Introduction to Unification Theory Narrowing

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria kutsia@risc.uni-linz.ac.at

Overview

Introduction

Basic Narrowing

Outline

Introduction

Basic Narrowing

Introduction

- ► The most important special case of the *E*-unification problem, when the equational theory can be represented by a ground convergent set of rewrite rules.
- ► Narrowing: The process that is used to solve such E-unification problems.

Introduction

- ▶ Let E be a set of identities, and R a convergent term rewriting equivalent to E.
- $ightharpoonup \sigma$ is an *E*-unifier of *s* and *t*, then $s\sigma$ and $t\sigma$ have the same *R*-normal forms.
- Idea: Construct the unifier and the corresponding reduction chains simultaneously.

- ▶ $E = \{0 + x = x\}, R = \{0 + x \longrightarrow x\}.$
- ▶ Solve *E*-unification problem $\{y + z \stackrel{?}{=} 0\}$.
- Proceed as follows:

- ▶ $E = \{0 + x = x\}, R = \{0 + x \longrightarrow x\}.$
- ▶ Solve *E*-unification problem $\{y + z \stackrel{?}{=} 0\}$.
- Proceed as follows:
 - 1. Look for an instance of y+z to which the rewrite rule applies. Such instance is computed by syntactically unifying y+z and 0+x, yielding the mgu $\varphi=\{y\mapsto 0, z\mapsto x\}$.

- ► $E = \{0 + x = x\}, R = \{0 + x \longrightarrow x\}.$
- ▶ Solve *E*-unification problem $\{y + z \stackrel{?}{=} 0\}$.
- Proceed as follows:
 - 1. Look for an instance of y+z to which the rewrite rule applies. Such instance is computed by syntactically unifying y+z and 0+x, yielding the mgu $\varphi=\{y\mapsto 0, z\mapsto x\}$.
 - 2. $(y+z)\varphi = 0 + x$, rewriting it with $0 + x \longrightarrow x$ gives x and we obtain a new problem $\{x \stackrel{?}{=} 0\}$.

- ► $E = \{0 + x = x\}, R = \{0 + x \longrightarrow x\}.$
- ▶ Solve *E*-unification problem $\{y + z \stackrel{?}{=} 0\}$.
- Proceed as follows:
 - 1. Look for an instance of y+z to which the rewrite rule applies. Such instance is computed by syntactically unifying y+z and 0+x, yielding the mgu $\varphi=\{y\mapsto 0, z\mapsto x\}$.
 - 2. $(y+z)\varphi = 0 + x$, rewriting it with $0 + x \longrightarrow x$ gives x and we obtain a new problem $\{x \stackrel{?}{=} 0\}$.
 - 3. $\{x \doteq_{E}^{?} 0\}$ has the syntactic mgu $\vartheta = \{x \mapsto 0\}$.

- ► $E = \{0 + x = x\}, R = \{0 + x \longrightarrow x\}.$
- ▶ Solve *E*-unification problem $\{y + z \stackrel{?}{=} 0\}$.
- Proceed as follows:
 - 1. Look for an instance of y+z to which the rewrite rule applies. Such instance is computed by syntactically unifying y+z and 0+x, yielding the mgu $\varphi=\{y\mapsto 0, z\mapsto x\}$.
 - 2. $(y+z)\varphi = 0 + x$, rewriting it with $0 + x \longrightarrow x$ gives x and we obtain a new problem $\{x \stackrel{?}{=} 0\}$.
 - 3. $\{x \stackrel{?}{=_E} 0\}$ has the syntactic mgu $\vartheta = \{x \mapsto 0\}$.
 - 4. By this process we have simultaneously constructed the *E*-unifier $\sigma = \varphi \vartheta = \{y \mapsto 0, z \mapsto 0, x \mapsto 0\}$ and the rewrite chain $(y + z)\sigma = 0 + 0 \longrightarrow 0 = 0\sigma$.

- A rewrite rule: a directed equation *I* → *r*, where vars(*r*) ⊆ vars(*I*).
- ▶ A term rewriting system (TRS): a set of rewrite rules.
- ▶ $s[t]|_p$: A term obtained from s by replacing its subterm at position p with the term t.
- ▶ The rewrite relation R associated with a TRS R: $s \longrightarrow_R t$ if there exists a variant $l \longrightarrow r$ of a rewrite rule in R, a position p in s, and a substitution σ such that $s|_p = l\sigma$ and $t = s[r\sigma]_p$.
- ▶ $s|_p$ is called a redex.

- ightharpoonup \rightarrow_R : The transitive-reflexive closure of \longrightarrow_R .
- ▶ s reduces to t in R: $s \rightarrow R t$.
- ▶ If *E* is the set of equations corresponding to *R*, i.e., $E = \{I = r \mid I \longrightarrow r \in R\}$, then $=_E$ coincides with the reflexive-symmetric-transitive closure of *R*.
- ▶ Two terms t_1 , t_2 are joinable (wrt R), denoted by $t_1 \downarrow_R t_2$, if there exists a term s such that $t_1 \rightarrow_R s$ and $t_2 \rightarrow_R s$.
- A term s is a normal form (wrt R) if there is no term t with $s \longrightarrow_R t$.

- ▶ R is terminating if there are no infinite reduction sequences $t_1 \longrightarrow_R t_2 \longrightarrow_R t_3 \longrightarrow_R \cdots$.
- ▶ R is confluent if for all terms s, t_1, t_2 with $s \rightarrow_R t_1$ and $s \rightarrow_R t_2$ we have $t_1 \downarrow_R t_2$.
- ▶ *R* is convergent if it is confluent and terminating.

- A constraint system: either⊥ (representing failure) or a triple P; C; S.
- P: A multiset of equations, representing the schema of the problem.
- C: A set of equations, representing constraints on variables in P.
- ► S: A set of equations, representing bindings in the solution.
- ▶ C plays the role similar to P earlier, the rules from U will be applied to C; S as before.
- ϑ is said to be a solution (or E-unifier) of a system P; C; S
 if it E-unifies each equation in P, and unifies each of the
 equations in C and S; the system ⊥ has no E-unifiers.

Assumptions

- ► The rewrite system *R* is ground convergent with respect to a reduction ordering >.
- R is represented as a numbered sequence of rules

$$\{I_1 \longrightarrow r_1, \ldots, I_n \longrightarrow r_n\}.$$

► The index of a rule is be its number in this sequence.

Restricted form of substitution:

Definition

Given a rewrite system R, a substitution ϑ is R-reduced (or just reduced if R is unimportant) if for every $x \in dom(\vartheta)$, x is in R-normal form.

Example

$$R = \{f(f(x,y),z) \rightarrow f(x,f(y,z)), f(x,x) \rightarrow x\}.$$

$$\vartheta_1 = \{x \mapsto f(f(u,v),w), y \mapsto f(a,f(a,a))\} : \text{ not } R\text{-reduced.}$$

$$\vartheta_2 = \{x \mapsto f(u,f(v,w)), y \mapsto a\} : R\text{-reduced.}$$

For any ϑ and terminating set of rules R one can find an R-equivalent reduced substitution ϑ' .

Outline

Introduction

Basic Narrowing

The Calculus \mathcal{B} for Basic Narrowing

The rule set S:

Trivial:
$$P$$
; $\{s \stackrel{?}{=} s\} \cup C'$; $S \Longrightarrow P$; C' ; S .

Decomposition:
$$P$$
; $\{f(s_1, ..., s_n) \stackrel{?}{=} f(t_1, ..., t_n)\} \cup C'$; $S \Longrightarrow P$; $\{s_1 \stackrel{?}{=} t_1, ..., s_n \stackrel{?}{=} t_n\} \cup C'$; S ,

where
$$n \ge 0$$
.

Orient:
$$P$$
; $\{t \stackrel{?}{=} x\} \cup C'$; $S \Longrightarrow P$; $\{x \stackrel{?}{=} t\} \cup C'$; S if t is not a variable.

Basic Variable
$$P; \{x \stackrel{?}{=}^? t\} \cup C'; S \Longrightarrow$$

Elimination:
$$P$$
; C' { $x \mapsto t$ }; S { $x \mapsto t$ } \cup { $x \approx t$ }, if $x \notin vars(t)$.

The Calculus \mathcal{B} for Basic Narrowing

Two extra rules:

for a fresh variant of $I \longrightarrow r$ from R, where

- ightharpoonup e[t] is an equation where the term u occurs,
- t is not a variable,
- ▶ the top symbol of *l* and *t* are the same.

Soundness of the Calculus \mathcal{B}

Theorem

Let R be a ground convergent set of rewrite rules. If $P; \emptyset; \emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset; \emptyset; S$, then σ_S is an R-unifier of P.

Proof.

Exercise.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset; \emptyset; S$ such that $\sigma_S \leq_R^{\mathit{vars}(P)} \vartheta$.

Proof.

- ▶ We may assume that $P\vartheta$ is ground and that ϑ is R-reduced, since the relation \succ does not distinguish between R-equivalent substitutions.
- ▶ Thus, we will prove a stronger result, that when ϑ is R-reduced, then $\sigma_S \leq vars(P) \vartheta$.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of P; \emptyset ; \emptyset , then there exists a sequence P; \emptyset ; $\emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset$; \emptyset ; S such that $\sigma_S \leq_R^{vars(P)} \vartheta$.

Proof.

The complexity $\langle m, n_1, n_2, n_3 \rangle$ for P; C; S and its solution ϑ :

M = The multiset of all terms occurring in $P\vartheta$;

 n_1 = The number of distinct variables in C;

 n_2 = The number of symbols in C;

 n_3 = The number of equations $t \doteq_E^? x \in C$ where t is not a variable.

Associate to it the well-founded ordering in the usual way.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset; \emptyset; S$ such that $\sigma_S \leq_R^{\textit{vars}(P)} \vartheta$.

Proof.

Show by induction on this measure that if ϑ is a solution of P; C; S' with S' in a solved form, then there exists a sequence

$$P; C; S' \Longrightarrow^* \emptyset; \emptyset; S$$

such that $\sigma_S \leq^{\mathcal{X}} \vartheta$, where $\mathcal{X} = vars(P, C, S')$.

The base case \emptyset ; \emptyset ; S is trivial.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of P; \emptyset ; \emptyset , then there exists a sequence P; \emptyset ; $\emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset$; \emptyset ; S such that $\sigma_S \leq_R^{vars(P)} \vartheta$.

Proof.

For the induction step there are several overlapping cases:

1. If $C = \{s \stackrel{?}{=} t\} \cup C'$, then $s\vartheta = t\vartheta$ and we use $\mathcal S$ to generate a transformation step to a smaller system containing the same set of variables, and with the same solution. By the induction hypothesis, we have

$$P; C; S' \Longrightarrow_{S} P; C''; S'' \Longrightarrow^{*} \emptyset; \emptyset; S$$

such that $\sigma_s \leq^{\mathcal{X}} \vartheta$ for $\mathcal{X} = vars(P, C, S')$.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of P; \emptyset ; \emptyset , then there exists a sequence P; \emptyset ; $\emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset$; \emptyset ; S such that $\sigma_S \leq_R^{\textit{vars}(P)} \vartheta$.

Proof.

2. If $P = \{s \stackrel{?}{=} t\} \cup P'$ and $s\vartheta = t\vartheta$, then we may apply **Constrain** to obtain a smaller system (reducing the component M) with the same solution and the same set of variables, and we conclude as in the previous case.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of P; \emptyset ; \emptyset , then there exists a sequence P; \emptyset ; $\emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset$; \emptyset ; S such that $\sigma_S \leq_R^{vars(P)} \vartheta$.

Proof.

- 3. Assume $P = \{s \stackrel{?}{=} t\} \cup P'$ and there is an innermost redex in, say $s\vartheta$.
 - ▶ If more than one instance of a rule from R reduces this redex, we choose the rule with the smallest index in the set R.
 - ▶ Since ϑ is R-reduced, the redex must occur inside the non-variable positions of s.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of P; \emptyset ; \emptyset , then there exists a sequence P; \emptyset ; $\emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset$; \emptyset ; S such that $\sigma_S \leq_R^{vars(P)} \vartheta$.

Proof.

3. • Hence, we have the transformation:

$$\{s[s'] \stackrel{?}{=} t\} \cup P'; C; S' \Longrightarrow_{\mathsf{LP}}$$
$$\{s[r] \stackrel{?}{=} t\} \cup P'; \{l\sigma'_S \stackrel{?}{=} s'\sigma'_S\} \cup C; S'$$

- ► The new system smaller with respect to its new solution $\vartheta' = \vartheta \rho$. ϑ' is still R-reduced.
- ▶ By the induction hypothesis, $\{s[r] \stackrel{?}{=}^? t\} \cup P'; \{I\sigma_{S'} \stackrel{?}{=}^? s'\sigma_{S'}\} \cup C; S' \Longrightarrow^* \emptyset; \emptyset; S \text{ such that } \sigma_S \leq^{\mathcal{X}} \vartheta' \text{ with } \mathcal{X} = vars(I, r, P, C, S'), \text{ and since } x\vartheta = x\vartheta' \text{ for every } x \in vars(P, C, S'), \text{ the induction is complete.}$

- $P = \{0 + x \longrightarrow x, s(x) + y \longrightarrow s(x + y)\}$
- Goal: $\{z + z \stackrel{?}{=} s(s(0))\}$
- Successful derivation:

$$\{z+z\stackrel{?}{=}{}^?s(s(0))\};\emptyset;\emptyset\longrightarrow_{\mathsf{LP}}$$

 $\{s(x+y)\stackrel{?}{=}{}^?s(s(0))\};\{z+z\stackrel{?}{=}{}^?s(x)+y\};\emptyset\longrightarrow_{\mathsf{D}}$
 $\{s(x+y)\stackrel{?}{=}{}^?s(s(0))\};\{z\stackrel{?}{=}{}^?s(x),z\stackrel{?}{=}{}^?y\};\emptyset\longrightarrow_{\mathsf{BVE}}$
 $\{s(x+y)\stackrel{?}{=}{}^?s(s(0))\};\{s(x)\stackrel{?}{=}{}^?y\};\{z\approx s(x)\}\longrightarrow_{\mathsf{DVE}}$
 $\{s(x+y)\stackrel{?}{=}{}^?s(s(0))\};\{y\stackrel{?}{=}{}^?s(x)\};\{z\approx s(x)\}\longrightarrow_{\mathsf{LP}}$
 $\{s(x+y)\stackrel{?}{=}{}^?s(s(0))\};\{z\approx s(x),y\approx s(x)\}\longrightarrow_{\mathsf{LP}}$
 $\{s(x')\stackrel{?}{=}{}^?s(s(0))\};\{x+s(x)\stackrel{?}{=}{}^?0+x'\};$
 $\{z\approx s(x),y\approx s(x)\}\longrightarrow_{\mathsf{D}}$

- $P = \{0 + x \longrightarrow x, s(x) + y \longrightarrow s(x + y)\}$
- ► Goal: $\{z + z \stackrel{?}{=} s(s(0))\}$
- Successful derivation (cont.):

$$\{s(x') \stackrel{?}{=} s(s(0))\}; \{x \stackrel{?}{=} 0, s(x) \stackrel{?}{=} x'\}; \{z \approx s(x), y \approx s(x)\} \longrightarrow_{\mathsf{BVE}} \\ \{s(x') \stackrel{?}{=} s(s(0))\}; \{s(0) \stackrel{?}{=} x'\}; \{z \approx s(0), y \approx s(0), x \approx 0\} \longrightarrow_{\mathsf{O}} \\ \{s(x') \stackrel{?}{=} s(s(0))\}; \{x' \stackrel{?}{=} s(0)\}; \{z \approx s(0), y \approx s(0), x \approx 0\} \longrightarrow_{\mathsf{BVE}} \\ \{s(x') \stackrel{?}{=} s(s(0))\}; \emptyset; \{z \approx s(0), y \approx s(0), x \approx 0, x' \approx s(0)\} \longrightarrow_{\mathsf{C}} \\ \emptyset; \{s(s(0)) \stackrel{?}{=} s(s(0))\}; \{z \approx s(0), y \approx s(0), x \approx 0, x' \approx s(0)\} \longrightarrow_{\mathsf{T}} \\ \emptyset; \emptyset; \{z \approx s(0), y \approx s(0), x \approx 0, x' \approx s(0)\}.$$

If R is not terminating, \mathcal{B} may not find solutions.

$$P = \{ f(x) \longrightarrow g(x,x), a \longrightarrow b, g(a,b) \longrightarrow c, g(b,b) \longrightarrow f(a) \}$$

- ▶ Goal: $\{f(a) = {}^? c\}$
- ▶ The goal is unifiable $(f(a) \doteq_R c)$, but \mathcal{B} can not verify it:

$$\{f(a) \stackrel{:}{=}^? c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}}$$

$$\{g(x,x) \stackrel{:}{=}^? c\}; \{f(x) \stackrel{:}{=}^? f(a)\}; \emptyset \longrightarrow_{\mathsf{D}}$$

$$\{g(x,x) \stackrel{:}{=}^? c\}; \{x \stackrel{:}{=}^? a)\}; \emptyset \longrightarrow_{\mathsf{BVE}}$$

$$\{g(x,x) \stackrel{:}{=}^? c\}; \emptyset; \{x \approx a\} \longrightarrow_{\mathsf{C}}$$

$$\emptyset; \{g(a,a) \stackrel{:}{=}^? c\}; \{x \approx a\} \longrightarrow \bot$$

If R is not terminating, \mathcal{B} may not find solutions.

$$P = \{ f(x) \longrightarrow g(x,x), a \longrightarrow b, g(a,b) \longrightarrow c, g(b,b) \longrightarrow f(a) \}$$

- ► Goal: $\{f(a) = {}^? c\}$
- Second unsuccessful derivation:

$$\{f(a)\stackrel{?}{=}^?c\};\emptyset;\emptyset\longrightarrow_{\mathsf{LP}}$$
 $\{g(x,x)\stackrel{?}{=}^?c\};\{f(x)\stackrel{?}{=}^?f(a)\};\emptyset\longrightarrow_{\mathsf{D}}$
 $\{g(x,x)\stackrel{?}{=}^?c\};\{x\stackrel{?}{=}^?a)\};\emptyset\longrightarrow_{\mathsf{BVE}}$
 $\{g(x,x)\stackrel{?}{=}^?c\};\emptyset;\{x\approx a\}\longrightarrow_{\mathsf{LP}}$
 $\{c\stackrel{?}{=}^?c\};\{g(a,a)\stackrel{?}{=}^?g(a,b)\};\{x\approx a\}\longrightarrow_{\mathsf{D}}$
 $\{c\stackrel{?}{=}^?c\};\{a\stackrel{?}{=}^?b,a\stackrel{?}{=}^?a\};\{x\approx a\}\longrightarrow\bot$

If R is not terminating, \mathcal{B} may not find solutions.

$$P = \{ f(x) \longrightarrow g(x,x), a \longrightarrow b, g(a,b) \longrightarrow c, g(b,b) \longrightarrow f(a) \}$$

- ► Goal: $\{f(a) \stackrel{!}{=} ^? c\}$
- ▶ Third unsuccessful derivation:

$$\{f(a) \stackrel{?}{=}{}^? c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}}$$

$$\{g(x,x) \stackrel{?}{=}{}^? c\}; \{f(x) \stackrel{?}{=}{}^? f(a)\}; \emptyset \longrightarrow_{\mathsf{D}}$$

$$\{g(x,x) \stackrel{?}{=}{}^? c\}; \{x \stackrel{?}{=}{}^? a\}; \emptyset \longrightarrow_{\mathsf{BVE}}$$

$$\{g(x,x) \stackrel{?}{=}{}^? c\}; \emptyset; \{x \approx a\} \longrightarrow_{\mathsf{LP}}$$

$$\{f(a) \stackrel{?}{=}{}^? c\}; \{g(a,a) \stackrel{?}{=}{}^? g(b,b)\}; \{x \approx a\} \longrightarrow_{\mathsf{D}}$$

$$\{f(a) \stackrel{?}{=}{}^? c\}; \{a \stackrel{?}{=}{}^? b\}; \{x \approx a\} \longrightarrow_{\mathsf{LP}}$$

If R is not terminating, \mathcal{B} may not find solutions.

$$P = \{ f(x) \longrightarrow g(x,x), a \longrightarrow b, g(a,b) \longrightarrow c, g(b,b) \longrightarrow f(a) \}$$

- ► Goal: $\{f(a) \stackrel{!}{=} {}^? c\}$
- Fourth unsuccessful derivation:

$$\{f(a) \stackrel{?}{=} c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}}$$

$$\{f(b) \stackrel{?}{=} c\}; \{a \stackrel{?}{=} a\}; \emptyset \longrightarrow_{\mathsf{T}} \{f(b) \stackrel{?}{=} c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}}$$

$$\{g(x, x) \stackrel{?}{=} c\}; \{f(x) \stackrel{?}{=} f(b))\}; \emptyset \longrightarrow_{\mathsf{D}}$$

$$\{g(x, x) \stackrel{?}{=} c\}; \{x \stackrel{?}{=} b\}; \emptyset \longrightarrow_{\mathsf{BVE}}$$

$$\{g(x, x) \stackrel{?}{=} c\}; \emptyset; \{x \approx b\} \longrightarrow_{\mathsf{C}}$$

$$\emptyset; \{g(b, b) \stackrel{?}{=} c\}; \{x \approx b\} \longrightarrow$$

If R is not terminating, \mathcal{B} may not find solutions.

$$P = \{ f(x) \longrightarrow g(x,x), a \longrightarrow b, g(a,b) \longrightarrow c, g(b,b) \longrightarrow f(a) \}$$

- ▶ Goal: $\{f(a) = {}^? c\}$
- ► An infinite derivation:

$$\{f(a) \stackrel{?}{=}{}^? c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}}$$

$$\{f(b) \stackrel{?}{=}{}^? c\}; \{a \stackrel{?}{=}{}^? a\}; \emptyset \longrightarrow_{\mathsf{T}} \{f(b) \stackrel{?}{=}{}^? c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}}$$

$$\{g(x, x) \stackrel{?}{=}{}^? c\}; \{f(x) \stackrel{?}{=}{}^? f(b))\}; \emptyset \longrightarrow_{\mathsf{D}}$$

$$\{g(x, x) \stackrel{?}{=}{}^? c\}; \{x \stackrel{?}{=}{}^? b\}; \emptyset \longrightarrow_{\mathsf{BVE}}$$

$$\{g(x, x) \stackrel{?}{=}{}^? c\}; \emptyset; \{x \approx b\} \longrightarrow_{\mathsf{LP}}$$

$$\{f(a) \stackrel{?}{=}{}^? c\}; \{g(b, b) \stackrel{?}{=}{}^? g(b, b)\}; \{x \approx b\} \longrightarrow_{\mathsf{T}}$$

$$\{f(a) \stackrel{?}{=}{}^? c\}; \emptyset; \{x \approx b\} \longrightarrow \dots$$

Strategies and refinements

- Variety of strategies and refinements can be developed for the basic narrowing calculus without destroying completeness.
- For instance, composite rules, simplification, redex orderings and variable abstraction.
- ► For more details, see, e.g.,
 - F. Baader and W. Snyder. Unification theory.

In A. Robinson and A. Voronkov, editors, *Handbook of Automated Reasoning*, volume I, chapter 8, pages 445–532. Elsevier Science, 2001.

