Introduction to Unification Theory Equational Unification

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria kutsia@risc.uni-linz.ac.at

Overview

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

- Unifications algorithms are essential components for deduction systems.
- Simple integration of axioms that describe the properties of equality often leads to an unacceptable increase of search space.
- Proposed solution: To build equational axioms into inference, replacing syntactic unification with equational unification.

Example

Given: Al-theory $\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, x) \approx x\}$. Apply idempotence to the term

 $f(x_0, f(x_1, \ldots, f(x_{n-1}, f(x_n, f(x_0, \ldots, f(x_{n-1}, x_n) \ldots))))))))$

Example

Given: Al-theory $\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, x) \approx x\}$. Apply idempotence to the term

$$f(x_0, f(x_1, \ldots, f(x_{n-1}, f(x_n, f(x_0, \ldots, f(x_{n-1}, x_n) \ldots))))))))$$

Exponentially many ways of rearranging the parentheses with the help of associativity: Very time consuming if the prover has to search for the right one.

Example

Given: Al-theory $\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, x) \approx x\}$. Apply idempotence to the term

$$f(x_0, f(x_1, \ldots, f(x_{n-1}, f(x_n, f(x_0, \ldots, f(x_{n-1}, x_n) \ldots))))))))$$

- Exponentially many ways of rearranging the parentheses with the help of associativity: Very time consuming if the prover has to search for the right one.
- ► A human mathematician would use words instead of terms, i.e. would work modulo associativity, and apply idempotence xx = x to the word x₀ ··· x_nx₀ ··· x_n by unifying x with x₀ ··· x_n.

Example

Given: Al-theory $\{f(f(x, y), z) \approx f(x, f(y, z)), f(x, x) \approx x\}$. Apply idempotence to the term

$$f(x_0, f(x_1, \ldots, f(x_{n-1}, f(x_n, f(x_0, \ldots, f(x_{n-1}, x_n) \ldots))))))))$$

- Exponentially many ways of rearranging the parentheses with the help of associativity: Very time consuming if the prover has to search for the right one.
- ► A human mathematician would use words instead of terms, i.e. would work modulo associativity, and apply idempotence xx = x to the word x₀ ··· x_nx₀ ··· x_n by unifying x with x₀ ··· x_n.
- To adopt this way of proceeding for a prover, we must replace the syntactic unification algorithm in the resolution step by associative unification.

ъ

・ ロ ト ・ 雪 ト ・ 目 ト ・

Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

Equational Theory

Equational Theory

- *E*: a set of equations over $T(\mathcal{F}, \mathcal{V})$, called identities.
- ► Equational theory = E defined by E: The least congruence relation on T(F, V) closed under substitution and containing E

Equational Theory

Equational Theory

- *E*: a set of equations over $\mathcal{T}(\mathcal{F}, \mathcal{V})$, called identities.
- ► Equational theory = E defined by E: The least congruence relation on T(F, V) closed under substitution and containing E i.e., = is the least binary relation on T(F, V) with the properties:
 - $E \subseteq \doteq_E$.
 - Reflexivity: $s \doteq_E s$ for all s.
 - Symmetry: If $s \doteq_E t$ then $t \doteq_E s$ for all s, t.
 - ▶ Transitivity: If $s \doteq_E t$ and $t \doteq_E r$ then $s \doteq_E r$ for all s, t, r.
 - ► Congruence: If $s_1 \doteq_E t_1, \ldots, s_n \doteq_E t_n$ then $f(s_1, \ldots, s_n) \doteq_E f(t_1, \ldots, t_n)$ for all s, t, n and n-ary f.
 - Closure under substitution: If s =_E t then sσ =_E tσ for all s, t, σ.

э

Notation, Terminology

- Identities: $s \approx t$.
- ► $s \doteq_E t$: The term *s* is equal modulo *E* to the term *t*.
- E will be called an equational theory as well (abuse of the terminology).
- sig(E): The set of function symbols that occur in *E*.

Example

•
$$C := \{f(x, y) \approx f(y, x)\}$$
: *f* is commutative.
 $sig(C) = f$.

►
$$f(f(a,b),c) \doteq_C f(c,f(b,a)).$$

►
$$AU := \{f(f(x, y), z) \approx f(x, f(y, z)), f(x, e) \approx x, f(e, x) \approx x\}$$
: *f* is associative, *e* is unit.
 $sig(AU) = \{f, e\}$

► $f(a, f(x, f(e, a))) \doteq_{AU} f(f(a, x), a).$

・ ロ ト ・ 雪 ト ・ 目 ト

Notation, Terminology

E-Unification Problem, E-Unifier, E-Unifiability

- *E*: equational theory.
 - \mathcal{F} : set of function symbols.
 - \mathcal{V} : countable set of variables.
- ► E-Unification problem over *F*: a finite set of equations

$$\Gamma = \{ \boldsymbol{s}_1 \doteq^?_E \boldsymbol{t}_1, \ldots, \boldsymbol{s}_n \doteq^?_E \boldsymbol{t}_n \},\$$

where $s_i, t_i \in T(\mathcal{F}, \mathcal{V})$.

• *E*-Unifier of Γ : a substitution σ such that

$$s_1 \sigma \doteq_E t_1 \sigma, \ldots, s_n \sigma \doteq_E t_n \sigma.$$

u_E(Γ): the set of *E*-unifiers of Γ. Γ is *E*-unifiable iff *u_E*(Γ) ≠ Ø.

ъ

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

E-Unification vs Syntactic Unification

- Syntactic unification: a special case of *E*-unif. with $E = \emptyset$.
- Any syntactic unifier of an E-unification problem Γ is also an E-unifier of Γ.
- For E ≠ Ø, u_E(Γ) may contain a unifier that is not a syntactic unifier.

E-Unification vs Syntactic Unification

- Syntactic unification: a special case of *E*-unif. with $E = \emptyset$.
- Any syntactic unifier of an *E*-unification problem Γ is also an *E*-unifier of Γ.
- For E ≠ Ø, u_E(Γ) may contain a unifier that is not a syntactic unifier.

Example

- Terms f(a, x) and f(b, y):
 - Not syntactically unifiable.
 - ► Unifiable module commutativity of *f*. *C*-unifier: $\{x \mapsto b, y \mapsto a\}$

E-Unification vs Syntactic Unification

- Syntactic unification: a special case of *E*-unif. with $E = \emptyset$.
- Any syntactic unifier of an E-unification problem Γ is also an E-unifier of Γ.
- For E ≠ Ø, u_E(Γ) may contain a unifier that is not a syntactic unifier.

Example

- Terms f(a, x) and f(b, y):
 - Not syntactically unifiable.
 - ► Unifiable module commutativity of *f*. *C*-unifier: $\{x \mapsto b, y \mapsto a\}$
- Terms f(a, x) and f(y, b):
 - Have the most general syntactic unifier $\{x \mapsto b, y \mapsto a\}$.
 - If f is associative, then u_A({f(a, x) ≐[?]_A f(y, b)}) contains additional A-unifiers, e.g. {x → f(z, b), y → f(a, z)}.

Notions Adapted

Instantiation Quasi-Ordering (Modified)

- E: equational theory. \mathcal{X} : set of variables.
- A substitution σ is more general modulo E on X than ϑ, written σ ≤^X_E ϑ, if there exists η such that xση ≐_E xϑ for all x ∈ X.
- ϑ is called an *E*-instance of σ modulo *E* on \mathcal{X} .
- The relation $\leq_E^{\mathcal{X}}$ is quasi-ordering, called *instantiation quasi-ordering*.
- ► $= \frac{\chi}{E}$ is the equivalence relation corresponding to \leq_{E}^{χ} .

No Single MGU

- When comparing unifiers of Γ , the set \mathcal{X} is *vars*(Γ).
- ► Unifiable *E*-unification problems might not have an mgu.

Example

- f is commutative.
- $\Gamma = \{f(x, y) \doteq_C^? f(a, b)\}$ has two *C*-unifiers:

$$\sigma_1 = \{ x \mapsto a, y \mapsto b \}$$

$$\sigma_2 = \{ x \mapsto b, y \mapsto a \}.$$

- On *vars*(Γ) = {*x*, *y*}, any unifier is equal to either σ_1 or σ_2 .
- σ_1 and σ_2 are not comparable wrt $\leq_C^{\{x,y\}}$.
- Hence, no mgu for Γ.

MCSU vs MGU

In *E*-unification, the role of mgu is taken on by a complete set of *E*-unifiers.

Complete and Minimal Complete Sets of E-Unifiers

- **Γ**: *E*-unification problem over \mathcal{F} .
- $\mathcal{X} = vars(\Gamma)$.
- ► C is a complete set of E-unifiers of Γ iff
 - 1. $C \subseteq u_E(\Gamma)$: C's elements are *E*-unifiers of Γ , and
 - **2**. For each $\vartheta \in u_E(\Gamma)$ there exists $\sigma \in C$ such that $\sigma \leq_E^{\mathcal{X}} \vartheta$.
- C is a minimal complete set of E-unifiers (mcsu_E) of Γ if it is a complete set of E-unifiers of Γ and

3. two distinct elements of C are not comparable wrt $\leq_{E}^{\mathcal{X}}$.

э

• σ is an mgu of Γ iff $mcsu_E(\Gamma) = \{\sigma\}$.

MCSU's

- $mcsu_E(\Gamma) = \emptyset$ if Γ is not *E*-unifiable.
- Minimal complete sets of unifiers do not always exist.
- When they exist, they may be infinite.
- When they exist, they are unique up to $= \frac{\chi}{E}$.

Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

Unification Type of a Problem, Theory.

- E: equational theory.
- Γ: E-unification problem over F.
- Γ has unification type
 - *unitary,* if $mcsu(\Gamma)$ has cardinality at most one,
 - finitary, if mcsu(Γ) has finite cardinality,
 - infinitary, if mcsu(Γ) has infinite cardinality,
 - zero, if mcsu(Γ) does not exist.
- Abbreviation: type unitary 1, finitary ω, infinitary ∞, zero - 0.
- Ordering: $1 < \omega < \infty < 0$.
- ► Unification type of E wrt F: the maximal type of an E-unification problem over F.

ъ

・ ロ ト ・ 雪 ト ・ 目 ト ・

The unification type of an $E\mbox{-equational problem over }\mathcal{F}$ depends both

- ▶ on *E*, and
- ▶ on *F*.

Examples and more details will follow.

Example (Type Unitary)

Syntactic unification.

- The empty equational theory \emptyset : Syntactic unification.
- ► Unitary wrt any *F* because any unifiable syntactic unification problem has an mgu.

Example (Type Finitary)

- ► {f(x, y) =[?]_C f(a, b)} does not have an mgu. C-unification is not unitary.
- Show that it is finitary for any \mathcal{F} :

Example (Type Finitary)

- ► {f(x, y) =[?]_C f(a, b)} does not have an mgu. C-unification is not unitary.
- Show that it is finitary for any \mathcal{F} :

• Let
$$\Gamma = \{ s_1 \doteq_C^? t_1, \dots, s_n \doteq_C^? t_n \}$$
 be a *C*-unification problem.

Example (Type Finitary)

- ► {f(x, y) =[?]_C f(a, b)} does not have an mgu. C-unification is not unitary.
- Show that it is finitary for any \mathcal{F} :
 - Let $\Gamma = \{s_1 \doteq_C^? t_1, \dots, s_n \doteq_C^? t_n\}$ be a *C*-unification problem.
 - Consider all possible syntactic unification problems $\Gamma' = \{s'_1 \stackrel{i}{=} {}^{?} t'_1, \dots, s'_n \stackrel{i}{=} {}^{?} t'_n\}$, where $s'_i \stackrel{i}{=}_{C} s_i$ and $t'_i \stackrel{i}{=}_{C} t_i$ for each $1 \le i \le n$.

Example (Type Finitary)

- ► {f(x, y) =[?]_C f(a, b)} does not have an mgu. C-unification is not unitary.
- Show that it is finitary for any \mathcal{F} :
 - Let $\Gamma = \{s_1 \doteq_C^? t_1, \dots, s_n \doteq_C^? t_n\}$ be a *C*-unification problem.
 - Consider all possible syntactic unification problems $\Gamma' = \{s'_1 \doteq^? t'_1, \ldots, s'_n \doteq^? t'_n\}$, where $s'_i \doteq_C s_i$ and $t'_i \doteq_C t_i$ for each $1 \le i \le n$.
 - There are only finitely many such Γ's, because the C-equivalence class for a given term t is finite.

Example (Type Finitary)

Commutative unification: $\{f(x, y) \approx f(y, x)\}$

- ► {f(x, y) =[?]_C f(a, b)} does not have an mgu. C-unification is not unitary.
- Show that it is finitary for any \mathcal{F} :
 - Let $\Gamma = \{s_1 \doteq_C^? t_1, \dots, s_n \doteq_C^? t_n\}$ be a *C*-unification problem.
 - Consider all possible syntactic unification problems $\Gamma' = \{s'_1 \doteq^? t'_1, \ldots, s'_n \doteq^? t'_n\}$, where $s'_i \doteq_C s_i$ and $t'_i \doteq_C t_i$ for each $1 \le i \le n$.
 - There are only finitely many such Γ's, because the C-equivalence class for a given term t is finite.
 - It can be shown that collection of all mgu's of Γ's is a complete set of C-unifiers of Γ. This set if finite.

Example (Type Finitary)

Commutative unification: $\{f(x, y) \approx f(y, x)\}$

- ► {f(x, y) =[?]_C f(a, b)} does not have an mgu. C-unification is not unitary.
- Show that it is finitary for any \mathcal{F} :
 - Let $\Gamma = \{s_1 \doteq_C^? t_1, \dots, s_n \doteq_C^? t_n\}$ be a *C*-unification problem.
 - Consider all possible syntactic unification problems $\Gamma' = \{s'_1 \doteq^? t'_1, \dots, s'_n \doteq^? t'_n\}$, where $s'_i \doteq_C s_i$ and $t'_i \doteq_C t_i$ for each $1 \le i \le n$.
 - There are only finitely many such Γ's, because the C-equivalence class for a given term t is finite.
 - It can be shown that collection of all mgu's of Γ's is a complete set of C-unifiers of Γ. This set if finite.
 - If this set is not minimal (often the case), it can be minimized by removing redundant C-unifiers.

Example (Type Infinitary)

Associative unification: $\{f(f(x, y), z) \approx f(x, f(y, z))\}$.

- ► { $f(x, a) \doteq^{?}_{A} f(a, x)$ } has an infinite *mcsu*: { $\{x \mapsto a\}, \{x \mapsto f(a, a)\}, \{x \mapsto f(a, f(a, a))\}, \ldots$ }
- ► Hence, A-unification can not be unitary or finitary.
- It is not of type zero because any A-unification problem has an mcsu that can be enumerated by the procedure from

G. Plotkin.

Building in equational theories. In B. Meltzer and D. Michie, editors, *Machine Intelligence*, volume 7, pages 73–90. Edinburgh University Press, 1972.

• A-unification is infinitary for any \mathcal{F} .

э

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Example (Type Zero)

Associative-Idempotent unification:

 $\{f(f(x,y),z)\approx f(x,f(y,z)),f(x,x)\approx x\}.$

- ► {f(x, f(y, x)) =[?]_A f(x, f(z, x))} does not have a minimal complete set of unifiers, see
 - F. Baader.

Unification in idempotent semigroups is of type zero. *J. Automated Reasoning*, 2(3):283–286, 1986.

► Al-unification is of type zero.

Unification Type. Signature Matters

Associative-commutative unification with unit:

 $ACU = \{f(f(x, y), z) \approx f(x, f(y, z)), f(x, y) \approx f(y, x), f(x, e) \approx x\}.$

- Any ACU problem built using only f and variables has an mgu (i.e. is unitary).
- ► There are ACU problems that contain function symbols other than f and e, which are finitary, not unitary. For instance, mcsu({f(x, y) =[?]_{ACU} f(a, b)}) consists of four unifiers (which ones?).

Kinds of *E*-unification.

Kinds of E-Unification

One may distinguish three kinds of *E*-unification problems, depending on the function symbols that are allowed to occur in them.

E-Unification Problems: Elementary, with Constants, General.

- E: an equational Theory.
 - Γ : an *E*-unification problem over \mathcal{F} .
- **Γ** is an elementary *E*-unification problem iff $\mathcal{F} = sig(E)$.
- Γ is an *E*-unification problem with constants iff *F* \ sig(E) consists of constants.
- ► Γ is a general *E*-unification problem iff *F* \ sig(E) may contain arbitrary function symbols.

Unification Types of Theories wrt Kinds

- ► Unification type of *E* wrt elementary unification: Maximal unification type of *E* wrt all *F* such that *F* = sig(*E*).
- ► Unification type of *E* wrt unification with constants: Maximal unification type of *E* wrt all *F* such that *F* \ sig(*E*) is a set of constants.
- ► Unification type of *E* wrt general unification: Maximal unification type of *E* wrt all *F* such that *F* \ sig(*E*) is a set of arbitrary function symbols.

Unification Types of Theories wrt Kinds

The same equational theory can have different unification types for different kinds. Examples:

- ACU (Abelian monoids): Unitary wrt elementary unification, finitary wrt unification with constants and general unification.
- AG (Abelian groups): Unitary wrt elementary unification and unification with constants, finitary wrt general unification.

Decision procedure for an equational theory E (wrt F): An algorithm that for each E-unification problem Γ (wrt F) returns success if Γ is E-unifiable, and failure otherwise.

- Decision procedure for an equational theory E (wrt F): An algorithm that for each E-unification problem Γ (wrt F) returns success if Γ is E-unifiable, and failure otherwise.
- *E* is decidable if it admits a decision procedure.

- Decision procedure for an equational theory E (wrt F): An algorithm that for each E-unification problem Γ (wrt F) returns success if Γ is E-unifiable, and failure otherwise.
- *E* is decidable if it admits a decision procedure.
- (Minimal) E-unification algorithm (wrt F): An algorithm that computes a (minimal) finite complete set of E-unifiers for all E-unification problems over F.

- Decision procedure for an equational theory E (wrt F): An algorithm that for each E-unification problem Γ (wrt F) returns success if Γ is E-unifiable, and failure otherwise.
- *E* is decidable if it admits a decision procedure.
- ► (Minimal) *E*-unification algorithm (wrt *F*): An algorithm that computes a (minimal) finite complete set of *E*-unifiers for all *E*-unification problems over *F*.
- E-unification algorithm yields a decision procedure for E.

- Decision procedure for an equational theory E (wrt F): An algorithm that for each E-unification problem Γ (wrt F) returns success if Γ is E-unifiable, and failure otherwise.
- *E* is decidable if it admits a decision procedure.
- ► (Minimal) *E*-unification algorithm (wrt *F*): An algorithm that computes a (minimal) finite complete set of *E*-unifiers for all *E*-unification problems over *F*.
- E-unification algorithm yields a decision procedure for E.
- (Minimal) E-unification procedure: A procedure that enumerates a possible infinite (minimal) complete set of E-unifiers.

- Decision procedure for an equational theory E (wrt F): An algorithm that for each E-unification problem Γ (wrt F) returns success if Γ is E-unifiable, and failure otherwise.
- *E* is decidable if it admits a decision procedure.
- ► (Minimal) *E*-unification algorithm (wrt *F*): An algorithm that computes a (minimal) finite complete set of *E*-unifiers for all *E*-unification problems over *F*.
- E-unification algorithm yields a decision procedure for E.
- (Minimal) E-unification procedure: A procedure that enumerates a possible infinite (minimal) complete set of E-unifiers.
- E-unification procedure does not yield a decision procedure for E.

Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds of *E*-unification.

- There exists an equational theory for which elementary unification is decidable, but unification with constants is undecidable:
 - H.-J. Bürckert.

Some relationships between unification, restricted unification, and matching.

In J. Siekmann, editor, *Proc. 8th Int. Conference on Automated Deduction*, volume 230 of *LNCS*. Springer, 1986.

Three Main Questions in Unification Theory

For a given E, unification theory is mainly concerned with finding answers to the following three questions:

Decidability: Is it decidable whether an *E*-unification problem is solvable? If yes, what is the complexity of this decision problem?

Unification type: What is the unification type of the theory *E*? Unification algorithm: How can we obtain an (efficient) *E*-unification algorithm, or a (preferably minimal) *E*-unification procedure?

The answers depend on whether we consider elementary unification, unification with constants, or general unification.

Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

Results for Specific Theories

General unification:

Theory	Decidability	Туре	Algorithm/Procedure
Ø	Yes	1	Yes
A	Yes	∞	Yes
С	Yes	ω	Yes
1	Yes	ω	Yes
AC	Yes	ω	Yes
AI	Yes	0	?
CI	Yes	ω	Yes
ACI	Yes	ω	Yes
AU	Yes	∞	Yes
AG	Yes	ω	Yes
CRU	No	? (∞ or 0)	?

CRU - Commutative ring with unit

э

ヘロト 人間 アメヨアメヨア

C-unification algorithm U_C can be obtained from the inference system U by adding the C-Decomposition rule:

C-Decomposition: $\{f(s_1, s_2) \doteq_C^? f(t_1, t_2)\} \cup P'; S \Longrightarrow$ $\{s_1 \doteq_C^? t_2, s_2 \doteq_C^? t_1\} \cup P'; S,$ if *f* is commutative.

 C-Decomposition and Decomposition transform the same system in different ways.

In order to *C*-unify *s* and *t*:

- 1. Create an initial system $\{s \doteq_{C}^{?} t\}; \emptyset$.
- 2. Apply successively rules from U_C , building a complete tree of derivations. **C-Decomposition** and **Decomposition** rules have to be applied concurrently and form branching points in the derivation tree.

$$\{g(f(x,y),z) \doteq^?_C g(f(f(a,b),f(b,a))),c)\}; \emptyset$$

$$\{g(f(x,y),z) \doteq^{?}_{C} g(f(f(a,b),f(b,a))),c)\}; \emptyset$$

$$\downarrow$$

$$\{f(x,y) \doteq^{?}_{C} f(f(a,b),f(b,a)), z \doteq^{?}_{C} c\}; \emptyset$$

C-unify g(f(x, y), z) and g(f(f(a, b), f(b, a)), c), commutative f.

$$\{g(f(x,y),z) \doteq_{C}^{?} g(f(f(a,b),f(b,a))),c)\}; \emptyset \\ \downarrow \\ \{f(x,y) \doteq_{C}^{?} f(f(a,b),f(b,a)), z \doteq_{C}^{?} c\}; \emptyset \\ \{x \doteq_{C}^{?} f(a,b), y \doteq_{C}^{?} f(b,a), z \doteq_{C}^{?} c\}; \emptyset \\ \{x \doteq_{C}^{?} f(b,a), z \doteq_{C}^{?} c\}; \{x \doteq f(a,b)\} \\ \{y \doteq_{C}^{?} f(b,a), z \doteq_{C}^{?} c\}; \{x \doteq f(a,b)\} \\ \downarrow \\ \{y \doteq_{C}^{?} c\}; \{x \doteq f(a,b), y \doteq f(b,a)\} \\ \downarrow \\ \{z \doteq_{C}^{?} c\}; \{x \doteq f(a,b), y \doteq f(b,a)\} \\ \downarrow \\ \emptyset; \{x \doteq f(a,b), y \doteq f(b,a), z \doteq c\}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

C-unify g(f(x, y), z) and g(f(f(a, b), f(b, a)), c), commutative f.

$$\{g(f(x,y),z) \doteq_{C}^{?} g(f(f(a,b),f(b,a))),c)\}; \emptyset \\ \downarrow \\ \{f(x,y) \doteq_{C}^{?} f(f(a,b),f(b,a)), z \doteq_{C}^{?} c\}; \emptyset \\ \{x \doteq_{C}^{?} f(a,b), y \doteq_{C}^{?} f(b,a), z \doteq_{C}^{?} c\}; \emptyset \\ \{x \doteq_{C}^{?} f(a,b), y \doteq_{C}^{?} f(b,a), z \doteq_{C}^{?} c\}; \emptyset \\ \{y \doteq_{C}^{?} f(b,a), z \doteq_{C}^{?} c\}; \{x \doteq f(a,b)\} \\ \{y \doteq_{C}^{?} f(b,a), z \doteq_{C}^{?} c\}; \{x \doteq f(a,b)\} \\ \downarrow \\ \{z \doteq_{C}^{?} c\}; \{x \doteq f(a,b), y \doteq f(b,a)\} \\ \{z \doteq_{C}^{?} c\}; \{x \doteq f(a,b), y \doteq f(b,a), z \doteq_{C}^{?} c\}; \{x \doteq f(b,a), y \doteq f(a,b)\} \\ \downarrow \\ \emptyset; \{x \doteq f(a,b), y \doteq f(b,a), z \doteq_{C}^{?} \}$$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

æ

C-unify g(f(x, y), z) and g(f(f(a, b), f(b, a)), c), commutative f.

$$\{g(f(x, y), z) \doteq_{C}^{?} g(f(f(a, b), f(b, a))), c)\}; \emptyset \downarrow \\ \{f(x, y) \doteq_{C}^{?} f(f(a, b), f(b, a)), z \doteq_{C}^{?} c\}; \emptyset \\ \{x \doteq_{C}^{?} f(a, b), y \doteq_{C}^{?} f(b, a), z \doteq_{C}^{?} c\}; \emptyset \\ \{x \doteq_{C}^{?} f(a, b), y \doteq_{C}^{?} f(b, a), z \doteq_{C}^{?} c\}; \emptyset \\ \{y \doteq_{C}^{?} f(b, a), z \doteq_{C}^{?} c\}; \{x \doteq f(a, b)\} \\ \{y \doteq_{C}^{?} f(b, a), z \doteq_{C}^{?} c\}; \{x \doteq f(a, b)\} \\ \{y \doteq_{C}^{?} c\}; \{x \doteq f(a, b), y \doteq f(b, a)\} \\ \{z \doteq_{C}^{?} c\}; \{x \doteq f(a, b), y \doteq f(b, a)\} \\ \{z \doteq_{C}^{?} c\}; \{x \doteq f(a, b), y \doteq f(b, a), z \doteq_{C}^{?} c\}; \{x \doteq f(a, b), z = c\} \\ \emptyset; \{x \doteq f(a, b), y \doteq f(b, a), z \doteq_{C}^{?} b\}; \{x \doteq f(b, a), y \doteq f(a, b), z = c\}$$

æ

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

C-unify g(f(x, y), z) and g(f(f(a, b), f(b, a)), c), commutative f.

 $\{\{x \mapsto f(b, a), y \mapsto f(a, b), z \mapsto c\}, \{x \mapsto f(a, b), y \mapsto f(b, a), z \mapsto c\}\}$ Not minimal.

・ロト・日本・モト・モト モ

 $ACU = \{f(f(x, y), z) \approx f(x, f(y, z)), f(x, y) \approx f(y, x), f(x, e) \approx e\}$

Elementary ACU-unification problem:

$$\Gamma = \{f(x, f(x, y)) \doteq_{ACU}^{?} f(z, f(z, z))\}$$

Solving idea:

1. Associate with the equation in Γ a homogeneous linear Diophantine equation. The Diophantine equation states that the number of new variables introduced by a unifier σ in both sides of $\Gamma \sigma$ must be the same:

$$2x + y = 3z$$
.

(Continues on the next slide.)

Solving (Cont.):

2. Solve 2x + y = 3z over nonnegative integers. Three minimal solutions:

$$x = 1, y = 1, z = 1$$

 $x = 0, y = 3, z = 1$
 $x = 3, y = 0, z = 2$

э

Any other solution of the equation can be obtained as a nonnegative linear combination of these three solutions. (Continues on the next slide.)

Solving (Cont.):

3. Introduce new variables v_1 , v_2 , v_3 for each solution of the Diophantine equation:

	X	у	Ζ
<i>V</i> ₁	1	1	1
<i>V</i> ₂	0	3	1
V ₃	3	0	2

4. Each row corresponds to a unifier of Γ :

$$\sigma_1 = \{ x \mapsto v_1, y \mapsto v_1, z \mapsto v_1 \}$$

$$\sigma_2 = \{ x \mapsto e, y \mapsto f(v_2, f(v_2, v_2)), z \mapsto v_2 \}$$

$$\sigma_3 = \{ x \mapsto f(v_3, f(v_3, v_3)), y \mapsto e, z \mapsto f(v_3, v_3) \}$$

However, none of them is an mgu.

・ロット 御マ キョマ キョン

Solving (Cont.):

5. To obtain an mgu, we should combine all three solutions:

		X	у	Ζ
	<i>V</i> ₁	1	1	1
	<i>V</i> 2	0	3	1
_	V ₃	3	0	2

Looking at columns: They state that the mgu we are looking for should have

- in the binding for x one v_1 , zero v_2 , and three v_3 's,
- in the binding for y one v_1 , three v_2 's, and zero v_3 ,
- in the binding for z one v₁, one v₂, and two v₃'s
- 6. Hence, we can construct the mgu:

 $\sigma = \{ x \mapsto f(v_1, f(v_3, f(v_3, v_3)), y \mapsto f(v_1, f(v_2, f(v_2, v_2)), z \mapsto f(v_1, f(v_2, f(v_3, v_3))) \}$

・ ロ ト ・ 雪 ト ・ ヨ ト ・

Exercise.

Verify that the unifiers σ_1 , σ_2 and σ_3 are instances of σ .

Example

- Equational theory: $E = \{f(e, x) \approx x, g(f(x, y)) \approx g(y)\}.$
- *E*-unification problem: $\Gamma = \{g(x) \doteq_E^? g(e)\}.$

Example

- Equational theory: $E = \{f(e, x) \approx x, g(f(x, y)) \approx g(y)\}.$
- *E*-unification problem: $\Gamma = \{g(x) \doteq_E^? g(e)\}.$
- Complete (why?) set of solutions:

$$\sigma_0 = \{ x \mapsto e \}$$

$$\sigma_1 = \{ x \mapsto f(x_0, e) \}$$

$$\sigma_2 = \{ x \mapsto f(x_1, f(x_0, e)) \}$$

...

$$\sigma_n = \{ x \mapsto f(x_{n-1}, x\sigma_{n-1}) \}$$

・ロト ・厚ト ・ヨト ・ヨト

Example

- Equational theory: $E = \{f(e, x) \approx x, g(f(x, y)) \approx g(y)\}.$
- *E*-unification problem: $\Gamma = \{g(x) \doteq_E^? g(e)\}.$

. . .

Complete (why?) set of solutions:

$$\sigma_0 = \{ x \mapsto e \}$$

$$\sigma_1 = \{ x \mapsto f(x_0, e) \}$$

$$\sigma_2 = \{ x \mapsto f(x_1, f(x_0, e)) \}$$

$$\dots$$

$$\sigma_n = \{ x \mapsto f(x_{n-1}, x \sigma_{n-1}) \}$$

► No *mcsu*. $\sigma_i = {x \atop E} \sigma_{i+1} \{ x_i \mapsto e \}$. $\sigma_i \not\leq {x \atop E} \sigma_j$ for i > j. Infinite descending chain: $\sigma_0 >_E^{\{x\}} \sigma_1 >_E^{\{x\}} \sigma_2 >_E^{\{x\}} \cdots$

Example (Cont.) Why does $\sigma_0 >_E^{\{x\}} \sigma_1 >_E^{\{x\}} \sigma_2 >_E^{\{x\}} \cdots$ imply that there is no *mcsu*?

• Let
$$S = \{\sigma_0, \sigma_1, ...\}.$$

Example (Cont.) Why does $\sigma_0 >_E^{\{x\}} \sigma_1 >_E^{\{x\}} \sigma_2 >_E^{\{x\}} \cdots$ imply that there is no *mcsu*?

- Let $S = \{\sigma_0, \sigma_1, \ldots\}.$
- Let S' be an arbitrary complete set of unifiers of Γ .

Example (Cont.) Why does $\sigma_0 >_F^{\{x\}} \sigma_1 >_F^{\{x\}} \sigma_2 >_F^{\{x\}} \cdots$ imply that there is no

Why does $\sigma_0 \geq_E^{\alpha_1} \sigma_1 \geq_E^{\alpha_2} \sigma_2 \geq_E^{\alpha_3} \cdots$ imply that there is r *mcsu*?

- Let $S = \{\sigma_0, \sigma_1, \ldots\}.$
- Let S' be an arbitrary complete set of unifiers of Γ .
- Since S is complete, for any θ ∈ S' there exists σ_i ∈ S such that σ_i ≤^{x}_E θ.

Example (Cont.)

Why does $\sigma_0 >_E^{\{x\}} \sigma_1 >_E^{\{x\}} \sigma_2 >_E^{\{x\}} \cdots$ imply that there is no *mcsu*?

- Let $S = \{\sigma_0, \sigma_1, \ldots\}.$
- Let S' be an arbitrary complete set of unifiers of Γ .
- Since S is complete, for any θ ∈ S' there exists σ_i ∈ S such that σ_i ≤^{x}_F θ.
- Since $\sigma_{i+1} \leq_E^{\{x\}} \sigma_i$, we get $\sigma_{i+1} \leq_E^{\{x\}} \vartheta$.

< □ > < 同 >

Example (Cont.)

Why does $\sigma_0 >_E^{\{x\}} \sigma_1 >_E^{\{x\}} \sigma_2 >_E^{\{x\}} \cdots$ imply that there is no *mcsu*?

- Let $S = \{\sigma_0, \sigma_1, \ldots\}.$
- Let S' be an arbitrary complete set of unifiers of Γ .
- Since S is complete, for any θ ∈ S' there exists σ_i ∈ S such that σ_i ≤^{x}_F θ.
- Since $\sigma_{i+1} \leq_E^{\{x\}} \sigma_i$, we get $\sigma_{i+1} \leq_E^{\{x\}} \vartheta$.
- On the other hand, since S' is complete, there exists η ∈ S' such that η ≤^{x}_E σ_{i+1}.

Example (Cont.)

Why does $\sigma_0 >_E^{\{x\}} \sigma_1 >_E^{\{x\}} \sigma_2 >_E^{\{x\}} \cdots$ imply that there is no *mcsu*?

- Let $S = \{\sigma_0, \sigma_1, \ldots\}.$
- Let S' be an arbitrary complete set of unifiers of Γ .
- Since S is complete, for any θ ∈ S' there exists σ_i ∈ S such that σ_i ≤^{x}_F θ.
- Since $\sigma_{i+1} <_{E}^{\{x\}} \sigma_i$, we get $\sigma_{i+1} <_{E}^{\{x\}} \vartheta$.
- ▶ On the other hand, since *S'* is complete, there exists $\eta \in S'$ such that $\eta \leq_{E}^{\{x\}} \sigma_{i+1}$.
- Hence, $\eta <_E^{\{x\}} \vartheta$ which implies that S' is not minimal.

For each specific equational theory separately studying

- decidability,
- unification type,
- unification algorithm/procedure.

Can one study these problems for bigger classes of equational theories?

(日)

Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results

In general, unification modulo equational theories

- is undecidable,
- unification type of a given theory is undecidable,
- admits a complete unification procedure (Gallier & Snyder, called an universal *E*-unification procedure).

General Results

Universal *E*-unification procedure U_E .

Rules:

Trivial, Orient, Decomposition, Variable Elimination from U, plus

Lazy Paramodulation:

$$\{e[u]\} \cup P'; S \Longrightarrow \{I \doteq u, e[r]\} \cup P'; S,$$

for a fresh variant of the identity $I \approx r$ from $E \cup E^{-1}$, where

- e[u] is an equation where the term u occurs,
- *u* is not a variable,
- if I is not a variable, then the top symbol of I and u are the same.

Universal E-unification procedure. Control.

In order to solve a unification problem Γ modulo a given *E*:

- Create an initial system Γ ; Ø.
- Apply successively rules from U_E, building a complete tree of derivations.
- No other inference rule may be applied to the equation *l* =[?] *u* that is generated by the Lazy Paramodulation rule before it is subjected to a Decomposition step.

General Results

Universal *E*-unification procedure.

Example

 $E = \{f(a, b) \approx a, a \approx b\}.$

Unification problem: $\{f(x, x) \doteq_{E}^{?} x\}$.

Computing a unifier $\{x \mapsto a\}$ by the universal procedure:

$$\{f(x,x) \doteq_E^? x\}; \emptyset \Longrightarrow_{LP} \{f(a,b) \doteq_E^? f(x,x), a \doteq_E^? x\}; \emptyset \Longrightarrow_D \{a \doteq_E^? x, b \doteq_E^? x, a \doteq_E^? x\}; \emptyset \Longrightarrow_O \{x \doteq_E^? a, b \doteq_E^? x, a \doteq_E^? x\}; \emptyset \Longrightarrow_S \{b \doteq_E^? a, a \doteq_E^? a\}; \{x \doteq a\} \Longrightarrow_{LP} \{a \doteq_E^? a, b \doteq_E^? b, a \doteq_E^? a\}; \{x \doteq a\} \Longrightarrow_T^+ \emptyset; \{x \doteq a\}$$

・ロ・・ 日本・ キャット・

Pros and cons of the universal procedure:

- ▶ Pros: Is sound and complete. Can be used for any *E*.
- Cons: Very inefficient. Usually does not yield a decision procedure or a (minimal) *E*-unification algorithm even for unitary or finitary theories with decidable unification.

More useful results can be obtained by imposing additional restrictions on equational theories:

- Syntactic approaches: Restricting syntactic form of the identities defining equational theories.
- Semantic approaches: Depend on properties of the free algebras defined by the equational theory.

