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Abstract. The associated talk surveys some recent developments in algorithmic
coding theory that answer some fundamental questions with algebraic techniques.

1 Introduction

The theory of error-correcting codes has long seen codes with remarkable combina-
torial performance emerging from the study of algebraic functions over finite fields
(e.g., Reed-Solomon code [9], BCH codes [2, 7], algebraic-geometry codes [4, 11]).
They have also provided the inspiration for, and benefitted from, the development of
algebraic algorithms (e.g., Berlekamp’s algorithm for factoring univariate polynomi-
als [1], Groebner basis based algorithms for decoding algebraic-geometry codes). This
phenomenon has repeated itself in recent years with a resurgence of algorithms for
problems in error-correction (list-decoding of Reed-Solomon codes [10, 6] and the re-
cent results of Parvaresh-Vardy [8] and Guruswami-RudraGuRu), which have in turn
inspired new (fast) algorithms for polynomial factorization (due to Chris Umans [12]).

In this survey we will introduce the basic algebraic codes and their decoding algo-
rithms. The hope is to eventually describe the Guruswami-Rudra result which shows
how to construct codes over a large alphabet of rate 1 − p − o(1) that correct (list-
decode) p fraction of adversarially injected errors in polynomial time. Prior to this re-
sult no explicit construction of such codes (capable of correcting so many errors with
even exponential time decoding algorithms) was known!

Tentative sequence of topics:

1. Codes, decoding, and list-decoding. basic parameters.
2. Reed-Solomon codes. combinatorial list-decodability.
3. Algorithmic list-decoding of Reed-Solomon Codes [10].
4. Improved list-decoding of Reed-Solomon codes [6].
5. Interleaved Reed-Solomon codes and decoding [8].
6. Folded Reed-Solomon codes and decoding [5].
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