T$: Data, {hash(Data)}_{K_2}⁻¹
- 2. $T \rightarrow Ca$: secret code?
- 3. $Cu \rightarrow Ca$: 1234
- 4. Ca \rightarrow T : ok

伺 ト く ヨ ト く ヨ ト

3

Context A famous attack

How does the "YesCard" work?

Logical flaw

- 1. Ca $\rightarrow T$: Data, {hash(Data)}_{K_2}⁻¹
- 2. $T \rightarrow Ca$: secret code?
- 3. $Cu \rightarrow Ca'$: 2345
- 4. $Ca' \rightarrow T$: ok

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Context A famous attack

How does the "YesCard" work?

Logical flaw

1. $Ca \rightarrow T$: Data, $\{hash(Data)\}_{K_B^{-1}}$ 2. $T \rightarrow Ca$: secret code? 3. $Cu \rightarrow Ca'$: 2345 4. $Ca' \rightarrow T$: ok

Remark : there is always somebody to debit. \rightarrow creation of a fake card (Serge Humpich).

Context A famous attack

How does the "YesCard" work?

Logical flaw

1. $Ca \rightarrow T$: Data, $\{hash(Data)\}_{K_B^{-1}}$ 2. $T \rightarrow Ca$: secret code? 3. $Cu \rightarrow Ca'$: 2345 4. $Ca' \rightarrow T$: ok

Remark : there is always somebody to debit. \rightarrow creation of a fake card (Serge Humpich).

1.
$$Ca' \rightarrow T$$
 : XXX, $\{hash(XXX)\}_{K_B^{-1}}$
2. $T \rightarrow Cu$: secret code?
3. $Cu \rightarrow Ca'$: 0000
4. $Ca' \rightarrow T$: ok

Introduction

Formal models Adding equational theories Towards more guarantees Context A famous attack

Outline of the talk

Introduction

- Context
- A famous attack

Formal models

- Intruder
- Protocol
- Solving constraint systems
- A survey of results

3 Adding equational theories

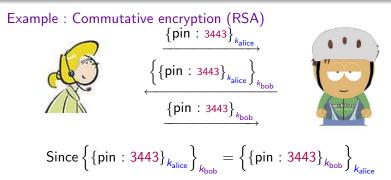
- Motivation
- Intruder problem
- Some results
- 4 Towards more guarantees
 - Cryptographic models
 - Linking Formal and cryptographic models
 - Conclusion

Intruder Protocol Solving constraint systems A survey of results

Motivation : Cryptography does not suffice to ensure security !

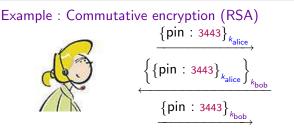
$\begin{array}{l} \mbox{Example : Commutative encryption (RSA)} \\ \mbox{ {pin : 3443}}_{k_{alice}} \end{array}$

Intruder Protocol Solving constraint systems A survey of results


Motivation : Cryptography does not suffice to ensure security !

Example : Commutative encryption (RSA) $\underbrace{\{\text{pin : 3443}\}_{k_{\text{alice}}}}_{\{\text{pin : 3443}\}_{k_{\text{alice}}}}\}_{k_{\text{blice}}}$

Intruder Protocol Solving constraint systems A survey of results


Motivation : Cryptography does not suffice to ensure security!

-∢ ≣ ▶

Intruder Protocol Solving constraint systems A survey of results

Motivation : Cryptography does not suffice to ensure security!

 \rightarrow It does not work! (Authentication problem)

Intruder Protocol Solving constraint systems A survey of results

Motivation : Cryptography does not suffice to ensure security !

Example : Commutative encryption (RSA) $\frac{\{\text{pin : 3443}\}_{k_{\text{alice}}}}{\{\{\text{pin : 3443}\}_{k_{\text{alice}}}\}_{k_{\text{bob}}}}$

 \rightarrow It does not work ! (Authentication problem)

$$\frac{\{\text{pin}: 3443\}_{k_{\text{alice}}}}{\{\{\text{pin}: 3443\}_{k_{\text{alice}}}\}_{k_{\text{intruder}}}}$$

Intruder Protocol Solving constraint systems A survey of results

Messages

Messages are abstracted by terms.

Agents : a, b, \ldots Nonces : n_1, n_2, \ldots Keys : k_1, k_2, \ldots Cyphertext : $\{m\}_k$ Concatenation : $\langle m_1, m_2 \rangle$

Example : The message $\{A, N_a\}_K$ is represented by :

-∢ ≣ ▶

Intruder Protocol Solving constraint systems A survey of results

Intruder abilities

Composition rules

$$\frac{T \vdash u \quad T \vdash v}{T \vdash \langle u, v \rangle} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enc}(u, v)} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enca}(u, v)}$$

(日) (同) (三) (三)

э

Intruder Protocol Solving constraint systems A survey of results

Intruder abilities

Composition rules

$$\frac{T \vdash u \quad T \vdash v}{T \vdash \langle u, v \rangle} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enc}(u, v)} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enca}(u, v)}$$

Decomposition rules

$$\frac{1}{T \vdash u} u \in T \qquad \frac{T \vdash \langle u, v \rangle}{T \vdash u} \qquad \frac{T \vdash \langle u, v \rangle}{T \vdash v}$$

$$\frac{T \vdash \operatorname{enc}(u, v) \quad T \vdash v}{T \vdash u} \qquad \frac{T \vdash \operatorname{enca}(u, \operatorname{pub}(v)) \quad T \vdash \operatorname{priv}(v)}{T \vdash u}$$

(日) (同) (三) (三)

э

Intruder Protocol Solving constraint systems A survey of results

Intruder abilities

Composition rules

$$\frac{T \vdash u \quad T \vdash v}{T \vdash \langle u, v \rangle} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enc}(u, v)} \quad \frac{T \vdash u \quad T \vdash v}{T \vdash \operatorname{enca}(u, v)}$$

Decomposition rules

$$\frac{}{T \vdash u} u \in T \qquad \frac{T \vdash \langle u, v \rangle}{T \vdash u} \qquad \frac{T \vdash \langle u, v \rangle}{T \vdash v}$$

$$\frac{T \vdash \mathsf{enc}(u, v) \quad T \vdash v}{T \vdash u} \qquad \frac{T \vdash \mathsf{enca}(u, \mathsf{pub}(v)) \quad T \vdash \mathsf{priv}(v)}{T \vdash u}$$

Deducibility relation

A term u is deducible from a set of terms T, denoted by $T \vdash u$, if there exists a prooftree witnessing this fact.

Véronique Cortier

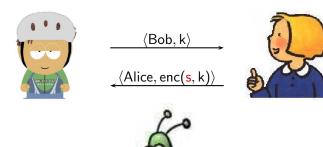
Verification techniques for cryptographic protocols

Intruder Protocol Solving constraint systems A survey of results

A simple protocol

 $\langle \mathsf{Bob}, \mathsf{k} \rangle$

 $\langle Alice, enc(s, k) \rangle$



(日) (同) (三) (三)

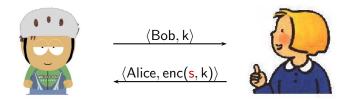
э

Intruder Protocol Solving constraint systems A survey of results

A simple protocol

Question?

Can the attacker learn the secret s?


12/45

Véronique Cortier

Verification techniques for cryptographic protocols

Intruder Protocol Solving constraint systems A survey of results

A simple protocol

Answer : Of course, Yes !

 $\begin{tabular}{c} \langle Alice, enc({\color{black}{s}}, k) \rangle & \langle Bob, k \rangle \\ \hline enc({\color{black}{s}}, k) & k \\ \hline \end{tabular}$

S

(日) (同) (三) (三)

э

Intruder Protocol Solving constraint systems A survey of results

Decision of the intruder problem

Given A set of messages S and a message m Question Can the intruder learn m from S that is $S \vdash m$?

This problem is decidable in polynomial time

4 3 b

Intruder Protocol Solving constraint systems A survey of results

Decision of the intruder problem

Given A set of messages S and a message m Question Can the intruder learn m from S that is $S \vdash m$?

This problem is decidable in polynomial time

Lemma (Locality)

If there is a proof of $S \vdash m$ then there is a proof that only uses the subterms of S and m.

- 4 同 6 4 日 6 4 日 6

Intruder Protocol Solving constraint systems A survey of results

Protocol description

Protocol :

$$\begin{array}{rcl} A \rightarrow B & : & \{ \text{pin} \}_{k_a} \\ B \rightarrow A & : & \{ \{ \text{pin} \}_{k_a} \}_{k_b} \\ A \rightarrow B & : & \{ \text{pin} \}_{k_b} \end{array}$$

A protocol is a finite set of roles :

role Π(1) corresponding to the 1st participant played by a talking to b :

$$\begin{array}{rcl} \text{init} & \stackrel{k_a}{\to} & \text{enc}(\text{pin}, k_a) \\ \text{enc}(\mathbf{x}, k_a) & \to & \mathbf{x}. \end{array}$$

E

Intruder Protocol Solving constraint systems A survey of results

Protocol description

Protocol :

$$\begin{array}{rcl} A \rightarrow B & : & \{ \text{pin} \}_{k_a} \\ B \rightarrow A & : & \{ \{ \text{pin} \}_{k_a} \}_{k_b} \\ A \rightarrow B & : & \{ \text{pin} \}_{k_b} \end{array}$$

A protocol is a finite set of roles :

role Π(1) corresponding to the 1st participant played by a talking to b :

$$\begin{array}{rcl} \text{init} & \stackrel{k_a}{\to} & \text{enc}(\text{pin}, k_a) \\ \text{enc}(\mathbf{x}, k_a) & \to & \mathbf{x}. \end{array}$$

 role Π(2) corresponding to the 2nd participant played by b with a :

$$\begin{array}{rcl} \mathbf{x} & \stackrel{k_b}{\to} & \mathrm{enc}(\mathbf{x}, k_b) \\ \mathrm{enc}(y, k_b) & \to & \mathrm{stop.} \end{array}$$

Intruder Protocol Solving constraint systems A survey of results

Secrecy via constraint solving

Constraint systems are used to specify secrecy preservation under a particular, finite scenario.

ScenarioConstraint System $\operatorname{rcv}(u_1) \xrightarrow{N_1} \operatorname{snd}(v_1)$ $T_0 \Vdash u_1$ $\operatorname{rcv}(u_2) \xrightarrow{N_2} \operatorname{snd}(v_2)$ $\mathcal{C} = \begin{cases} T_0 \Vdash u_1 \\ T_0, v_1 \Vdash u_2 \\ \dots \\ T_0, v_1 \Vdash u_2 \\ \dots \\ T_0, v_1, \dots, v_n \Vdash s \end{cases}$

Remark : Constraint Systems may be used more generally for trace-based properties, e.g. authentication.

Intruder Protocol Solving constraint systems A survey of results

Secrecy via constraint solving

Constraint systems are used to specify secrecy preservation under a particular, finite scenario.

Scenario

Constraint System

 $rcv(u_{1}) \xrightarrow{N_{1}} snd(v_{1})$ $rcv(u_{2}) \xrightarrow{N_{2}} snd(v_{2})$ \dots $rcv(u_{n}) \xrightarrow{N_{n}} snd(v_{n})$ $C = \begin{cases} T_{0} \Vdash u_{1} \\ T_{0}, v_{1} \Vdash u_{2} \\ \dots \\ T_{0}, v_{1}, \dots, v_{n} \Vdash s \end{cases}$

Solution of a constraint system

A substitution σ such that

for every $T \Vdash u \in C$, $u\sigma$ is deducible from $T\sigma$, that is $u\sigma \vdash T\sigma$.

Intruder Protocol Solving constraint systems A survey of results

How to solve constraint system?

Given
$$C = \begin{cases} T_0 \Vdash u_1 \\ T_0, v_1 \Vdash u_2 \\ \dots \\ T_0, v_1, \dots, v_n \Vdash u_{n+1} \end{cases}$$

Question Is there a solution σ of C?

-∢ ≣ →

э

Intruder Protocol Solving constraint systems A survey of results

How to solve constraint system?

Given
$$C = \begin{cases} T_0 \Vdash u_1 \\ T_0, v_1 \Vdash u_2 \\ \dots \\ T_0, v_1, \dots, v_n \Vdash u_{n+1} \end{cases}$$

Question Is there a solution σ of C?

Advertisement :

Lecture of Hubert Comon-Lundh at ISR 2008 next week

Intruder Protocol Solving constraint systems A survey of results

An easy case : "solved constraint systems"

Given
$$C = \begin{cases} T_0 \Vdash x_1 \\ T_0, v_1 \Vdash x_2 \\ \dots \\ T_0, v_1, \dots, v_n \Vdash x_{n+1} \end{cases}$$

Question Is there a solution σ of C?

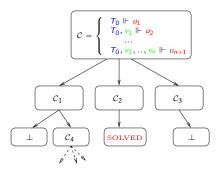
(日) (同) (三) (三)

Intruder Protocol Solving constraint systems A survey of results

An easy case : "solved constraint systems"

Given
$$C = \begin{cases} T_0 \Vdash x_1 \\ T_0, v_1 \Vdash x_2 \\ \dots \\ T_0, v_1, \dots, v_n \Vdash x_{n+1} \end{cases}$$

Question Is there a solution σ of C?


Of course yes! Consider e.g. $\sigma(x_1) = \cdots = \sigma(x_{n+1}) = t \in T_0$.

4 3 b

Intruder Protocol Solving constraint systems A survey of results

Decision procedure [Millen / Comon-Lundh]

Goal : Transformation of the constraints in order to obtain a solved constraint system.

 $\mathcal C$ has a solution iff $\mathcal C \rightsquigarrow \mathcal C'$ with $\mathcal C'$ in solved form.

Intruder Protocol Solving constraint systems A survey of results

Intruder step

The intruder can built messages

$$\begin{array}{cccc} R_5: & \mathcal{C} \land T \Vdash f(u,v) & \rightsquigarrow & \mathcal{C} \land T \Vdash u \land T \Vdash v \\ & \text{for } f \in \{\langle\rangle, \text{enc, enca}\} \end{array}$$

(日) (同) (三) (三)

Intruder Protocol Solving constraint systems A survey of results

Intruder step

The intruder can built messages

$$R_5: C \land T \Vdash f(u, v) \quad \rightsquigarrow \quad C \land T \Vdash u \land T \Vdash v$$

for $f \in \{\langle \rangle, enc, enca\}$

Example :

$$a, k \Vdash \operatorname{enc}(\langle x, y \rangle, k) \longrightarrow a, k \Vdash x$$

 $a, k \Vdash y$

Image: Image:

→ Ξ → < Ξ</p>

Intruder Protocol Solving constraint systems A survey of results

Eliminating redundancies

 $k \Vdash x$ enc(s,x) $\Vdash s$

The constraint $enc(s, x) \Vdash s$ will be satisfied as soon as $k \Vdash x$ is satisfied.

/⊒ > < ∃ >

Intruder Protocol Solving constraint systems A survey of results

Eliminating redundancies

 $k \Vdash x$ enc(s,x) $\Vdash s$

The constraint $enc(s, x) \Vdash s$ will be satisfied as soon as $k \Vdash x$ is satisfied.

 $R_1: \mathcal{C} \land T \Vdash u \rightsquigarrow \mathcal{C} \quad \text{if } T \cup \{x \mid T' \Vdash x \in \mathcal{C}, T' \subsetneq T\} \vdash u$

(日) (同) (三) (三)

Intruder Protocol Solving constraint systems A survey of results

Unsolvable constraints

$$R_4: \mathcal{C} \land T \Vdash u \rightsquigarrow \bot \qquad \text{if } \operatorname{var}(T, u) = \emptyset \text{ and } T \not\vdash u$$

Example :

 $a, \operatorname{enc}(s, k) \Vdash s \quad \rightsquigarrow \quad \bot$

(日) (同) (三) (三)

Intruder Protocol Solving constraint systems A survey of results

Guessing equalities

• Example : k, enc(enc(x, k'), k) \Vdash enc(a, k')

$$R_2: \mathcal{C} \land T \Vdash u \rightsquigarrow_{\sigma} \mathcal{C}\sigma \land T\sigma \Vdash u\sigma \qquad u' \in st(T)$$

if $\sigma = mgu(u, u'), u, u' \notin \mathcal{X}, u \neq u'$

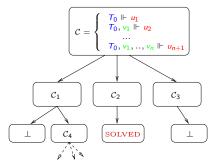
Intruder Protocol Solving constraint systems A survey of results

Guessing equalities

• Example : k, enc(enc(x, k'), k) \Vdash enc(a, k')

$$R_2: \mathcal{C} \land T \Vdash u \rightsquigarrow_{\sigma} \mathcal{C}\sigma \land T\sigma \Vdash u\sigma \qquad u' \in st(T)$$

if $\sigma = mgu(u, u'), u, u' \notin \mathcal{X}, u \neq u'$


2 Example : $\operatorname{enc}(s, \langle a, x \rangle), \operatorname{enc}(\langle y, b \rangle, k), k \Vdash s$

$$R_3: \mathcal{C} \land T \Vdash v \rightsquigarrow_{\sigma} \mathcal{C}\sigma \land T\sigma \Vdash v\sigma \qquad u, u' \in st(T)$$

if $\sigma = mgu(u, u'), u, u' \notin \mathcal{X}, u \neq u'$

(日) (同) (三) (三)

Intruder Protocol Solving constraint systems A survey of results

NP-procedure for solving constraint systems

Theorem

- C has a solution iff $C \rightsquigarrow C'$ with C' in solved form.
- \rightsquigarrow is terminating in polynomial time.

Intruder Protocol Solving constraint systems A survey of results

What formal methods allow to do?

• In general, secrecy preservation is undecidable.

What formal methods allow to do?

- In general, secrecy preservation is undecidable.
- For a bounded number of sessions, secrecy is co-NP-complete [RusinowitchTuruani CSFW01]
 → numerous tools for detecting attacks (Casper, Avispa platform...)

What formal methods allow to do?

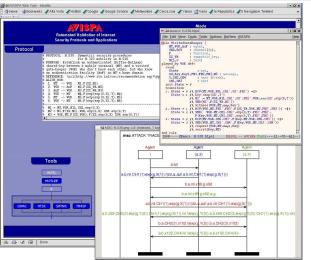
- In general, secrecy preservation is undecidable.
- For a bounded number of sessions, secrecy is co-NP-complete [RusinowitchTuruani CSFW01]
 → numerous tools for detecting attacks (Casper, Avispa platform...)
- For an unbounded number of sessions
 - for one-copy protocols, secrecy is DEXPTIME-complete [CortierComon RTA03] [SeildVerma LPAR04]
 - for message-length bounded protocols, secrecy is DEXPTIME-complete [Durgin et al FMSP99] [Chevalier et al CSL03]
 - \rightarrow some tools for proving security (ProVerif, EVA Platform)

B b d B b

A survey of results

Tools

Many tools for a bounded number of sessions (search for attacks) : Casper, Avispa platform, ...


Some tools for an unbounded number of sessions (security proof) : ProVerif, EVA platform

- new attacks have been discovered (e.g. the man-in-the-middle attack on the Needham-Schroeder protocol)
- hundreds protocols analyzed in few minutes or few seconds for most of them
- real-world applications (IETF, ...)

イロン イボン イヨン イヨン

Intruder Protocol Solving constraint systems A survey of results

Example of tool : Avispa Platform

Collaborators

- Cassis project, Loria
- DIST, Italy
- ETHZ, Swiss
- Siemens, Germany

Véronique Cortier

Motivation Intruder problem Some results

Outline of the talk

Introduction

- Context
- A famous attack

Formal models

- Intruder
- Protocol
- Solving constraint systems
- A survey of results

3 Adding equational theories

- Motivation
- Intruder problem
- Some results
- 4 Towards more guarantees
 - Cryptographic models
 - Linking Formal and cryptographic models
 - Conclusion

Motivation Intruder problem Some results

Motivation

Back to our running example :

 $\begin{array}{rcl} A \rightarrow B & : & \{ \text{pin} \}_{k_a} \\ B \rightarrow A & : & \{ \{ \text{pin} \}_{k_a} \}_{k_b} \\ A \rightarrow B & : & \{ \text{pin} \}_{k_b} \end{array}$

We need the equation for the commutativity of encryption

 $\{\{z\}_x\}_y = \{\{z\}_y\}_x$

- ∢ ≣ →

Motivation Intruder problem Some results

Some other examples

Encryption-Decryption theory

$$\mathsf{dec}(\mathsf{enc}(x,y),y) = x \quad \pi_1(\langle x,y\rangle) = x \quad \pi_2(\langle x,y\rangle) = y$$

EXclusive Or

$$\begin{array}{rcl} x \oplus (y \oplus z) &=& z & x \oplus y &=& y \oplus x \\ x \oplus x &=& 0 & x \oplus 0 &=& x \end{array}$$

Diffie-Hellmann

$$\exp(\exp(z,x),y) = \exp(\exp(z,y),x)$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Motivation Intruder problem Some results

E-voting protocols

First phase :

 $V \rightarrow A$: sign(blind(vote, r), V) $A \rightarrow V$: sign(blind(vote, r), A)

Voting phase :

. . .

 $V \rightarrow C$: sign(vote, A)

- 4 同 2 4 日 2 4 日 2 4

Motivation Intruder problem Some results

Equational theory for blind signatures

[Kremer Ryan 05]

$$checksign(sign(x, y), pk(y)) = x$$

unblind(blind(x, y), y) = x
unblind(sign(blind(x, y), z), y) = sign(x, z)

A⊒ ▶ < 3

Motivation Intruder problem Some results

Deduction

$$\frac{}{T\vdash_{\boldsymbol{E}} M} M \in T \qquad \frac{T\vdash_{\boldsymbol{E}} M_1 \cdots T\vdash_{\boldsymbol{E}} M_k}{T\vdash_{\boldsymbol{E}} f(M_1,\ldots,M_k)} f \in \Sigma$$

$$\frac{T\vdash M}{T\vdash M'}M=_{\boldsymbol{E}}M'$$

イロト イポト イヨト イヨト

Motivation Intruder problem Some results

Deduction

-

$$\frac{T \vdash_{\boldsymbol{E}} M}{T \vdash_{\boldsymbol{E}} M} M \in T \qquad \frac{T \vdash_{\boldsymbol{E}} M_1 \cdots T \vdash_{\boldsymbol{E}} M_k}{T \vdash_{\boldsymbol{E}} f(M_1, \dots, M_k)} f \in \Sigma$$

$$\frac{T \vdash M}{T \vdash M'} M =_{\boldsymbol{E}} M'$$

Example: E := dec(enc(x, y), y) = x and $T = \{enc(secret, k), k\}$.

$$\frac{T \vdash \operatorname{enc}(\operatorname{secret}, k)}{\frac{T \vdash \operatorname{dec}(\operatorname{enc}(\operatorname{secret}, k), k)}{T \vdash \operatorname{secret}}} \quad f \in \Sigma$$
$$\operatorname{dec}(\operatorname{enc}(x, y), y) = x$$

(日) (同) (三) (三)

Motivation Intruder problem Some results

Rewriting systems

For analyzing equational theories, we (try to) associate to E a finite convergent rewriting system ${\cal R}$ such that :

 $u =_E v$ iff $u \downarrow = v \downarrow$

Definition (Characterization of the deduction relation)

Let t_1, \ldots, t_n and u be terms in normal form.

 $\{t_1,\ldots,t_n\}\vdash u \quad \text{iff} \quad \exists C \text{ s.t. } C[t_1,\ldots,t_n] \to^* u$

(Also called Cap Intruder problem [Narendran et al])

イロト イポト イヨト イヨト

Motivation Intruder problem Some results

Some results with equational theories

	Security problem	
	Bounded number of sessions	Unbounded number of sessions
Commutative	co-NP-complete	Ping-pong protocols :
encryption	[CKRT04]	co-NP-complete [Turuani04]
Exclusive Or	Decidable [CS03,CKRT03]	One copy - No nonces :
		Decidable [CLC03]
		Two-way automata - No nonces :
		Decidable [Verma03]
Abelian Groups	Decidable [Shmatikov04]	Two-way automata - No nonces :
		Decidable [Verma03]
Prefix	co-NP-complete [CKRT03]	
encryption		
Abelian Groups and Modular Exponentiation	General case :	AC properties of
	Decidable [Shmatikov04]	the Modular Exponentiation
	Restricted protocols :	No nonces :
	co-NP-complete [CKRT03]	Semi-Decision Procedure [GLRV04]

Motivation Intruder problem Some results

Outline of the talk

Introduction

- Context
- A famous attack

Formal models

- Intruder
- Protocol
- Solving constraint systems
- A survey of results

3 Adding equational theories

- Motivation
- Intruder problem
- Some results
- 4 Towards more guarantees
 - Cryptographic models
 - Linking Formal and cryptographic models
 - Conclusion

Cryptographic models Linking Formal and cryptographic models Conclusion

Specificity of cryptographic models

- Messages are bitstrings
- Real encryption algorithm
- Real signature algorithm
- General and powerful adversary
- \rightarrow very little abstract model

Cryptographic models Linking Formal and cryptographic models Conclusion

Encryption nowadays

 \rightarrow Based on algorithmically hard problems.

RSA Function n = pq, p et q primes.

e : public exponent

• $x \mapsto x^e \mod n$ easy (cubic)

•
$$y = x^e \mapsto x \mod n$$
 difficult
 $x = y^d$ où $d = e^{-1} \mod \phi(n)$

< 6 >

- ∢ ≣ →

- ∢ ⊒ →

Cryptographic models Linking Formal and cryptographic models Conclusion

Encryption nowadays

 \rightarrow Based on algorithmically hard problems.

RSA Function n = pq, p et q primes. e : public exponent

• $x \mapsto x^e \mod n$ easy (cubic)

•
$$y = x^e \mapsto x \mod n$$
 difficult
 $x = y^d$ où $d = e^{-1} \mod \phi(n)$

Diffie-Hellman Problem

- Given $A = g^a$ and $B = g^b$,
- Compute $DH(A, B) = g^{ab}$

4 3 b

Cryptographic models Linking Formal and cryptographic models Conclusion

Encryption nowadays

 \rightarrow Based on algorithmically hard problems.

RSA Function n = pq, p et q primes.

- e : public exponent
 - $x \mapsto x^e \mod n$ easy (cubic)

•
$$y = x^e \mapsto x \mod n$$
 difficult
 $x = y^d$ où $d = e^{-1} \mod \phi(n)$

Diffie-Hellman Problem

- Given $A = g^a$ and $B = g^b$,
- Compute $DH(A, B) = g^{ab}$

 \rightarrow Based on hardness of integer factorization.

Cryptographic models Linking Formal and cryptographic models Conclusion

Setting for cryptographic protocols

Protocol :

- Message exchange program
- using cryptographic primitives

Adversary A: any probabilistic polynomial Turing machine, *i.e.* any probabilistic polynomial program.

- polynomial : captures what is feasible
- probabilistic : the adversary may try to guess some information

・ロト ・同ト ・ヨト ・ヨト

Cryptographic models Linking Formal and cryptographic models Conclusion

Definition of secrecy preservation

 \rightarrow Several notions of secrecy :

One-Wayness : The probability for an adversary \mathcal{A} to compute the secret *s* against a protocol \mathcal{P} is negligible (smaller than any inverse of polynomial).

 $\forall p \text{ polynomial } \exists \eta_0 \ \forall \eta \geq \eta_0 \quad \mathsf{Pr}^{\eta}_{m,r}[\mathcal{A}(\mathcal{P}_{\mathcal{K}}) = s] \leq rac{1}{p(\eta)}$

 η : security parameter = key length

・ 同 ト ・ ヨ ト ・ ヨ ト

Cryptographic models Linking Formal and cryptographic models Conclusion

Not strong enough !

- The adversary may be able to compute half of the secret message.
- There is no guarantee in case that some partial information on the secret is known.

4 3 b

Cryptographic models Linking Formal and cryptographic models Conclusion

Not strong enough !

- The adversary may be able to compute half of the secret message.
- There is no guarantee in case that some partial information on the secret is known.

 \rightarrow Introduction of a notion of indistinguishability.

Cryptographic models Linking Formal and cryptographic models Conclusion

Indistinguishability

The secrecy of s is defined through the following game :

- Two values n_0 and n_1 are randomly generated instead of s;
- The adversary interacts with the protocol where s is replaced by n_b, b ∈ {0,1};
- We give the pair (n_0, n_1) to the adversary;
- The adversary gives b',

The data s is secret if $Pr[b = b'] - \frac{1}{2}$ is a negligible function.

イロト イポト イラト イラト

Cryptographic models Linking Formal and cryptographic models Conclusion

Formal and Cryptographic approaches

	Formal approach	Cryptographic approach
Messages	terms	bitstrings
Encryption	idealized	algorithm
Adversary	idealized	any pol <u>y</u> nomial algorithm
Secrecy property	reachability-based property	indistinguishability
Guarantees	unclear	strong
Protocol	complex, several sessions	simple, one session

(日) (同) (三) (三)

Cryptographic models Linking Formal and cryptographic models Conclusion

Formal and Cryptographic approaches

	Formal approach	Cryptographic approach
Messages	terms	bitstrings
Encryption	idealized	algorithm
Adversary	idealized	any polynomial algorithm
Secrecy property	reachability-based property	indistinguishability
Guarantees	unclear	strong
Protocol	complex, several sessions	simple, one session
Proof	automatic	by hand, tedious and error-prone

Link between the two approaches?

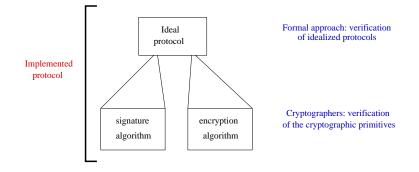

(*) *) *) *)

Image: Image:

Linking Formal and cryptographic models

Composition of the two approaches

Automatic cryptographically sound proofs

 \rightarrow Currently implemented in the Avispa platform.

Cryptographic models Linking Formal and cryptographic models Conclusion

Example : correspondence of secrecy properties

Theorem

Symbolic secrecy implies cryptographic indistinguishability.

- For protocols with only public key encryption, signatures and nonces
- Provided the public key encryption and the signature algorithms verify strong existing cryptographic properties (IND-CCA2, existentially unforgeable),

Cryptographic models Linking Formal and cryptographic models Conclusion

Conclusion

Formal methods, including of course rewriting techniques, form a very powerful approach for analyzing security protocols

- Many automatic tools (ProVerif, Avispa, ...)
- Cryptographic guarantees

・ 同 ト ・ ヨ ト ・ ヨ ト

Cryptographic models Linking Formal and cryptographic models Conclusion

Conclusion

Formal methods, including of course rewriting techniques, form a very powerful approach for analyzing security protocols

- Many automatic tools (ProVerif, Avispa, ...)
- Cryptographic guarantees

Some current directions of research :

- Considering more equational theories (e.g. theories for e-voting protocols)
- Combining formal and cryptographic models
- Adding more complex structures for data (list, XML, ...)

• ...

・ロト ・同ト ・ヨト ・ヨト