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Symbolic computation of series and products using
zeta regularization technique

Victor Adamchik
Computer Science Department
Carnegie Mellon University, USA.
E-mail: adamchik@cs.cmu.edu

In this talk I will discuss zeta regularization of divergent series and its
application to symbolic computation of infinite products. For example,
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where A is Glaisher-Kinkelin’s constant. I also apply this technique to com-
putation of determinants of the Laplacian. The multiple Barnes function,
defined as a generalization of the Euler gamma function, naturally appeared
on this path as the essential part of this formalism.



Passive Complete Orthonomic Systems of PDEs
and Riquier Bases of Polynomial Modules

Joachim Apel*
Mathematical Sciences Research Institute
1000 Centennial Drive
Berkeley, CA 94720, U.S.A.

The object of this talk is to enlighten the relationship between the two
classical theories of passive complete orthonomic systems of partial differen-
tial equations (PDEs) at the one hand side and of Grobner bases of finitely
generated modules over polynomial rings at the other hand side. The link
between both types of canonical forms are the Riquier bases (also called
‘involutive bases’ in the literature) which are at the same time a particu-
lar type of Grobner bases carrying some additional structure and a natural
translation of the notion of passive complete orthonomic systems of PDEs
into the language of polynomial modules.

We will point out some desirable applications which a “good” notion of
Riquier bases could provide. In particular, we will consider a theoretical
application in combinatorial algebra which shows that the importance of
Riquier bases is not restricted to only the vague hope to design a new faster
algorithm for computing Grobner bases. Unfortunately, the requirements
arising in different applications turn out to partially collide which leads us
to the discussion on finding a reasonable compromise.

*On leave from Mathematisches Institut, Universitdt Leipzig, Augustusplatz 10-11,
04109 Leipzig, Germany, E-mail address: apel@mathematik.uni-leipzig.de



Exact Distribution of Estimators of Parameters
in AR(1) Processes by the Help of MAPLE

M. Arato, A. Kuki, A. Szabd
Department of Information Technology,
University of Debrecen
P.O. Box 12, H-4010 Debrecen, Hungary.
E-mail: kuki@math.klte.hu

Let us consider the stochastic differential equation
dg(t) = —AE(t)dt + owdw(t), 0w >0,

where w is a standard Wiener process. £(t) is called an Ornstein-Uhlenbeck
or AR(1) process [1].

In the theory of diffusion processes, A is called the drift parameter, but
in the theory of ordinary differential equations it is called the damping (or
decay) parameter.

The exact distribution of the maximum-likelihood estimator of the drift
(damping) parameter in a stationary AR(1) (or Ornstein-Uhlenbeck) process
is investigated [2]. Quantiles of the distribution function for different levels
are given.

The main goal is to reproduce, by the help of PC and MAPLE, the table
of the distribution function of maximum-likelihood estimator, given by Prof.
Arato, and calculated on URAL and CDC 3300 computers.

When we reproduced the earlier calculations, the applied hardware was
a SUN Sparc Station with operating system SUN OS. The software tool was
the MAPLE, Release 2, which can be efficiently used for symbolical and
numerical computations.
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A Symbolic Procedure for the Diagonalization of
Linear PDEs in Accelerated Computational Engineering

A. R. Baghai-Wadji

Vienna University of Technology
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Gusshausstr. 27-29, A-1040, Vienna, Austria, EU
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Since early 90’s in the past century our research has been focused on the acceleration of computer
simulations of PDEs. Another equally important and uncompromising objective has been the
accuracy enhancement of the numerical results. As a first step towards these goals we have devised
a symbolic procedure for systematically and conveniently diagonalizing the linear PDEs, which are
commonly encountered in mathematical physics and computational engineering applications.

This presentation provides a detailed account of the ideas behind diagonalization, and discusses its
consequences on designing robust, accurate and accelerated algorithms for solving boundary value
problems (BVPs) in both integral- and differential form.

The discussion starts with a conjecture stating that all linearized PDEs, as models for physically
realizable systems, can be diagonalized. As byproducts, our conjecture implies several constraints,
consistent with known classical results, upon the involved constitutive equations.

Diagonalized forms are, by construction, equivalent to the originating PDEs, but distinguish the
space coordinate with respect to which the diagonalization has been performed. As will be shown
in this presentation diagonalized forms intrinsically allow several useful interpretations which are
generally deeply hidden in their PDE counterparts.

We demonstrate the technical details by converting several PDEs into their respective diagonalized
forms. In particular we consider the Laplace equation for the electrostatic and magnetostatic
fields, elastostatic equations, the Helmholz equation for the scalar wave propagation, the acoustic-,
piezoelectric-, and electromagnetic wave equations for vector fields in anisotropic and transversally
inhomogeneous media, and finally the Schrodinger wave equation. Thereby, a symbolic notation,
which can easily be automated, will enable us to replace lengthy and tedious calculations by a
simply-by-inspection manipulatory procedure.

For reasons which will be made clear we refer to diagonalized representations as Huygens’ Principle
in Differential Form. We will interpret this principle and show that it can favorably be used
for (i) generating novel stencils in the finite difference method (leading to our recently developed
Differential Boundary Element Method, DBEM); (ii) constructing functionals in the finite element
method; and most importantly, (iii) establishing singular surface integrals in the boundary element
method.



Diagonalized forms in spectral domain transform into algebraic eigenvalue equations. Using the
associated eigenpairs we suggest three procedures for constructing Green’s functions associated with
a given boundary value problem, keeping in mind the automatization aspect in our derivations.

We investigate the asymptotic properties of the eigenpairs in the far- and near-field in the spec-
tral domain. In accordance with Heisenberg’s uncertainty principle these asymptotic expansions
correspond to the near- and far-fields in the spatial domain. Utilizing the far-field expansions
in the spectral domain we propose an easy-to-implement recipie for the regularization of singular
surface integrals in the boundary element formulations. For completeness, the presentation of the
proposed regularization will proceed a discussion on Hadamard’s definition of well-behavedness of
linear operator equations, and Tikhonov’s regularization technique.

Using our regularization technique we show that moments of Green’s functions associated with
a given BVP can be written in coordinate (geometry)-free, frequency-, and material independent
forms, and therefore, they can be regarded as universal functions for the underlying class of prob-
lems. It turns out that the universal functions are generally astonishingly smooth; they can be pre-
calculated, stored, and thus retrieved as often as required (data recycling). This capability allows
us to separate the scientific computing efforts from the pre- and postprocessing steps in simulations,
suggesting the following organization of our software: preprocessing-buffer-computational:engine-
buffer-postprocessing. These considerations have resulted in the development of the Fast-MoM,
which is an accelerated form of the conventional method of moments (boundary element method).

Using precalculated universal functions the computation times for the calculation of impedance
matrices in the BEM applications reduce to the times required for retrieving data from the chosen
storage medium. However, in spite of this advancement, a major drawback in the BEM still
remains to be removed: the impedance matrices are dense. Several techniques have been suggested
in literature for obtaining sparse matrices, each with its own limitation. We have suggested a
procedure which consists of constructing problem-specific orthogonal sequences of basis functions
derived from the involved Green’s functions. The idea is to expand the unknowns in our problems in
terms of basis functions which embed intrinsic features of the underlying PDEs in their structures:
Using Meyer’s orthogonalization technique and Green’s functions associated with a given BVP,
we construct functions which are orthonormal to their integer-translates. In the case of Laplace
operator, we are able to show that the resulting functions even support a multiresolution analysis,
leading to Green’s-functions-based scaling functions and wavelets. Several numerical examples will
illuminate the underlying concepts.

We continue our presentation by briefly discussing several alternative localization techniques for
generating sparse matrices in computations, including coherent states and Wannier fucntions, orig-
inally suggested in quantum mechanics, and photonics applications, respectively.

We conclude our discussion by posing the following existence question: Why is it possible to
diagonalize a given system of linearized PDEs in the first place?



Accurate Numerical Fourier Transform in d-Dimensions.

NORMAND BEAUDOIN STEVEN S. BEAUCHEMIN
The University of Western Ontario, London, Canada N6A 5B7

April 11, 2001.

ABSTRACT. The classical method of numerically computing Fourier transforms of
digitized functions in one or in d-dimensions is the so-called Discrete Fourier Transform
(DFT) efficiently implemented as Fast Fourier Transform (FFT) algorithms. In many
cases, the DF'T is not an adequate approximation of the continuous Fourier transform.
Because the DF'T is periodical, spectrum aliasing may occur. The method presented in
this contribution provides accurate approximations of the continuous Fourier transform
with similar time complexity. The assumption of signal periodicity is no longer posed
and allows to compute numerical Fourier transforms in a broader domain of frequency
than the usual half-period of the DFT. The aliasing introduced by periodicity can
be reduced to a negligible level even with a relatively low number of sampled data
points. In addition, this method yields accurate numerical derivatives of any order and
polynomial splines of any odd order with their optimum boundary conditions. The
numerical error on results is easily estimated. The method is developed in one and in
d-dimensions and numerical examples are presented.



Multivariate polynomials and Newton-Puiseux
expansions
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In this paper, we will be interested in the local resolution of equations of the type:

fly) =0 with f € Clzy,...zn,Y]

To express the solutions, we will need a generalization for several variables of the Puiseux
series: the series with exponents in a cone. To compute these series, we use an extension
of the classical Newton polygon, the Newton polyhedron.

After a first part, in which we give some definitions and properties about elements of
convex geometry and series with exponents in a cone, we present a resolution algorithm
due to J. McDonald. We will take his work as starting point for the resolution process
and improve it to obtain an algorithm computing what we called a full set of solutions.
That is to say a set of couples composed of a cone and the associated series expansions
of the solutions. More precisely, we consider the discriminant of f, with respect to
the variable y, and the fan of its Newton polyhedron. To each cone o of this fan,
we can associate pathes of the Newton polyhedron of f and solutions expansions with
exponents in a translate of o.

For example, for the equation:

f(fhivm y) = $2y2 + y2 + ivgy + :vfy + mf;vzy — T1T9

we find three cones and for each cone we compute two solutions.
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Exact Real Computation in Computer Algebra,
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Abstract

This talk describes our approach to represent computable real numbers in Maple. We aim
at a model that can be used in symbolic computation.

The main topics we discuss are: representation and arithmetic of exact real numbers,
vectors and matrices; polynomial arithmetic and root computation. Some operations raise
ill-posed problems; we used regularization methods to solve them.

1 Extended Abstract

Many algorithms in symbolic and algebraic computation rely on exactness. The usual way is to
work with the subfield of rationals or real algebraic numbers; the later are traditionally represented
by the minimal polynomial and either an isolated interval or a sequence of signs [7]. It is sometimes
a problem that these subfields are not closed under transcendental functions such as exponentiation
or trigonometric functions. Even if we stay within algebraic operations only, it turns out that the
manipulation of real algebraic numbers is very expensive [10].

The method of exact real computation seems to be a reasonable alternative: it provides a a
mathematically consistent representation of the represented reals, as the models behave exactly
like the mathematical objects which they represent. Recall that this is not the case for floating
point numbers, and this is one of the reasons why working with floating point numbers is so often
difficult in computer algebra.

Several ways to represent the reals have already been invented; we mention here infinite (lazy)
strings of digits ([6], with golden ratio notation, [9], [5]) and a functional approach, where the
reals are represented as functions that produce approximations on demand [3].

Our approach is more pragmatically oriented towards the usability within computer algebra.
Of course, efficiency of the arithmetic has been an issue, but our intention was not to invent a
new arithmetic that could compete with the fastest existing ones. Instead, we took an objectual
approach, which makes it easy to change the details in the representation at the lowest level
independently of the higher level algorithms. It may be remarked that this has already paid off, as
we were already forced to change details on the low level at a state where a lot of higher algorithms
already existed.

A general performance problem in computer algebra is the one of intermediate expression swell.
We still have it when using exact real computation, but much more moderate: in symbolic-exact
arithmetic, the expressions may grow exponentially with the number of arithmetic operations (e.g.
minimal polynomials under addition and multiplication of algebraic numbers, or mantissa lengths
under powering of rational numbers). But in exact real computation we can always achieve linear
growth. The size of a result is always equal to the size of the arguments plus a constant overhead
for the operation itself. On the other hand, it has to be remarked that intermediate simplification
(e.g. canceling) does not occur in exact real computation.

*Supported by the Austrian Fonds zur Forderung der wissenschaftlichen Forschung in the frame of the SFB 013.



We utilize the fact that most existing computer algebra systems already have a built-in ar-
bitrary precision arithmetic and conversion algorithms between numerical and symbolic data.
For many problems, it suffices to supply small wrappers which encode the necessary information
about the error propagation. Sometimes this information is already available in the literature of
numerical analysis (see e.g. [8]). An example is our algorithms for computing roots of squarefree
polynomials (section 4.3).

However, there are other problems which lead to fundamental difficulties because their solution
does not depend continuously on the input data: pseudo-inverse of rank-deficient matrices, poly-
nomial greatest common divisor (ged) computation, multivariate polynomial factorization, curve
and surface parameterization. Strictly speaking, these problems cannot be solved within exact
real computation (see [1]). As we definitely need a substitute for these ill-posed problems, we
apply the common technique of regularization: we replace the problem by a nearby continuous
problem (the distance to the exact problem is an additional input parameter). We apply Tikhonov
regularization [2] (see also [4]) to the computation of pseudo-inverses and ged’s.
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Database of graded rings and K3 surfaces in Magma

Gavin Brown
The University of Sydney, Australia.
E-mail: gavin@maths.usyd.edu.au

K3 surfaces are one of the kinds of algebraic surface which naturally
generalise elliptic curves. They are also very closely related to canonical
models of curves and lie right in the heart of the classification of surfaces.
Elliptic curves can be expressed in various standard formats: a plane cubic
in Weierstrass form, an intersection of two quadrics in space, and so on. The
standard first example of a K3 surface is defined by a homogeneous degree
4 polynomial in 4 variables (compare that with degree 3 in 3 variables for
an elliptic curve). But there are very many other K3 surfaces in interesting
formats.

I will report on a database of K3 surfaces in the computer algebra system
Magma. This is built using Hilbert series methods which describe the de-
grees of variables and equations in some graded ring. The methods generate
candidates for K3 surfaces which one must then show actually exist with the
desired properties. The most interesting aspect of this is the way in which
the inductive construction of the database helps to prove the existence of
the objects which it contains.

I will show examples of K3 surfaces and give a description of the Hilbert
series methods used to find candidates. Then I will indicate how the method
of “unprojection” in conjunction with the building of the database can show
the existence of these rather complicated graded rings. This is joint work
with Selma Altinok and Miles Reid.



THAOREMY:
A System for the Working Mathematician

Tudor Jebelean, Bruno Buchberger
RISC-Linz

www.theorema.org

The main goal of the THIOREMY project’ is to deliver an integrated interactive environment which
can assist the mathematician in all the phases of his scientific work: proving, computing and solving in
various mathematical domains. The system is implemented on top of Mathematica, thus it is backed
by the full algorithmic and computing power of the currently most popular computer algebra system,
which is available on all the main computing platforms (Unix, Linux, Windows, and Apple). The current
implementation is the result of several man-years of work by many people of the THIOREMY group at
RISC (see www.theorema.org), under the direction of Bruno Buchberger. Until now, we already built
into the system the main features concerning proving and computing, while the solving features are in the
design phase. The main features of the system will be demonstrated live during this presentation.

The system interacts with the user in the language of predicate logic, which is the natural language
for expressing mathematical properties and algorithms. Few intuitive commands allow the user to enter
mathematical formulae (in natural two-dimensional notation) and to compose them into mathematical
theories, and also to use some basic domains (numbers, tuples, sets) which are already provided in
THAOREMY. Moreover, the system provides the implementation of the powerfull concept of functor,
which allows the build-up of sophisticated domains on top of simpler ones. The mathematician has the
possibility to experiment with the algorithms expressed in this way by directly running them using the
THIOREMY computing engine, and he can also study their formal properties (e.g. correctness) using the
provers of THAOREMY. It is an unique feature of THIOREMY that these two phases of the mathematical
activity can be performed in the same integrated system and using the same language.

Computation is performed under full control of the user, which means being able to trace the reason
(definition, formula) for each computing step — if necessary, but most important with full control of the
knowledge which is used in the computing process. For instance, in a certain situation the mathematician
wants to give to the symbols *, +, 0, Successor the axiomatic meaning as defined by induction over
natural numbers, while in another situation the same symbols should be interpreted using the full power
of the underlying computational engine (positional notation, long arithmetic, etc.)

Proving is done with specific methods for several mathematical domains: propositional logic, general
predicate logic, induction over integers and over lists, set theory, boolean combinations of polynomial
[in]equalities (using Groebner Bases), combinatorial summation (using Paule-Schorn—Zeilberger), and
a novel technique for proving in higher-order logic with equality: PCS (proving—computing—solving),
introduced by Buchberger. THIOREMY departs from the methods mostly used in automatic provers
today, because it uses a natural proving style: the formulae are expressed in their original form (two-
dimensional, non-clausal), the inference steps are expressed in natural style and in human language,
and — most importantly — the proving methods are similar to the ones which are used by the working
mathematicians. Therefore, the user has the possibility to inspect and easily understand the proofs, to
verify any inference, and to interact with the proof by modifying certain assumptions, etc.

!Supported by Austrian Forschungsférderungsfonds (FWF), project P10002-PHY.



A progress report on formalizing theory of
commutative ring

Chen Lingjun? Kobayashi Hidetsune! Murao Hirokazu, Suzuki Hideo

The elementary properties of rings and ideals in the chapter one of Atiyah
and MacDonaldc’s book “introduction to commutative algebra” is formal-

ized in Isabelle HOL. We present the details of definitions, theorems and
proofs related rings and ideals in Isabelle.

*Department of mathematics, College of science and technology, Nihon university,
Japan(temporary). clj@Qcaviar.math.cst.nihon-u.ac.jp

tDepartment of mathematics, College of science and technology, Nihon university,
Japan. hikoba@math.cst.nihon-u.ac.jp



Set-Oriented Numerical Methods for Dynamical
Systems

Michael Dellnitz
Universitat Paderborn, Germany.
E-mail: dellnitz@math.uni-paderborn.de

Over the past few years so-called set-oriented numerical methods have
been developed for the numerical study of dynamical systems. These meth-
ods do not just allow to compute directly — i.e. by avoiding long term simu-
lations of the underlying system — invariant sets or invariant manifolds but
they can also be used to approximate statistical quantities such as natural
invariant measures. In this talk an overview about recent accomplishments
in this area will be given. In particular, three concrete applications of these
techniques will be presented: the approximation of so-called almost invari-
ant sets, the construction of reliable global zero finding procedures and the
detection of energetically efficient spacecraft trajectories.



Approximate implicitization

Tor Dokken
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Methods for finding the exact algebraic representation of rational para-
metric curves and surfaces are denoted implicitization. A number of well
establish methods for exact implicitization exists such at resultant based
methods and Groebner based method.

Floating point arithmetic is used in most industrial computer software.
Exact implicitization methods implemented in floating point arithmetic gives
approximate implicit curves and surfaces. In the region of computational
interest the exact representation can have singular or near singular point
that complicate the use of the algebraic representation. Often the use of
the implicit representation is simplified if singular or near singular points
are well separated from the region of computational interest. In other ap-
plications such as test for selfintersections it is important to have accurate
reproduction of singularities.

Let [ and g be integers with 1 < g < [, and let p(s), s € Q C IRY
be a manifold of dimension ¢ in IR!. The nontrivial algebraic hypersurface
q(x) =0, ¢ € P,(IR), is an approximate implicitization of p(s) within the
tolerance € > 0 if we can find a continuous function ||g(s)||, = 1 describing
the direction for error measurement and a error function |7(s)| < e such that
q(p(s) +n(s)g(s)) =0, se.

The approximate implicitization approach is based on expressing the
combination ¢(p(s)) as a matrix vector product ¢(p(s)) = (Db)Ta(s). Here
D is a matrix, b contains the coefficients of ¢ and a(s) contains the basis
functions related to the coordinate functions of p(s). This means that if
b is in the null space of D, then ¢(p(s)) = 0. By assuming that the basis
is a partition of unity we have |la(s)||, < 1 and thus [¢(p(s))| < [|[Db]|,.
The matrix D has desirable numeric properties if the coefficients of p(s) are
contained in a simplex S, and this simplex is used for the description of ¢



in barycentric coordinates. When o7 > 0 is the smallest singular value of D
we show that
i, max | a(p(s)) | < o1

Singular value decomposition of D can thus be used for finding small singular
values and thus an algebraic approximation of a parametric represented man-
ifold. Constraints can be added to the algebraic approximation to control
the behavior. The convergence rate of the approximation is higher than what
is normal in approximation theory. Successful use of approximate algebraic
surfaces depends a proper control of the gradient. Our first use of approx-
imate implicitization was to separate near intersecting curves and surface.
In the European project GATA, IST-1999.29010, (www.math.sintef.no/gaia)
we look into the potential of using approximate implicitization for detecting
selfintersection. Examples of both these uses will be given.



Linear T'wo-point Boundary-value Problem with
Polynomial Coefficients
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We consider a defect control algorithm for computing an approximate
solution to a linear, second-order, ordinary differential equation with poly-
nomial coefficients. As the boundary conditions are given at two points, we
have a two-point boundary-value problem. We express the second derivative
as a translated Legendre polynomial with unknown coefficients and integrate
twice to find an approximate solution. We substitute the polynomial into
the differential equation to compute the defect and express this defect in an
orthogonal polynomial basis, using translated Legendre polynomials. Then
we equate the low-order terms to zero to generate a banded system of linear
equations that we solve for the unknown coefficients. In some cases we are
able to approximate the solution over the entire interval with a relative error
less than 107190,



Applications of SAGBI-bases to equivariant
dynamics

Karin Gatermann
Z1B Berlin, Germany.
E-mail: gaterman@math.berkeley.edu

SAGBI bases are a tool for computing efficiently with subalgebras such
as invariant rings of group actions. We generalize this concept for modules
over subalgebras such as the module of equivariants. Our motivation is the
usage of SAGBI bases for the organisation of algorithms in equivariant dy-
namics such as numerical Liapunov-Schmidt reduction and reduction onto
center manifold which exploit symmetry. In both algorithms some coeffi-
cients of the equivariant polynomial vector field are computed while others
are given linear equations due to symmetry. A good choice for the first set of
coeflicients are the coefficients of the leading monomial algebra or module,
respectively. The leading monomials are given by the SAGBI basis and the
linear equation are easily determined from the SAGBI basis, too.



Numerical Treatment of Overdetermined
Linear PDEs

Marcus Hausdorf and Werner M. Seiler
Lehrstuhl fir Mathematik 1
Universitdt Mannheim
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hausdorf,werner.seiler@math.uni-mannheim.de

In the first part of this talk, we show how index concepts and the no-
tion of an underlying equation for systems of differential algebraic equations
(DAEs) can be generalised to systems of overdetermined linear first order
partial differential equations using the language of formal theory for PDEs.
The central idea is to complete to involution the systems under consid-
eration; if this is carried out with the perturbed system, one obtains an
estimation of the perturbation index in terms of determinacy and involution
indices which can be seen as refinements of differentiation indices. For in-
volutive systems of PDEs in so-called Cartan normal form, the equations of
highest class constitute the underlying equation, whereas the equations of
lower class can be considered the constraints.

In the second part, we apply these methods to a certain class of linear
systems called weakly overdetermined systems and examine their behaviour
under semi-discretisations. Like for DAEs, the drift off the constaints can be
measured for such systems. For both finite differences and spectral methods
we can show that the resulting DAE is formally integrable if and only if the
original system has been in involution. This inhibits the existence of hidden
constraints. Finally, for general sytems we relate the index of the discretised
system to certain values appearing in the completion process. This result
holds also for general linear systems.
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Dynamical Aspects of Involutive Bases
Computations

Ralf Hemmecke
Research Institute for Symbolic Computation,
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In this talk we give a short introduction to involutive divisions and invo-
lutive bases computations. Different approaches are discussed and compared
and a new class of involutive divisions is presented. We show results of our
computer experiments with the different approaches.



Differential Equations from an Algebraic Standpoint

Evelyne Hubert
INRIA Sophia Antipolis, France.
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Differential algebra was introduced by J.F. Ritt in the 30s as an extension
of commutative algebra to differential equations. The basis theorem and the
Nullstellensatz find their generalisation in this context.

Recent development have lead to effective algorithms to compute good
representations of radical differential ideals generated by a finite family of
differential polynomials. This representation is given as an intersection of
differential ideals well defined by their characteristic sets. This representa-
tion allows to test membership to the radical differential ideal.

In other words, for a given system of ordinary or partial differential
equations, the algorithms will first decide if there exist solutions. If there
are, the algorithm will output a finite set of differential systems with a
triangular form such that the set of solutions of the original system is equal
to the union of the non singular solution set of the output systems.

With this representation, we can answer typical differential elimination
questions, for instance:

e do the solutions of a system satisfy an ordinary differential equation?

e what are the differential equation satisfied by a subset of the unknown
functions?

e what are the algebraic constraints?

We shall illustrate how these question arise in diverse topics.

I will also show how differential algebra contributes to the study of sin-
gular solutions of a single differential equation. For instance, for first order
differential equations, we can read on the algebraic structure of the equation
whether a singular solution is an envelope or a limit case of the nonsingular
solutions.



A generation of the quasi-solitons in the lasers:
computer algebra approach

V.L. Kalashnikov
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The modern laser technique allows the generation of sub-10 fs pulses,
that is close to the fundamental limit for optical region defined by the wave
period (about of 2 fs). The analysis of the lasing dynamics and properties
of such pulses is a very cumbersome task, which involves a consideration of
the many nonlinear factors and needs the high-performance computers for
numerical simulation. Moreover, the interpretation of the obtained results is
very difficult and doesn’t give a clear picture of the physical processes gov-
erning laser dynamics. Therefore there is a stable interest to the analytical
and semi-analytical approaches, which is induced also by the development
of the efficient and universal computer algebra systems such as Maple and
Mathematica. Here we present the analysis of the ultrashort pulse dynamics
in the passive or active mode-locked lasers, which is based on the analytical
approach and is realized as the Maple 6 package [1].

The first stage of the analysis consists in the search of the soliton-like
states of nonlinear dynamical equation describing ultrashort pulse propaga-
tion. In the noncoherent case, it is, as rule, a generalized 141 - dimensional
Landau-Ginzburg equation, which can be analyzed by Hirota’s method. The
presence of coherent effects due to interaction of pulse with semiconductor
saturable absorber can be taking into account by two-level scheme for ab-
sorber, that results in the nonlinear dynamical equation of oscillating type,
which can not be integrated by standard methods. But, as it was found,
there is the approximate solution, which is close to sech-shaped pulse. The
characteristics of the obtained solutions are in the excellent agreement with
experimental observations [2]. The further analysis is based on the aber-
rationless approximation, which assumes the change of the quasi-soliton
parameters for pulse with approximately unchanged shape. As result, we
obtain the system of first-order ODE, which describes the ultrashort pulse



evolution and can be easily integrated in framework of computer algebra
approach. The utilization of this approach in the analysis of the Kerr-lens
mode-locked continuous-wave solid-state lasers allows to describe the exper-
imentally observed breezers-like states with complicated dynamics (regular
and chaotic) [3]. The main advantages of our approach are the possibility of
the clear physical interpretation and the absence of bulk numerical compu-
tations (full computation session for different laser systems takes about of 30
min on PIII-500). Moreover the basic computational blocks can be realized
as on-line Java-calculators.
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Numerical computation of Grobner bases
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We present an installation of Buchberger’s algorithm for the numerical
computation of reduced Grobner bases of a multivariate polynomial system.
We are mainly interested in the case of zero-dimensional systems although
the implemented algorithm can be applied in a general situation. If the
system is zero-dimensional then the result of the Grobner basis computation
is used to form a multiplication matrix of the quotient ring and to solve the
system numerically according to [2]. Our work is based on the installation
Fy of Buchberger’s algorithm developed by J. C. Faugere [1]. We have kept
the numerically attractive features of F; (extensive use of linear algebra and
the collection of all operations with coefficients into row echelon reductions
of the elimination matrix [1]); but we have improved the numerical stability
of Grobner basis computation by developing extensive selection strategies
for critical pairs and reduction, and a technique for the delayed treatment
of certain relations. We use a pool of superfluous relations appearing in the
flow of the algorithm which are not inserted to the Grobner basis but used
by the reduction strategy routine to prevent the growth of the total degrees
and of the spread in the magnitude of the coefficients in the intermediate
polynomials. All selection strategies are heuristic and based on 1—step-in-
depth analysis of available choices.

Our implementation is written in C++ using idioms for emulation of
symbolic language styles. It supports hardware floating point (single and
double precision) as well as extra-long software emulated floating point as a
domain for coefficients.
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Part 1. The talk starts with a brief introduction to geometrical and alge-
braic multigrid methods (MGM) for solving large scale finite element equa-
tions approximating elliptic boundary value problems. In contrast to the
geometrical MGM that is based on a hierarchy of finer and finer meshes, the
algebraic multigrid (AMG) method needs only single (fine) grid information,
usually the matrix and the right-hand side of the system that is to be solved.
In the AMG, the hierarchy of coarser and coarser representation of the fine
grid problem must be generated algebraically. There are very efficient coars-
ening techniques for systems where system matrix is an M-matrix.

In the paractically important case where the original system matrix is not
an M-matrix, we construct an auxiliary fine grid matrix that is an M-matrix
and contains all characteristical features of the original matrix. Then the
coarsening is controlled by this auxiliary M-matrix. One technique of con-
structing this auxiliary M-matrix makes use of the element stiffness matrices
of the original finite element stiffness matrix. Solving an constraint optimiza-
tion problem for each finite element stiffness matrix, we find that element
M-matrix that is as close as possible to the finite element stiffness matrix in
the spectral sense.

Part 2. In general, we have to solve as many small constraint optimization
problems as we have finite elements in our discretization. The numerical
solution of all these optimization problems can be very expensive. In order
to speed up the solution of these sub-problems, we solve the optimizations
symbolically once and for all, and then instantiate the solutions by the local
data coming from the finite elements. This accelarates the AMG solution
process considerably.

In the 2-dimensional case (linear triangular elements), the symbolic solu-
tion can be computed without difficulties. The 3-dimensional case (linear
tetrahedral elements) is harder because the number of variables is too large



in order to apply the available methods (Grobner bases, resultants). How-
ever, one can get rid of several variables by re-formulating the problem in a
different way, and this re-formulated problem has a short symbolic solution.
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In Computer Algebra and Symbolic Computation we deal with exact

data, but in many real life situations data come either from physical mea-
surements or observations or they are the output of numerical computations.
Moreover computer works with Floating Point, i.e. with finite arithmetic, so
a real number is represented approximately because of the limited number
of available digits. For these reasons it is growing up the necessity of com-
bining methods in computer algebra and numerical analysis. This led to a
new branch of classic polynomial algebra, the numerical polynomial algebra,
whose aim is to accommodate the presence of inaccurate data and inexact
computation. Since a polynomial is not exact, a family of polynomials called
neighborhood is considered as in the papers of Kaltofen and Stetter. We
focus our attention on the univariate case. Let p(z)=37_ a;2/€R[z] be a
polynomial, the tolerance e associated with p(z) is a non negative vector
e={eg,...,en}, such that ¢;€R and e;>0 for j=0,...,n. The neighbor-
hood N (p, e) of a polynomial p with tolerance e is the family of polynomials
pER[x], p=>"7_q @;x’ such that |a; — a;|<ej; e;=0 means a; is exact.
In this paper we give a new approach based on the idea of Resultant in order
to discover the common factors between a polynomial and the polynomials
in its neighborhood. Sometimes beside the acceptable variations for the
coefficients of the uncertain polynomial p(z), we know (often experimentally)
more properties of the exact polynomial p(x). For instance, we can know a
zero of the exact polynomial, that we are looking for. So we construct p(z),
such that it has the same zero but it differs from the exact p(z) in some
coeflicients.

Definition 1 Let p(x) € R[z] be a polynomial and let e be a vector of
tolerance. The polynomial p(x) is a k common-factor perturbed if p(x) €
N(p,e) and it has a common factor of degree at least k with p(z). A k



common-factor neighborhood Ny (p, e) of a polynomial p(x) is the set of all
k common-factor perturbed.

Res(p,p) is a homogeneous polynomial of degree 2n in the d;’s and a;’s
and a homogeneous polynomial of degree n as polynomial in the only §;’s,
hence by using definition as above we have the algebraic conditions on the
perturbed polynomial p(z).

Moreover given a polynomial, the Square Free property of the polynomials
in its neighborhood is investigated. By using the resultant we can find the
square free conditions on a polynomial p(z) in the neighborhood.

It is also useful to see all the conditions discussed above by a geometric
point of view, where the neighborhood represents a polytope and the found
algebraic conditions represent hyperplanes and hypersurfaces in the space
of the §;’s (or a;’s).



Simulation of the Three-Dimensional Blood Flow in
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In current clinical practice, physicians make extensive use of medical
images for diagnosing and planning therapy, but they frequently confine
themselves to a visual inspection of the morphology.

The diagnosis of cardiovascular diseases and the planning of therapy
should be based on a fair knowledge of the patient’s hemodynamic state.
This is particularly true of coronary artery disease in cases where severe
stenoses in the coronary arteries increase resistance to flow. Stenoses may
reduce the flow of blood to such an extent that the myocardium becomes
vulnerable to ischemia. The disturbed flow around stenoses accelerates the
progression of the atherosclerotic changes and may cause the formation and
development of thrombi. Thus, patient-specific simulation studies of the
blood flow are required which must be based on the patient’s medical images
(biplane angiograms).

We aim at the development of a simulation system which would allow
physicians to assess their patient’s hemodynamic states. This paper focuses
on the semi-automatic generation of a mesh that is required for the three-
dimensional simulation of the blood flow through the coronary arteries with
pathological changes (stenoses) based on biplane angiograms. The simula-
tion studies are then carried then by employing a commercial CFD software
system (FIDAP).

The generated mesh fully considers the patient-specific geometry. Gener-
ating the mesh involves the acquisition of the geometry (three-dimensional
reconstruction based on biplane angiograms), the creation of a meshable
geometric model, and the implementation of the mesh. We aim at the gen-
eration of an optimal mesh that would allow us to compute the solution with



a specified accuracy at minimal cost in terms of computing time. To do this,
we must adapt the size of the elements to the flow conditions. As a conse-
quent adaptive procedure with an a posteriori error analysis would consume
too much time, we decided to employ a priori criteria for the adaptation.
Although these criteria are in principle heuristic in nature, they neverthe-
less reflect a fair quantitative a priori knowledge relevant to the coronary
artery under investigation. This quantitative knowledge is derived from a
posteriori analyses of computed flow conditions in so-called reference flow
domains.

In this paper, we will give an overview of the acquisition of the geometry
of the flow domain, describe our mesh generation approach, and present
simulation results.
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Already many years ago, H.Geiger started to develop an artificial neu-
ral network (ANN) paradigm which is of great neurophysiological relevance.
Intensive scientific work formed the basis of complex ANN simulations with
computers that were and still are applied to hard industrial problem fields.
Besides the aspects of learning it is of central interest to study the structure
of the Geiger networks. This is the subject of our contribution which focuses
on the mathematical (symbolic) aspects. A fruitful cooperation revealed the
fact that methods from noncommutative geometry and category theory can
be applied to establish a mathematical model of network structuring in a
natural way. The model can be exploited to simplify ANN computer simu-
lations in a considerable way leading to an economic effect. This could be
observed and demonstrated in an industrial project on optical quality con-
trol - a reduction of production costs could be achieved by the application of
the model. The overall problem solving in that project integrated symbolic
and numerical methods. We briefly describe this project at the end of our
contribution. In this sense a “category went to market”.
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Traditionally, first-order formulae over the reals have been solved by
purely symbolic methods, such as quantifier elimination by cylindrical alge-
braic decomposition. In the talk we will introduce a mixed symbolic-numeric
algorithm that avoids the costly algebraic number computation of purely
symbolic approaches. The algorithm assumes that each variable ranges over
a predefined interval. It follows a branch and prune scheme in which branch-
ing splits the range of a variable into pieces, and pruning extracts useful in-
formation from the input formula while reducing the range of its variables.
By relying on validated arithmetic the algorithm can still provide provably
correct results, and terminates for those inputs that are numerically well-
posed.



Symbolic Methods for the Equivalence Problem
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This contribution deals with the equivalence problems for systems of implicit ordi-
nary dicerential equations of the following type

fle(t,z,2)=0, i.=1,...,n, €))

with z € R?, ¢ < n.. The time derivative of z is denoted by 2. Equivalence means
that every solution of the original set of equations is a solution of some normal form
and vice versa

il = fle (t,z,u) , it = fle (t,x,u(")) ,

where the variables = describe the state and « the input of the system. The symbol
u™ indicates that derivatives up to the order n of the input are admissible. The
mathematical investigations are based on the theory of jet-bundles [1], the system
(1) is identi..ed with the submanifold in a suitable jet-space, de..ned by the equa-
tions. This approach allows us to combine methods from dicerential geometry and
elimination theory.

The equivalence problem will be solved for the well-determined case, where the
number of equations n, and unknowns q is equal, as well as for the under-determined
case with ¢ —n, = 1. For the case ¢ —n. > 1 several solutions will be presented, but
we leave the problem open, how to minimize the number of inputs, whose derivatives
appear in the normal form. Apart from the theoretical results we present several
sketches for computer algebra based algorithms that are necessary to solve these
problems eCciently.

[1] Saunders D.J.: The Geometry of Jet Bundles, London Mathematical Society
Lecture Notes Series 142, Cambridge University Press, 1989.



Symbolic Summation in Difference Fields
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There are implementations of the celebrated Gosper algorithm (1978)
on almost any computer algebra platform. Within my PhD thesis work I
implemented Karr’s Summation Algorithm (1981) based on difference field
theory in the Mathematica system. Karr’s algorithm is, in a sense, the sum-
mation counterpart of Risch’s algorithm for indefinite integration. Besides
providing a new approach to Karr’s algorithm which allows us to find closed
forms for a big class of multisums, I developed new extensions to handle
also definite summation problems. More precisely I am able to apply cre-
ative telescoping in a very general difference field setting and are capable of
solving linear recurrences in its context. In particular, I designed algorithms
for finding appropriate difference field extensions to solve problems in sym-
bolic summation. For instance I deal with the problem to find all nested
sum extensions which provide us with additional solutions for a given linear
recurrence of any order. Furthermore I find appropriate sum extensions, if
they exist, to simplify nested sums to simpler nested sum expressions.



Algorithmic Lie Theory for Solving Ordinary
Differential Equations
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Tn the second half of the 19th century Sophus Lie developed a theory
for solving differential equations in analogy to Galois’s theory of solving
algebraic equations in terms of radicals. As an auxiliary device he estab-
lished his theory of continuous groups, known as Lie-groups today, and its
corresponding Lie-algebras.

In principle Lie’s theory applies to differential equations of arbitrary
order. However if the goal is to design solution algorithms based on this
theory that may be implemented in a computer algebra system, several
steps have to be worked out in more detail. To this end it is supplemented
by two basic concepts:

1. Janet bases for systems of linear partial differential equations that
determine the symmetry generators of a given differential equation
and the transformation to canonical forms.

2. The decomposition of these Janet bases into irreducible components
by Loewy’s theory in analogy to the decomposition of ordinary linear
differential equations.

Proceeding in this way completely algorithmic procedures are obtained for
obtaining closed form solutions of equations with symmetries the solutions of
which are contained in well-defined function fields. The basic steps involved
are reviewed. Complete results are presented for second- and third order
ordinary differential equations. Various possible extension are discussed,
e.g. equations of order four or higher, and certain types of partial differential
equations.

Software Demo: On top of the algebraic type system ALLTYPES, soft-
ware for working with differential equations has been developed with special
emphagsis on Lie’s symmetry theory. It is shown how the use of this soft-
ware makes available many of these concepts that could not be used by
conventional pencil-and-paper methods.
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The scaled surface wave equations for horizontal and vertical velocities u (x, z,t) and w (z, z,t) read:

pPug 4w, =0 , —sz<z<en(zt) (1)

Meteun, —p tw=0 , z=en(,t) , (2)

up+ € (uy + p tww,) 41, =0, z=en(z,t) (3)
w=—U hmu , 2= —sz. (4)

where € = ag/hy, p = hy/ly and ap, hy, lj are a characteristic wave amplitude, water depth, and wavelength,
respectively. For the depth-averaged velocity U = ( ffz udz) / (h + €n) , Boussinesq-type equations retaining

terms of orders O(u?) and O(g) were derived by Peregrin (1967). The work by Madsen & Schiffer (1998)
contains an algorithm for constructing a series of the Boussinesq-type equations B,, retaining €™, ™ 142, ...
, w?™ terms. We consider the equations By for the case of sloping bottom in some area, excluding the deep
water region where the shallow water restrictions are violated.

1
BQ : Ut + Ny + EUU;C + /LZ (—SZ.TUN — =8

3 222 Ufmt> +

1 2 1
Euz (—sUtnx — 8Uypm — sxUypiny — $S2UUygy + gsszUmUx — gsxnUmt — §szx2UmmU> +

4 24 1
N4 (_55 Z Ua:a:t - 53 My U:wwt - Es 4y Ua:a:a:a:t) =0 (5)

n+ ((h+enU)e =0 (6)

The depth-averaged velocity U and surface elevation 7 are periodic and expanded in Fourier series with
frequency w. The major finding is the explicit expressions, found by Computer for the coefficients of the first
four harmonics of the Fourier series calculated up to the orders 3, eu?, and p* inclusively. They are polynomlals
of Bessel functions Jy (2w \/_ ) Yo (2w\/_ ) J1 (Qw\/_ ) Yi (Qw \/: ) whose coeflicients are polynomials of z2

and 2. This result is closely related to note [3], where case of standing waves is considered
We conjecture that periodic solutions to B,, over a slope can be found as expansions of the form:

C%(x) + S (z) sin (wt) + C(z) cos (wt) + ... + S™(x) sin (mwt) + C™(z) cos (mwt) + ... (7)

where S™(x) and C™(x) are polynomials of Bessel functions Jy (2w+/Z) , ¥y (2w+/Z) , J1 (2w/Z) , V1 (2w,/Z)
whose coefficients are polynomials of 22 and z72.

Velocities u (x, z,t) and w (z, z,t) can be expressed in terms of U, 7, and their derivatives which permits
to interpret the result as a periodic solution to classical wave problem (1) - (4) over a slope found up to the
orders €2, ey, and p*. This allows to conjecture that exact periodic solutions to the problem (1) - (4) can be
described as a power series in z with coefficients of the form (7).

Numerous numeric results illustrating the presented method are included
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It is widely assumed that the assignment of truth values to non-trivial
algebraic predicates containing numerical data is possible only if the data
are exact and if exact computation is employed. But in many application
areas the answers to questions like “Are all zeros of that (model) polynomial
in the left half-plane?” are of principal importance.

We develop a framework in which algebraic predicates with empirical
data are assigned a positive real number in place of a truth value. This
validity value permits an interpretation which is more informative that the
classical “yes — no” answer. It depends continuously on the data and can
thus be computed approximately by floating-point arithmetic. A number of
non-trivial examples support the usefulness of our approach.
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Theaim of thelectureis to shav how, thanksto the computeralgebrasystem
MATHEMATICA * andits external packageMathTensor™?, it is possibleto solve
symbolicandnumericaltasksin thetheoryof shells.

Thelecturewill coverthefollowing problems:

1. Computer assisted tensor analysis of shell tasks
Application of the computeralgebrasystemto solve tensorsymbolic prob-
lems. Derivation of MATHEMATICA® differentialequationdrom tensorones.
Receving andsimplification of the constitutve relationsand strainenegy
density Numericalexamples.

2. Shell geometry with MathTensor™
Applicationof MathTensor™ to translaterelationsof differentialgeometry
to the MATHEMATICA® language.

3. Description of an arbitrary shell
Geometricabropertieskinematicrelations,strains,internalforcesanddif-
ferentialequations.

4. Shellsboundary value problemswith least squares method
Therefinedleastsquaresnethodwasimplementednto the computeralge-
bra. The methodis very usefulfor the boundaryalue problemsof shellsas
they aretypical problemsof boundarylayer Theadwantage®f themethod.

L MATHEMATICA' is a productof Wolfram Researchinc.
2MathTensor™ is a productof MathSolutions)nc.



