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Chapter 3
Integro-Differential Algebras

3.1 Axioms and Basic Properties

For working with boundary problems (in particular for “solg” them) in a sym-
bolic way, the first step is to move to afgebraic settingBut which algebraic prop-
erties should we distil from the differential / integral /unalary operators occurring
in the statements of Chapte? such that everything works properly?

Before answering this question, we make a small adaptatitimeise statements
leading to asmooth formulatioomore amenable to algebra. Recall that we viewed
the differential operator as@-linear homomorphism

& C'la,b] = Cla,b],
hence the usual integral operator appears@siaear homomorphism
J%: Cla,b] — C*[a,b].

Obviously we can restrict both operators @linear endanorphisms.% — %,
where.# = C”[a,b]. This has the advantage that we can focus our attention to the
structure(.7#, %(, f;) which has only one carrie# as we are used to from algebra.

Of course this seems to be a pointless restriction from tee/point of analy-
sis: If the forcing function of a boundary problem just netabe continuous, why
should we require it to b€*? But we should remember that we are mainly inter-
ested in the symbolic solution of boundary problems, megtfieir Green’s opera-
torsG. And once we have symbolic representatioof G: C*[a,b] — C*[a,b], we
can expect that the same representation will also work geftdunction spaces. We
will see that this is indeed the case.

Now back to the structure#, (j’—x, ’;). What are its essential algebraic proper-
ties? Obviously, it is aalgebraover the fieldC. We will generalize this to algebras
over coefficient rings. So for the rest of this section Kelbe a fixed commutative
ring. It remains to impose the right axioms on the “infiniteal” operations) = %(
and [ = j’; and the following definition tries to accomplish exactlatth(As we
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will show a bit later, it also incorporates the boundary epers in an appropriate
sense.)

Definition 3.1. We call (#,4, [) anintegro-differential algebraoverK if .Z is a
commutativeK-algebra withK-linear operationg and [ such that the three axioms

(ff) =1, (3.1)
(fg)' = f'g+fd, (3.2)
(S +[(fe) = (Sf)a+f(Jd) (3.3)

are satisfied, where.” is the usual shorthand notation f@r

We refer tod and | respectively as thderivationandintegralof .%. In general,
a K-linear operatioro is usually called a derivation if it satisfies (3.2). Moregve
we call a sectior] of d an integral ford if it satisfies (3.3).

We call Axiom (3.1) thesection axiomsince it says thab o [ = 1z, so [ is
required to be a section @f. In differential algebra [26], Axiom (3.2) is commonly
called thelLeibniz axiomobviously encoding the product rule of differentiation. |
contrast, Axiom (3.3) captures integration by parts anckis im this form [22]; we
have called it thelifferential Baxter axionfor reasons that will soon be explained.

Note that we have applied operator notation for the lattéreiavise Axiom (3.3)
would read[ (') [(g') + - -+, which is quite unusual at least for an analyst. We will
likewise use operator notation for the derivation, so Axi@?2) can also be written
asdfg=(0f)g+ f(dg). For the future we also introduce the following convention
for saving parentheses: Multiplication has precedence iowegration, sof f [g is
to be parsed af(f [g).

Let us also remark that Definition 3.1 can be generalized owtiays [22]: First,
no changes are needed for thencommutative cageneaning# but notK is non-
commutative). This would be an appropriate setting for roesr with entries in
Z =C%[a,b], providing an algebraic framework for the results on lirggtems of
ODEs described in (???). Second, one may adaorezero weighin the Leibniz ax-
iom, thus incorporating discrete models wheéres the difference operator defined
by (0 f)x = fkr1— fk. The nice thing is that all other axioms remain unchanged.

As for any retraction/section pair between modules [5, @], 28xiom (3.1) yields
two complementargssociated projectors

Definition 3.2. Let (.#,d) be a differential algebra anfla section o). Then
J=[00 and E=1-1
are respectively called thiritialization and theevaluationof .%.

Note that they are indeed projectors sinceJ = [0 (0o [)od =3 by (3.1),
which implieseEcE=1—-J —J +Jo0J = E. As is well known, every projector
is characterized by its kernel and image—they form a direcodhposition of the
module into two submodules, and every such decompositioegponds to a unique
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projector. Since we will need them more often, we will alstraduce names for
these twaassociated modulesssociated with an integro-differential algebra.

Definition 3.3. Let (%, 0, ') be an integro-differential algebra. Then the modules
¢ =Ker(d) =Ker(3) =Im(e) and .# =Im(J)=Im(3)=Ker(E)
are respectively called treonstant functionand thenitialized functions
We have therefore @anonical decomposition
F=%+7,

which allows to split off the “constant part” of every funaii.

Before turning to the other axioms, let us check what allthésns in the familiar
standard model# = C”[a,b] with & = & and [ = [%. Obviously, the elements of
¢ are then indeed the constant functidi(g) = ¢ with ¢c € C, while .# consists
of thosef € C*[a, b] that satisfy the homogeneous initial conditibfa) = 0. This
also explains the terminology for the projectors: Heffe= f(a) evaluates at the
initialization pointa, andJ f = f — f(0) enforces the initial condition.

The two other axioms shed some more light on the two submeé@tlend.7.
For understanding this, it is more economic to forget for armant about integro-
differential algebras and turn to the following generalervation abouprojectors
on an algebra

Lemma 3.4.Let E,J be projectors on a K-algebra withEJ =1, setC=Im(E) =
Ker(J) and I = Ker(E) = Im(J). Then the following statements are equivalent:

1. The projector E is multiplicative.
2. The projector J satisfies the ident{tyf)(Jg) + J fg= f Jg+ g Jf.
3. The module C is a subalgebra and the module | an ideal.

Proof. 1. < 2. Multiplicativity just meansfg—J fg= fg— fJg—gJf+ (Jf)(Jg).
1. & 2. = 3. This follows immediately becausgis the image and the kernel of
the algebra endomorphisin

3.= 1.Let f,gbe arbitrary. Since the givefralgebra is a direct sum @ andl, we
havef = fc + f, andg = gc + g, for fc = Ef,gc = Egc C andf, = Jf,g = Jgecl.
Then

E fg=E(fcgc) +E(fca) +E(figc) +E(fia)

Sincel is an ideal,fc g, fi gc, fi g € | and the last three summands must vanish.
FurthermoreC is a subalgebra, sfa gc € C. This impliesE(fc gc) = fc gc because
E is a projector with imag€. a

This lemma is obviously applicable to integro-differehtilgebras# with the
projectorsE = E andJ = J and with the submodulgs = ¢ andl = .# because
the differential Baxter axiom (3.3) is exactly conditionom now on, we will
therefore refer t&” as thealgebra of constant functiorsnd to.# as theideal of
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initialized functions Altogether we obtain now the following characterization o
integrals (note that the requirement tiiabe a subalgebra already follow from the
Leibniz axiom).

Corollary 3.5. Let (.#,0) be a differential algebra. Then a sectignof d is an
integral iff its evaluatiore is multiplicative iff.# = Im( ) is an ideal.

Note that the ideal? corresponding to an integral is in genemat a differential
ideal of .%. We can see this already in the standard exar@l®, 1], where .7
consists of allf € C*[0,1] with f(0) = 0. Obviously.# is not differentially closed
sincexe % butxX =1¢ .7.

The above corollary implies immediately that an integrffedential algebraz
cannever be a fielssince then the only possibilities fo would be 0 and%.
The former case is excluded since it means that&ee= .%#, contradicting the
surjectivity of d. The latter case corresponds to K&r= 0, which is not possible
becaus@l = 0.

Corollary 3.6. An integro-differential algebra is never a field.

In some sense, this observation ensures that all intedfieratitial algebras
are fairly complicated The result points in the same direction, excluding finite-
dimensional algebras.

Proposition 3.7.The iterated integrald, [1, [ [1,... are all linearly independent.
Hence every integro-differential algebra is infinite-dims@nal.

Proof. Let (un) be the sequence of iterated integrals of 1. We prove by inztuct
onnthatug,us,...,uy are linearly independent. The base caseO0 is trivial. For
the induction step fromton+ 1, assumegug + - - - + Cn 1Un 41 = 0. Applyingd™+t
yieldscn 1 = 0. But by the induction hypothesis, we have atgo= --- = ¢, = 0.
Henceuy, . ..,u, 1 are linearly independent. a0

Let us now return to our discussion of ttiéferential Baxter axion{3.3). We will
now offer an equivalent description that is closer to arialy§is also more com-
pact but less symmetric. (In the noncommutative case onéohasd the opposite
version—reversing all products—for obtaining an equinake)

Proposition 3.8.The differential Baxter axior{8.3)is equivalent to
ffg=[fg+ [f'[q, (3.4)
assuming the other two axioms of Definition 3.1.

Proof. For proving (3.4) note that since is an ideal,f [g is invariant under the
projectord and thus equal td (f [g)' = [’ [g+ [ fg by the Leibniz axiom (3.2)
and the section axiom (3.1). Alternatively, one can alsaiol3.4) from (3.3) if one
replacesy by [gin (3.3). Conversely, assuming (3.4) we see thfats an ideal of
#, so Corollary 3.5 implies thaf satisfies the differential Baxter axiom (3.3)0
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For obvious reasons, we refer to (3.4)ilaegration by partsThe usual formu-
lation [fG' = fG— [f'G is only satisfied “up to a constant”, or if one restri@s
to Im( [). SubstitutingG = ['g then lead to (3.4). But note that we have now a more
algebraic perspective on this well-known identity of Cédisu It tells us how.# is
realized as an ideal oF .

Sometimes a slight variation of (3.4) is useful. Replaaiiyy ¢’ and using the
relations = 1— g, we obtainf (g—Eg) = [fg'+ [f'(g— EQ) = [(fg) — (EQ) [ f'.
Since alsof ' = f — Ef, the term(Eg) f cancels, and we get

Jfd = fg— [f'g—(Ef)(EQ), (3.5)

which we call theevaluation varianbf integration by parts (a form that is also used
in Calculus). One can also derive it by applying- 1 — E to the Leibniz axiom 3.2,
using the fact that is multiplicative. Note that 3.2 is also a strong Baxter axio
just like integration by parts (3.4). In fact, we regain thtdr upon replacing by
Jgin3.5.

If we extract the differential part from an integro-diffetel algebra(.#, 9, [),
we obtain adifferential algebra(.%,d), meaning &K-algebra# with a K-linear
operationd that satisfies the Leibniz axiom (3.2). But in general onencarex-
pand a given differential algebra to an integro-differatdigebra: The latter clearly
requires the derivation to be surjective. For examplg(Kifx?],xd) the image of
0 does not contain 1. As another example, the algebra of diffeal polynomials
Z = K{u} does not admit an integral in the sense of Definition 3.1 shere we
the image oP does not containd.

But how can we isolate thimtegro partof an integro-differential algebra? The
disadvantage (and also advantage!) of the differentiat@aaxiom (3.3) is that it
entangles derivation and integral. So how can one expressgfiation by parts”
without referring to the derivation?

Definition 3.9. Let.# be aK-algebra and’ aK-linear operation satisfying

(JHJa) =Jffo+Jgff. (3.6)
Then(.Z, [) is called aBaxter algebra

In the literature, (3.6) is called tHgaxter axionmamed after Glen Baxter [2, 3];
in contrast to the differential Baxter axiom (3.3), we witiisetimes call it thgure
Baxter axiom

One might now think that an integro-differential algelf¢a, d, [) is a differen-
tial algebra(.#,d) combined with a Baxter algebi@#, [) such that the section
axiom (3.1) is satisfied. In fact, such a structure was intoed|, independently from
us, by Guo and Keigher [21] under the naditferential Rota-Baxter algebra8ut
we will see that an integro-differential algebra is a littié more—this is why we
also refer to (3.6) as the “weak Baxter axiom” and to (3.3) €hd) as the “strong
Baxter axioms”.
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Proposition 3.10.Let (.#,d) be a differential algebra and a section ford. Then
| satisfies the pure Baxter axio(8.6) iff .# = Im( ) is a subalgebra ofZ. In
particular, (#, [) is a Baxter algebra for an integro-differential algebfe?, 0, [ ).

Proof. Clearly (3.6) implies that is a subalgebra of?. Conversely, if( [ f)(Jg)
is contained inY, it is invariant under the projectar and therefore must be equal

to [0 ([f)(Jg)= [f[g+ [gff by the Leibniz axiom (3.2). O

So the strong Baxter axiom (3.3) requires thétbe an ideal, the weak Baxter
axiom (3.6) only that it be a subalgebra. We will soon give anterexample for
making sure that (3.3) is indeed asking for more than (3.6) d&fore this we want
to express the difference between the two axioms in termsliokarity property
Recall that bothd and | were introduced aK-linear operations oi#. Using the
Leibniz axiom (3.2), one sees immediately tdais evené-linear. It is natural to
expect the same frorfy, but this is exactly the difference between (3.3) and (3.6).

Proposition 3.11.Let(.#,d) be a differential algebra andl a section fow. Then|
satisfies the differential Baxter axiaf®.3)iff it satisfies the pure Baxter axio(8.6)
and is%-linear.

Proof. Assume first that|” satisfies the differential Baxter axiom (3.3). Then the

pure Baxter axiom (3.6) holds by Proposition 3.10. For prgyficg = ¢ [g for all

c€ % andg € .7, we use again the integration-by-parts formula (3.4) &re0.
Conversely, assume the pure Baxter axiom (3.6) is satisfied & ¢-linear. By

Lemma 3.8 it suffices to prove the integration-by-parts folar(3.4) forf.g € 7.

Since# = ¢ + ., we may first consider the casec ¢ and then the caske .#.

But the first case follows fror#-linearity; the second case medns | f for f € 7,

and (3.4) becomes the pure Baxter axiom (3.6)ffandg. a

Let us now look at some naturakamples of integro-differential algebras
addition to our standard exampl¥[a, b.

Example 3.12.The analytic functionson the real intervala,b] form an integro-

differential subalgebr&“[a, b] of C*[a,b] overK =R orK = C. It contains in turn

the integro-differential algebrié[x, %] of exponential polynomiajslefined as the

space of allK-linear combinations ok"e**, with n € N andA € K. Finally, the

ordinary polynomials Kx| are clearly an integro-differential subalgebrain all case
O

The three examples above all halgebraic counterpartswvith integro-differential
structures defined in the expected way.

Example 3.13.For a fieldK of characteristic zero, thiermal power series Kx||
are an integro-differential algebra. One s@# = kX" and [x¢ = X*1/(k+ 1);
note that the latter needs characteristic zero. The forromlep series contain
a highly interesting and important integro-differentiabalgebra: théolonomic
power seriesdefined as those whose derivatives span a finite-dimerid{euactor
space [14, 40].
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Of courseK[[x]] also contains (an isomorphic copy of) the integro-diffeien
algebra ofexponential polynomialdn fact, one can define the algebraic version of
K[x,&*] as a quotient of the free algebra generated by the symbaisde’*, with
A ranging ovelK. Derivation and integration are then defined in the obvioag.w
The exponential polynomials in turn contain fha@lynomial ring K| as an integro-
differential subalgebra. Note that we use the notaii®) andK [x,€*] both for the
analytic and the algebraic objects. a

In most of these lecture notes, we restrict ourselves tosfigfidharacteristic zero.
The following example is a noteworthy exception to this +uleis a clever way of
transferring the previous example to coefficient fieldpaditive characteristic

Example 3.14.Let K be an arbitrary field (having zero or positive characterjsti
Then the algebrél (K) Hurwitz serieg24] overK is defined as th&-vector space
of infinite K-sequences with the multiplication defined as

= (3 (o)

for all (an), (bn) € H(K). If one introduces derivation and integration by

0(ag,a1,@y,...) = (as,a,...),
I(ao’aj-?"') = (Oaa()aala"')v

the Hurwitz series form an integro-differential algelfka(K), 0, [), as explained
by [25] and [20]. Note that as an additive grouK) coincides with the formal
power serieK[[Z], but its multiplicative structure differs: We have an isapitism

ianzn — (nay)

from K[[Z]] to H(K) if and only if K has characteristic zero. The point is that one
can integrate every elementid{K), whereas the formal power seri#s* does not
have an antiderivative i[[Z]] if K has characteristip > 0. O

In the analysis integro-differential algebras of Exampl®&23 we have allowed
complex numbers only in the function values. But every figrcin C%[a, b] ex-
tends to a holomorphic function on some complex domain doimiz [a,b]. This
gives us the right hint for considering functions withmplex argumens integro-
differential algebras.

Example 3.15.Let D be any simply connected domain with a distinguished point
Zp € D, and let.# be the algebra oholomorphic function®n D. Setdf = ‘é—;

in the sense of the usual derivative afifl= j’;of(Z)dZ in the sense of a complex
integral along any path withib that connectg, andz Then(.%, 9, [') is an integro-
differential algebra, which contail®*[a, b if [a,b] C D.
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Note also that# contains the so-calledardy spaces W if D is the open unit
disk [42]. For anyp > 1, they form a subspace &F, for p = 2 even a reproduc-
ing kernel Hilbert space. But of cour$t® is not an algebra (let alone an integro-
differential one). a

Speaking opolynomials As remarked before, they form an elementary example
of an integro-differential algebra. But more is true: Theg aresent within any
integro-differential algebra! One may think of this fact @s integro-differential
analog of the field situation: Every field of characterister@ containsl) as its
prime field.

Proposition 3.16.Let (.#,4, [) be an integro-differential algebra over a field K
of characteristic zero. Then [1 induces a monomorphism¥ — .# in the
category of integro-differential algebras.

Proof. Lety: K[X| — .# be the algebra morphism inducedsy- [1. For proving
thaty is an differential morphism, we compute

(0zY)x=07[717 =17 = Y1y = (Yo )%,

using the section axiom (3.1) farin .#. Similarly, we verify thaty is an integro
morphism by checking

JrW)x=[751r = 35152 = W% = (Wfkp)%

this time using([1)? = 2[[1 in .Z, which is an immediate consequence of the
Baxter axiom (3.6). Hencgy is a morphism of integro-differential algebras.

It remains to show that Kégs) = 0. Sincey is a differential morphism, it is clear
that Ker(y) is a differential ideal oK [x]. But there are only two differential ideals
in K[x], either 0 or all ofK[x]. The latter is excluded becaugelky = 1. O

Now for the promise@ounterexamplé the claim that the section axiom would
suffice for merging a differential algebta#,d) and a Baxter algebraZ, [) into
an integro-differential algegrg? ., d, | ).

Example 3.17.SetR= K[y]/y* for K a field of characteristic zero and defiden
Z =R[X| as usual. Thei.&,0) is a differential algebra. Let us definekalinear
map [ on.Z by

[f=["T+1(0,0)y? (3.7)

where ™ is the usual integral oR[X] with x<— x**1/(k+1). Since the second term
vanishes unde?, we see immediately thdtis a section ob. For verifying the pure
Baxter axiom (3.6), let us writ¢" for the ordinary integral in (3.7) and compute

(JH)(Ja)=([")(["9)+Yy*["(a(0,0) f + f(0,0)g) + f(0,0)g(0,0)y",
[ffg= ([ g+9(0,0)y?) = [*f["g+g(0,0)y? [*f.
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Sincey* = 0 and the ordinary integrql* fulfills the pure Baxter axiom (3.6), this

implies immediately thaf’ does also. However, it does not fulfill the differential
Baxter axiom (3.3) because it is ngtlinear: Observe tha¥ is here Kefd) = R,

so in particular we should havg(y- 1) =y- [1. But one checks immediately that
the left-hand side yieldsy, while the right-hand side yields/+ y°. O

If one is familiar with the mechanism aifdjoining transcendental functioms differential al-
gebras, the analogous task in integro-differential algevrill appear very cumbersome. In fact, if
we fix the derivative of a new function, the Leibniz axiom kettthe derivatives of all sums and
products involving the new functions. The Baxter axiomsfratter which) do not provide a sim-
ilarly convenient device for settling integrals—otheravithe task of integration would be trivial!
In fact, closure under integration is often a difficult buteiresting question. Consider adjoining
exp(x?) to K[x. This forces us to adjoin also the error function—but whaeel

The canonical process of adjoining elements in an algelstaicture is this: One first con-
structs the corresponding free objects (some sort of “motyials” in which the new elements ap-
pear as indeterminates) and then takes the quotient moduitadle congruence relation (given by
an ideal in ring-like structures). For integro-differetalgebras, the first step involves théegro-
differential polynomial$38], which are considerably more complicated than theiirptlifferential
analogs so that we will study them only in the second part @é¢Hecture notes. At any rate, one
sees that adjunction in integro-differential algebrasther tedious, also in the canonical process
with polynomials and quotients.

We can view this difficulty also from another perspective:riyl@xamples of adjunctions are
constructed in the frame of the Risch theory [6] and in défgial Galois theory [34]. While the
former is concerned with the problem of finding symbolic detivatives (solving/ = f), the
latter may be seen as an extension that studies the straedsokitions for arbitrary linear ordinary
differential equations. Restricting our attentiorute= f, the adjunction ofi seems to give rise to
an integral operatof — u = [ f. But the new domain containingis normally constructed as a
differential field Since a field has no proper nontrivial ideals, Lemma 3.4 statvonce that they
cannot carry the structure of an integro-differential blgé

This seems paradoxical. But what happens is that the inliffrential field containingf is
extended bysomeantiderivativeu such that all solutions off = f are given byu+ c, wherec
ranges over the constants. The situation is somewhat anaddg algebraic field extensions: one
adjoins all roots of an irreducible polynomial, but one catnidentify the individual roots. Hence
there isno canonical integral operator £ u, at any rate none that satisfies the Baxter axiom.

The trade-off between differential fields and integro-differential akb can be seen in the
following simple example: Given a field, the polynomial&[x] have the most integralq’ﬁ for
each evaluation & € K) and thus are farthest from a field (only the constants artile). The
other extreme would be the field of formal Laurent series #yerhich has no integral at all. But
there are many intermediate algebras. Clog€[t0 we have the Laurent polynomials, which still
has all integrals except one (evaluation at 0 is not defined) as the only invertible non-constant.
Close to the Laurent series we have the algebra of formal psevees, which has only one integral
(corresponding to evaluation at 0) and is “almost a field’d@al ring).

It is an interesting research question to develop sometliliega extension theory of integro-
differential algebrasalong the lines of the Risch theory of differential fieldertfaps it would
make use of a new type of structure that combines the adwestzdields with those of integro-
differential algebras?

As a first nontrivial example of such an extension, let us labthe Laurent polynomials men-
tioned above. They are the localizationkdk| atx, effected by adjoining Ax. Itis clear that closure
under integration then forces alsdagarithmon us. But is this enough? The answer turns out to
be yes. But of course we cannot choose 0 as our initializatont as we did for all our examples
up to now. It is convenient to choose 1 instead since thatmélke the evaluation annihilate the
logarithm. So we will sometimes writf: for the integral operatof (x) — [ f (&) d&.
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For creating a suitable algebraic structure, let us firsthisth the required integral relations
for smooth functions on the positive real axis. We wiitg, for the functionx™(logx)", wherem
ranges over the integers anaver the natural numbers. Clearly thg, are linearly independent
in C*(0,). Let £ be the subspace generated by Ahg. We will now prove that€ is an integro-
differential subalgebra @@ (0, ) by establishing théntegral relations

f/\—l,n = ﬁl )\O,n+l (3-8)
JAmn= mi_,_l Amiin— mL_H_ [Amn-1 (M#-1) (3.9)

for the basis elementsy,,. For proving (3.8), we just apply the substitutign=log¢ to the left-

hand side/’ (logé)"dé /¢, obtalnlngj"’gx ndn = (logx)™1/(n+ 1) by the substitution rule.
Now let us turn to (3.9). Using integration by parts (3.4) be teft-hand side yields

fxm(|09x)" = (lOgX nJ‘xmf nj)_{“ogx)n—lj‘xm

= g (XM = 1) (logx)" — gy [(X" — £)(logx)™ .

After multiplying out, the second summand-1. T 1A-1n and the Iast n J’)\ 1n—1 cancel due
to (3.8), and we what remains is the right-hand side of (3.9).

We can take (3.9) as a recursive definition/asn £ for the generic case# —1, the recursion
basis being the usual integration of powers given[By,o = #1 (x™1 1), The special case
m= —1 is decribed explicitly by (3.8). It is a straight-forwardsk tosolve the recurrencé3.9),

obtaining the explicit formula

gyl N ke
PAmn= o5t + Y e Ameank (M —1). (3.10)
k=0

Naturally, we prove this formula by induction an Obviously the base case= 0 gives the inte-
gration formula for powers just mentioned. For the indutstep fromnton+ 1, we use (3.9) and
the induction hypothesis, which yields with an index transfation

—1)"+1p _
f/\m.,n+1 = ﬁ /\m+l,n+l - %rll <((m+)1>n+nl k% (,(m_])_)ku Am+1 n— k)

1
—1)N (1) 1 ML kpket
= % + mil Amiini1+ r%rll 2 ((m%)ki ALkl

This is indeed (3.10) fon+ 1 since(n+ 1) k=X = (n+ 1) and the middle term above contributes
the summand fok = 0.

We can now replacg by thealgebraic construction K, %.logx]. Starting from the differential
algebraK|x, 1] of Laurent polynomials, this is the transcendental extengjenerated by lag
By settmg:?logx =, we obtaln a differential algebra. Finally, we define thegnal explicitly
by (3.8) and (3.10). Smcl&[ Iogx] is isomorphic tag, it is clear that the section axiom (3.1)
and the differential Baxter aX|om (3.3) are satisfied, butmirse on can also verify this directly
based on the definitions ofand |

3.2 Ordinary Integro-Differential Algebras

The fact that every integro-differential algebra contaimes‘univariate polynomials”
does not necessarily mean that it contains “univariatetfons”. The following
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example demonstrates that our current notion of integfferéintial algebra contains
bothpartial and ordinaryones, in a sense to be defined soon.

Example 3.18.Consider.Z = C*(IR?) with the derivationdu = uy + uy. Finding
sections fod means solving thpartial differential equation y+uy = f. Its general
solution is given by

u(x,y) = /: f(t,y—x+t)dt+g(y—x),

whereg € C*(RR) anda € R are arbitrary. Let us choose= 0 for simplicity. In
order to ensure a linear section, one has to chges®, arriving at

X
[t :/ f(t,y—x+t)dt,
0

Using a change of variables, one may verify tifasatisfies the pure Baxter ax-
iom (3.6), so(.Z, [) is a Baxter algebra.

We see that theonstant function®” = Ker(d) are given by(x,y) — c(x—y) with
arbitraryc € C*(IR), while theinitialized functions# = Im([) are thosé € .7 that
satisfyF (0,y) = 0 for ally € R. In other words¥%’ consists of all functions constant
on the characteristic lines— y = const, and# of those satisfying the homogeneous
initial condition on the vertical axis (which plays the raé&a “noncharacteristic
initial manifold”). This is to be expected sindeintegrates along the characteristic
lines starting from the initial manifold. Thevaluatione: .% — .% maps a function
f to the function(x,y) — f(0,y — x). This means that is “sampled” only on the
initial manifold, effectively becoming a univariate furan: the general pointx, y)
is projected along the characteristics to the initial podyy — x).

Sincek is multiplicative on.#, Lemma 3.4 tells us thgt#,d, [) is in fact an
integro-differential algebraAlternatively, note that/ is an ideal and thaf is ¢-
linear. Furthermore, we observe that here the polynomialgizen byK|x]. a

Based on Example 3.18, we can also produce a patghbraic constructionvith similar fea- v
tures (in particular also giving a partial integro-diffetiel algebra in the sense of Definition 3.19).
In fact, one sees immediately that the operations of dévivaind integral are closed on the sub-
space of bivariate polynomial functions@¥ (R?). Hence we can define these operations directly
onK|[x,y]. For the derivatior) = dy + dy, this is obvious. For the integrdl, we sketch three dif-
ferent ways of achieving this.

The straightforward approach is to substitute the basisoméets f (x,y) = X"y™ into the in-
tegralfé f(t,y—x+t)dt and apply the binomial theorem together with the usual nadegn uni-
variate polynomials. This yields at first

n n k i ’ )
mey" _ k;) (E) (y— X)kfétmm*kdt _ k;izo (E) (II<) m_é;f_lzw—leJrnkarlflykq7

which may be simplified by shifing the inner summation index te n— k+ i and reflecting the
outer summation index by« n— k. Interchanging the two summations then leads to

n ) , S K
I = 3 (phemityl y () et
2

k=0
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One may readily verify that the inner sum givesj! /(m+ j +1)!; see e.g. Equation (5.41) of [19].
Thus we end up with the explict integration formula

n !
m ML —-j
f%% :Jzo(il)l(ri(erl)! (nylj)!v (3.11)

where we have divided by!n! for emphasizing the inherent symmetry.

An alternative method proceeds from the observation tha€[@h the operatiorf’ must agree
with the standard integral. Since the rule of integratiorpbyts (3.4) must be satisfied fgr we
derive the relation

jxmyn — mfyn 7 mfxm—lfyn _ Wll (men+1 o m‘[Xm—lynJrl)7

which can be seen as a recursive defintion, anchored in thewsbrecusion basi§y" = %
Solving this recurrence leads directly to (3.11).

A third, rather heuristic procedure starts from the getiegdlLeibniz rule of fractional calcu-
lus [33], which states that

#*ig=3 ()@@

for all se R and for sufficiently smooth (univariate) functiomsndg. Substitutings = —1 yields

an explicit rule for integrating products, in some senselwsg the recursion gained from integra-
tion by parts (3.4), but at the cost of an infinite series. Btle iterated derivatives @ eventually
vanish, this series terminates and we can expect to reagabralc integration formula. In fact,
substitutingf = x™ andg = y" yields (3.11) at one stroke. The idea behind this heuristihat

the bivariate(!) integral operatdi on K[x,y] behaves rather like the usual integral operator since
it satisfies the section axiom (3.1) and the differential tBecaxiom (3.3). Hence we employ the
Leibniz rule for its fractional generalization (sometinuedled “differintegral”), using the fact that

| agrees with the univariate integral operatord®] as noted above.

For the first part of these lecture notes, we want to restticteves to boundary
problems forordinary differential equationdHence we want to rule out cases like
Example 3.18. The most natural way for distinguishing cadyrfrom partial differ-
ential operators is to look at their kernels: Only the forinave finite-dimensional
ones. In fact, if we look at the basic differential operaﬁbron C*(R), its kernel
has dimension 1 while that (#; onC”(R x R) has dimensiome.

Definition 3.19. A differential algebra.#,d) over a fieldK of characteristic zero
is calledordinaryif dimk Ker(d) = 1 andpartial otherwise.

From now on, we restrict the ground rirl§ to fields of characteristic zero.
Note that except for Example 3.18 all oexampleshave been ordinary integro-
differential algebras. In fact, we will only turn to partiategro-differential algebras
in the second part of these lecture notes.

The requirement of ordinariness has a number of pleasasegoences. First of
all, the somewhat tedoius distinction between the weak tmodigBaxter axioms
disappears now since obviousty= K, so now.# is an algebra over its own field
of constants. Henc¢ is by definition4-linear, and Lemma 3.11 ensures that the
pure Baxer axiom (3.6) is now equivalent to the differeriakter axiom (3.3). Let
us summarize this.
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Fact 3.20.In an ordinary integro-differential algebra, the constamictions coin-
cide with the ground field, and the strong and weak Baxterragiare equivalent.

Another nice property of ordinary integro-differentiagabras is that the (em-
beddedpolynomialshehave as expected.

Lemma 3.21.Let (#,0, ) be an ordinary integro-differential algebra. Then we
haveKer(d") = [1,x,...,x""1].

Proof. The inclusion from right to left (which does not need ordinass) holds
because/k! is the k-fold iteration of [ applied to 1; here we use the fact that the
polynomials inx = |1 are isomorphic t&[x] as integro-differential algebras. For
the inclusion from left to right, note that dimK@") = n; this follows from iterating
the identity KetT?) = G Ker(T) 4 Ker(T) in [35], generally valid for epimorphisms
T and section§& of T. a

Ordinary integro-differential algebras allow us to viewitrevaluation as char-
acters(i.e. multiplicative functionals): One knows from Linealtg&bra that a pro-
jector P onto a one-dimensional subspdag of a K-vector spac® can be written
asP(v) = ¢(v)w, where¢: V — K is the unique functional witlp (w) = 1. If V
is moreover &K-algebra, a projector onti§ = [1] is canonically described by the
functional ¢ with normalizationg (1) = 1. Hence multiplicative projectors like
can be viewed as characters. In Chapt®mwe will consider other characters oh;
for the moment let us just note thatis as a distinguished character. We write
for the set of all nonzero characters oK algebra#, in other words all algebra
homomorphisms” — K.

One calls &K-algebraaugmentedf there exists a character on it. Its kernél
is then known as aaugmentation ideadnd forms a direct summand Kf, see for
example [16, p. 132]. Augmentation ideals are always mabideals (generalizing
the C”[a,b] case) since the direct su# = K + .# induces a ring isomorphism
Z /7 = K. Corollary 3.5 immediately translates to the following cterization
of integrals in ordinary differential algebras.

Corollary 3.22. In an ordinary differential algebrd.#,d), a section| of d is an
integral iff its evaluation is a character if” = Im([) is an augmentation ideal.

For treating two-point boundary problems, it is conveni@ntonsidertwo in-
tegral operatorssimultaneously—one initialized at the left and the otheithet
right boundary point. In the standard examge= C”[a, b], we have[” = J": and

[.= j’g. The following definition captures these ideas in terms dfr@ary integro-
differential algebras.

Definition 3.23. A biintegro-differential algebrds given by(ﬁz,ﬁ,f*,f*) where
both(#,0, [*) and(.#,0, - [,) are ordinary integro-differential algebras.

Biintegro-differential algebras were introduced under ttame “analytic alge-
bra” in [36] in a different setting. Using the notation frohete, we write for their
evaluations respectivelfy— < andf — f—. Obviously we have
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(O =+ =0

wheref + [, behaves like a definite integral since it evaluates kutén fact, it is
fa in the standard mode¥ = C”[a,b|, wheref* = f(a) andf~ = f(b). Taking
the analogy further, we introduce now thmer product(]): .# x.# — K on an
analytic algebrd.Z, [, [,) by

(flg) ="+ )T
For.# = C*®[a,b] this gives the.? inner product f|g) = fff(x)g(x)dx

Proposition 3.24.In an analytic algebra.#,d, [, [.), the operator” is the ad-
joint of | with respect tq(|).

Proof. Using the pure Baxter axiom (3.6) f¢" yields
J g =gl =09 -9

But ["g=(J"g)~" — J,gand(f[(f*g)") = (J"9) " (f|1) = (S"g) " (J"f)~, sowe
can rewrite the last summand as

e ={a=(""9 —(fl9,
which implies([*f|g) = (f|/,g) as required. 0

While the setting of analytic algebras is made for two-pbmindary problems,
which will treated as a special case in Cha@®&rwe will now restrict our atten-
tion to the even more specialized settingimfial value problemswhose Green’s
operators will turn out to be the fundamental building bledéar all other Green'’s
operators.

3.3 Initial Value Problems

Looking back to Lemma 3.21, we see that we can at least solve sbfferen-
tial equations. But in general, we cannot assume that theiso$ of a differential
equation with coefficients i#¥ are again inZ. For example, inZ = K[x], the dif-
ferential equation/’ — u = 0 has no solution. In fact, its “actual” solution space is
spanned by(x) = € if K= orK = C. So in this case we should have taken the
exponential polynomials? = K[x,€¢X] for ensuring thati € .%. But if this is the
case, we can also solve tihomogeneous differential equatiohuu = f whose
general solution is7e+ e fe *f, with [ = [{ as usual. Of course we can also
incorporate the initial condition(0) = 0, which leads ta = & [e *f.
This observation is generally true: Whenever we can soleehthbmogeneous

differential equation within, we can also solve the initial value problem for the
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corresponding inhomogeneous problem. The classical doaldhieving this explic-
itly is the variation-of-constants formulfl5, p. 74], whose abstract formulation is
given in Theorem 3.25 below.

As usual [34], we will write.7[d] for the the ring of differential operators with
coefficients in.Z. If T € Z#[d] is monic (i.e. having leading coefficient 1) with
degT =n, we call a basisi, . .., U, for Ker(T) afundamental systeof solutions for
the homogeneous equatidm = 0. The fundamental system will be callezbular
if its associated Wronskian matrix

Up -+ Up
/ /
W:
-1 —1
dY L

is invertible in.#"™" or equivalently [28, p. 518] if d&V is invertible in.%#. Of
course this alone implies already that. .. ,u, are linearly independent.

Theorem 3.25.Let (.#,0, [) be an ordinary integro-differential algebra. Given a
monic differential operator Te .#[d] with degT = n and a regular fundamental
system of solutionsyu.... ,un € % for Tu= 0, the initial value problem

Tu=f
EU=EU =---=eu™V =0 (3.12)
has the unique solution
n
u=3 ufd df (3.13)
2,

for every fe .#, where d is the determinant of the Wronskian matrix W associ-
ated with y,...,un, and d the determinant of the maxtrix;Wbtained from W by
replacing the i-th column by the n-th unit vector.

Proof. We can use the usual technique of reformulafing= f as a system of linear
first-order differential equations with companion mathix .#"<". We extend the
action of the operatorf, d, E componentwise to#". Setting now

a=wfw1f

with f = (0,...,0,f)T € 2", we check thati & .Z" is a solution of the first-order
systemu” = A+ f with initial conditionedi = 0. Indeed we have’ =W’ [W—1f +
ww-if by the Leibniz rule andW = W’ sinceuy, ..., u, are solutions off u= 0;
so the differential system is verified. For checking theiahitondition, note that
EJ’W*lfA is already the zero vector, so we have asie= 0 sincek is multiplicative.
Writing u for the first component aofi, we obtain a solution of the initial value
problem (3.12), due to the construction of the companiorrimadtet us now com-
puteg= w1f, Obviouslyd'is the solution of the linear equation syst&vi§ = f.
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Hence Cramer’s rule, which is also applicable for matricesr oings [28, p. 513],
yieldsg; asd—1d; f and hence

u=(W[§)1= _iuijdldif

since the first row ofV is (ug, ..., un).

For proving uniqueness, it suffices to show that the homaomghanitial value
problem only has the trivial solution. So assumsolves (3.12) withf = 0 and
choose coefficients,, ..., c, € K such that

u:Clu1+"'+CnUn.

Then the initial conditions yield(W ¢) = 0 with ¢ = (cy,...,¢y) " € K". But we
have alsoe(Wc) = (EW)c because is linear, and detW = E(detW) because it
is moreover multiplicative. Since dét € .% is invertible,EW € K™ " is regular, so
c=(EwW) 0=0andu=0. O

A few words about the requirements in Theorem 3.25. If a difial equation lacks solutions
(i.e. when there are fewer linearly independent solutibias tprescribed by the order of the dif-
ferential operator), they can be adjoined; see the remarection 3.1. For ensuring regularity,
we need ainvertible Wronskian dThis could also be enforced by a suitable localizatiogfas
for Picard-Vessiot rings [34, p. 12]. But in many applicaspthis condition will come out natu-
rally: The Wronskiard is always an exponential oveF since it satisfies the differential equation
d’ = ad, wherea is the trace of the system matiX In our caseA is the companion matrix for
T=0"+a,_ 10" 1+...+a;9 +ag, so the trace is given by= —a,_1.

Sometimes it is practical to work over integro-differehtdgebras that are large enough for
ensuring these requirements for all differential opegattm order to have some finer control on
which differential equations we want to have solutions, viléallow to specify thecoefficientof
the pertinent linear differential operators [39].

Definition 3.26. A differential subalgebraZy < .7 is calledsaturatedfor a differential algebra
Z if dimKer(T) = n for every monicT € .%o[d] with degT = n and if all nonzero solutions

of U = au, with a € .y haveEu # 0. In this context, we call” the ground algebraand.%, the
coefficient algebralf %y coincides with.7, we simply speak of a saturated integro-differential
algebra.

In our original definition [39] we have required that all nena solutionsu of U = au, with
a € Fy, areinvertible in .%. But this condition follows from the requirement on the eslon
sinceu has the inversg/c, wherev is a solution of = —avandc = (Eu)(EV).

Some further remarks on the definition. First of all, we paoiut that we need#, to be differ-
entially closed such that we can multiply withifig[d], which will be needed later for multiply-
ing boundary problems (Chapte®). The first condition on solvability ensures theimogeneous
equations Tu= 0 have a fundamental system with the appropriate numberaticos, while the
second condition means thatponentialdehave as usual. Note also thétis an ordinary differ-
ential algebra as soon as it possesses a saturated coeffigebra.

Not every integro-differential algebra has a saturatedfictent algebra, e.g. the polynomial al-
gebra(K[x],d, [) does not. We do not know any useful criteria for settling thisstion. However,
there are several importatypical example®f integro-differential algebras with saturated coef-
ficient algebras. The most obvious example is furnishe€bfa, b] or C¥[a, b, with coefficient
algebra either itself or any differential subalgebra liker C or C[x].
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A less demanding but practically important example of arsaéual integro-differential algebra
is given by theexponential polynomials & €], with € as a coefficient algebra. This reflects
the fact that every solution of a LODE with constant coeffitsecan be expressed in terms of
exponentials.

Similar to its analysis counterpart, also the formal povesiesK|[Z]] are a saturated integro-
differential algebra. More generally, thiirwitz serieof Example 3.14 are saturated. Defining the
exponential function exp- (1,1,1,...), we obtain immediately exp= exp. One can introduce a
compositionf og for f,g € H(K) wheneverg has vanishing constant term, and the usual chain
rule is satisfied for this composition [25]. Then the firsti@r homogeneous equatiah= auwith
ac H(K) is solved by

u=cexpo([a),

which is easily seen to be invertible i(K). By Corollary 4.3 in [25], we know also that all monic
homogeneous differential equations of oraehave ann-dimensional kernel. Hence (K) is a
saturated integro-differential algebra.






Chapter 4
Solving Boundary Problems in Linear Algebra

4.1 Sections between Modules

Let M andN be modules over a rinB. LetT: M — N andG: N — M be linear
maps such thal G = 1 meaning tha is asectionof T. ThenT is surjective an@
injective, respectively, an@T is a projector sincéGT)? = G(TG)T = GT. Hence

Ker(GT) =Ker(T) and ImMGT)=Im(G), 4.2)

and we have
M = Ker(T) +1m(G) (4.2)

as a direct sum.

Conversely, we can begin with a given surjective linear miagM — N and a
complement of KeiT), and ask if there exists a corresponding right inverse. This
is a special case of algebraic generalized inverses as &n@e in Nashed and
Votruba [32].

Proposition 4.1.Let T: M — N be a surjective linear map with and a comple-
ment ofKer(T) in M, so that M= Ker(T) +.#. Then there exists a unique section
G of T withim(G) = .#. Moreover, G is the unique solution of the equation

GT=1-P,
where P is the projector withm(P) = Ker(T) andKer(P) = .#.

Proof. By (4.1), any section with IifG) = .# satisfiesGT = 1— P. HenceG is
unique sinceT is surjective. For proving existence, let .# — M be the canoni-
cal injection. Therl o1 is an isomorphism since K&F) N.# = 0. Its inverseG,
considered as a map froto M, is a section off with Im(G) = ..
Now assume thaBT = 1— P. Letw € N. SinceT is surjective w = Tv with
ve M. Then
TGwW=TGTv=T(v—Pv)=Tv=w

19
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since ImP) = Ker(T). SoG is the unique section af with Im(G) = .~. O

So we have a bijection between the set of complements gffién M and the
set of sections of . The next proposition allows us to describe all sectiongims
of a fixed one.

Corollary 4.2. Given any sectioGs of T, the section corresponding to a comple-
ment.# of Ker(T) is given by

G=(1-P)G,
where P is the projector withm(P) = Ker(T) andKer(P) = .#.

Proof. LetP be the projector with IrfP) = Ker(T) and Ke(P) = Im(G). The claim
follows by Proposition 4.1, since

GT=(1-P)GT=(1-P)(1-P)=1-P-P+PP=1-P,
where we use th&®P = P because IfP) = Im(P) = Ker(T).

For integro-differential algebras, we can now describéndédigrals in terms of a
fixed one using also Corollary 3.5 and the characterizationudtiplicative projec-
tors in Lemma 3.4.

Corollary 4.3. Let(.#, 0, ') be an integro-differential algebra. Let be a comple-
ment of¢” = Ker(d) that is also and ideal in#, and let P be the projector with
Im(P) = ¥ andKer(P) = .. Then P is a multiplicative projector and

Ip = (1 - P)f
is an integral ford with evaluation P.

This establishes a bijection between the set of complenwéri#sthat are also
ideals in.# and the set of integrals fal; each such complement corresponds to
a multiplicative projector ont®’. Specializing to ordinary integro-differential al-
gebras, we can reformulate this result using Corollary 3d22cribing a bijection
between the set of characters and the set of integral. for

Corollary 4.4. Let(.#,0, [) be an ordinary integro-differential algebra over a field
K. Let¢ be a character o”. Then

f¢ =(1- ¢)I
is an integral ford with evaluationg.

The last proposition in this subsection describes the se/enage of a composi-
tion of an arbitrary and a surjective linear map in terms & ofits sections.
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Proposition 4.5.Let LM and N be modules over a ring R. Let M — N and
T: L — M be respectively an arbitrary and a surjective linear mapt IG be a
section of T and N< N a submodule. Then we have

(AT)"H(Np) = GA*(Ny) + Ker(T)
for the inverse image of the composite. In particular, weehav
Ker(AT) = GKer(A) + Ker(T)
for the kernel of the composite and
T 1(Ny) = G(Ny) +Ker(T)

for the inverse image.
Proof. For the inclusiorD just observe that

AT(GA 1(Ny) +Ker(T)) = AA 1(Ny) +0C Ny.
Conversely, leti € (AT)"1(Ny). ThenTu= v with ve A~1(N;). Hence

T(u—Gv)=Tu—v=0

and thereforet € GA~1(Ny) +Ker(T). The sum is direct since we have ev@fM) N
Ker(T)) =0 by (4.2). O

4.2 Abstract Boundary Conditions

First we recall the notion of orthogonality for a bilinear pnaf modules. LeM and
N be modules over a ring and(|): M x N — R be a bilinear map. Two vectors
x € M andy € N are calledorthogonalwith respect to(|) if (x|y) = 0. Let X*
denote the set of aj € N that are orthogonal t¥ for a fixed bilinear mag|). This
is obviously a submodule df, which we call theorthogonalof X. We define the
orthogonal on the other side in the same way.

It follows directly from the definition that for any subsexts, X, C M we have
the two characteristic properties

X1 CXo= X DXy and X; C X (4.3)

These statements hold also for subsetBloThe two properties (4.3) for orthogo-
nality are those of an (order-reversing) Galois connection

Let (A, <) and(B, <) be two partially ordered sets (posets). An (order-revesin
Galois connectiomf these posets consists of two order-reversing nfaps — B
andG: B — Asuch that
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a<GF(a) and b<FG(b) (4.4)

forac Aandb e B.
For a Galois connection, we see that

F=FGF and G=GFG. (4.5)

Froma < GF(a) it follows thatF (a) > FGF(a) sinceF reverses the order. From
b < FG(b) we also obtairF (a) < FGF(a), so thatF = FGF. Similarly, one sees
that G = GFG. So ifa= G(b) € Im(G), thenGF(a) = GFG(b) = G(b) = a, so
thatGF = 1 on Im(G). This holds analogously fdfG, and hencé& andG induce
mutually inverseorder-reversing bijections

Im(G)={acA|a=GF(a)} 2Im(F)={beB|b=FG(b)}. (4.6)

In concrete cases, the difficult part is usually to deterrthieesets IMiG) and Im(F).

Note also that for any Galois connection, the mB@sandGF areclosure oper-
ators, meaning extensive, order-preserving and idempotennsaffs. This follows
immediately from Equations (4.4), (4.5).

The concept of Galois connection generalizes the correkpuare between sub-
fields and subgroups i@alois theory Another well-known example of a Galois
connection is the correspondence between affine variatiésdeals in algebraic
geometry. For further details and references on Galois@ctions we refer to Erné
etal. [18].

Returning to the Galois connection related to orthogopadét P (M) denote the
projective geometrpf a moduleM defined as the poset of all submodules ordered
by inclusion. Then orthogonality gives a Galois connechietween the projective
geometried? (M) = IP(N) defined by

Mi+— M{ and Np— Ni. 4.7

So by Equation (4.5) we know th&- = S for any submodul& of M or N.

We call a submodulg orthogonally closed S= S*+. As noted in (4.6), the Ga-
lois connection restricted to orthogonally closed subnteslis an order-reversing
bijection.

Let nowV be a vector space over a fiekd and letV* denote its dual space.
In the following, we study orthogonality and the correspiogdGalois connection
induced by thecanonical bilinear form

VxV*—K

defined by(v|B) = B(v). Then the orthogonals of subspacgs < V* andV; <V
are respectively the subspaces

By ={veV |B(v)=0forall B c %}

and
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Vit ={BeV*|B(v)=0forallveVi}.

We consider first subspaces of the vector spacehe next proposition tells us that
in this case the situation is simple.

Proposition 4.6.Every subspace of V is orthogonally closed.

Proof. LetV; <V be a subspace and: V\V;. SinceV; C Vi itis enough to show
thatv is not inV;{-+. Using the fact that any basis of a subspace can be extended to
a basis folv, we can construct a linear forfe V* with B(v1) = 0 for all v € Vi,
thatis, € V;-, andB(v) = 1. Hencevis not inV;-+. O

For finite codimensional subspaces, we can also computeirtiendion of the
orthogonal. IV <V, we have a natural isomorphism

V:I_l = (V/Vl)*.

Indeed, eaclff € VlL induces a well-defined linear form &yV; since it vanishes
onVj, and it is easy to see that this gives an isomorphism betWgeand(V /V;)*.
This implies in particular that

codimvy = dimV;* (4.8)

if codimV; < oo,

In the following, we discuss orthogonality for subspacethefdual vector space
V*. We first recall some results for biorthogonal systems. Tamifies (v;)ic| of
vectors inV and linear formgf3)ic| in V* are callecbiorthogonalor said to form a
biorthogonal systerif

(VilBj) = &j.
For a biorthogonal systeifv; )ic; and(f3)ici we can easily compute the coefficients
of a linear combination = 5 &vi. Applying 3j, we obtain

(VIBj) = > aivilBj) =ay. (4.9)
Evaluating a linear combinatigh = S a;3j atv; gives analogously
(uIB) =Y aj(vilBj) = a. (4.10)

This implies in particular that thg and3; are linearly independent. Moreover, we
can easily compute projectors onto finite dimensional vegpaces from a finite
biorthogonal system.

Proposition 4.7.Let »,...,vh € V andps,..., B, € V* be biorthogonal. Let Y=
[V1,...,Vn] and B1 = [B1,...,Bn]. Then RV — V defined by
n
Vi S (VIB)Vi
2,

is a projector withim(P) = V; andKer(P) = %; so that
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V=%{+V; and codim%; =n.

Moreover, for any3 € %;+ we have
n
B=> MlB)B;,
I; | |

so that# is orthogonally closed.

Proof. With Equation (4.9) we see thay ", (v|B)vi|Bj) = (v|B;), henceP? = P.
Obviously, ImP) =V; and KeP) = %; by the definition of the orthogonal. Hence
we have

V =Ker(P) +Im(P) = %1 +V;

and therefore codiw®;- = nsince they; are linearly independent. Let ngive ;-
and define

=}

B (vilB)B:-

Then, owing to (4.10), we have
B(vj) = (vj|B) = (vl B) = B(v)).

So the linear formg andﬁ coincide orv; and since both vanish o7, they are
equal. Hence®{+ C %,. The sets are equal since we always hateC %;+, so
that#; is indeed orthogonally closed. a

We have already seen that linear functionals in a biorthabgystem are linearly
independent. In fact, linear independence can be chaizadean this way.

Proposition 4.8.Let f1,...,Bn € V*. Then theB are linearly independent iff there
exist \i,...,vn € V such thaiv;) and () are biorthogonal.

Proof. It suffices to prove the converse implication; we use inaurctinn. Forn=1
we choosel € V with B;(u) # 0 and set; = B;(u)~tu. For the induction step, let
Vi,...,Uh—1 €V be such that¥i| 3;) = &;. There exists

uc [Bla s 7Bn71]L7 with Bn(u) # 0.

Otherwise we would havg, € [By,...,Bn_1)**, and theB; would be linearly de-
pendent by the previous proposition. We set

Vo =Ba(u)tu and vi =V —Bn(%)Vn, fori=1,....n—1.

Then(vi|Bj) = §; fori,j=1,...,n. O

Combining the two previous propositions, we obtain the egaif (4.8): for a
finite dimensional subspac#; <V*, we have

dim%; = codim%;. (4.11)
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For the dual vector spadé*, characterizing the orthogonally closed subspace is
considerably more involved. For our present purposesficgsfto look at the finite
dimensional subspaces.

Corollary 4.9. Every finite dimensional subspace of i¢ orthogonally closed.

Butif V is aninfinite dimensional vector space, there are alwagstfisubspaces,
and indeed hyperplanes\Vft, that are not orthogonally closed; see e.g. [27, p. 71].
Nevertheless, since all subspacesvo@ire orthogonally closed, we have via the
Galois connection (4.7) an order-reversing bijection leetmP (V) and the poset
of all orthogonally closed subspaces\6f. So we can describe any subspagec
V implicitly by the corresponding orthogonally closed sudsgV;-. (This Galois
connection will be investigated in more detail in the secpar of the lecture. ???)

We have already seen (4.8), (4.11) that if codlirac 0 and dim%; < o, then

codimv; =dimV;- and dim%; = codim%j . (4.12)

So we can consider the restriction of the Galois connectidnéed by the canon-
ical bilinear form tofinite codimensionasubspaces o¥ and finite dimensional
subspaces of *, which we denote respectively ico1(V) andPsn (V*). Since all
subspaces of and finite dimensional subspaceswfare orthogonally closed, we
have an order-reversing bijection

Peof(V) 2= Prin(V*).

induced by orthogonality.

Note also thaf.o(V) andPsin (V*) are closed under finite intersection and sum
of subspaces, so they dattices meaning posets in which any two elements have a
unique supremum (called join) and a unique infimum (calle@tn&ee for exam-
ple [17] for more on lattices. Since an order-preservingdiipn between lattices
preserves join and meet, we obtain the following propasjtishich can also be
verified directly using the properties of a Galois connettad the definitions.

Proposition 4.10.We have
(Vl—i-Vz)J‘ =V1J‘ ﬂVZJ‘7 (331(7%2)L Z%f-f—e%%

and
VNV - =V +Vs,  (Br+ Bo)t = B N %5

for subspacesMV; € Peos(V) and %y, A2 € Piin(V*).

We conclude this section with some general remarks on thertiian and codi-
mension of the intersection and sum of two subspaces. Wehese bbservations
for characterizing regular abstract boundary problembkémiext section.

Recall that for subspac#s andV; of a vector spac¥ we have

dim(V1+V2) +dim(VyNV,) = dimVy 4+ dimV,
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and analogously for the codimension
codim(Vy 4+ V,) + codim Vi NV,) = codimV; + codimVs.

Note that ifV is finite dimensional, the second equation is a consequdttle &rst
and the equation diwvh + codimVy = dimV. ForV finite dimensional, we obtain
similarly the equation

codimVy +V,) + dimVy = dim(V1 NVs) + codimV,

relating the codimension of the sum to the dimension of thergection of two
subspaces. We show that this equation holds for arbitrastpvepaces.

Proposition 4.11.We have
codimVy +V,) + dimVy = dim(V1 NVs) + codimV,
for subspacesyand \4 of a vector space V.

Proof; Let V4, andV; be coerIements of, NVs in V1 andVs, respectively, so that
Vi =Vi+ (ViNVe) andVe =V + (V1 NV,). Then one sees that we have a direct sum

V1—|—V2:\71—i—\72—i—(V1ﬂV2).
LetW be a complement &f; +V, in V so that
V=(V1+Vo) +W =V + Vo + (ViNVo) +W.

Hence codirtV; +Vz) = dimW and codinv, = dim(W +V1). Computing the di-
mension of the subspa®é+ V1 + (V1NV>) in two different ways, we obtain

codim(V1 +Vz) +dimVy = dimW + dim(Vy + (V1 NVz))
= dim(V1 NV5) 4 dim(W 4 V1) = dim(V3 NVz) + codimVa,
and the proposition is proved. a

If V4 is finite dimensional antl, finite codimensional, all dimensions and codi-
mensions in the above proposition are finite, and we obtaifalfowing corollaries.

Corollary 4.12. Let \4,V, be subspaces of a vector space V vdimV; < « and
codimV, < . Then

codimV1 4+ Va) — dim(V1 NVz) = codimV, — dimV;.
In particular, we havelim(Vy NV,) = codim(V1 4+ V,) iff dimV; = codimVs.

Corollary 4.13. Let \4 and \, be subspaces of a vector space V vdimV; < co
and codimV, < o, Then \{ +V, =V iff (V1 NV, = 0 and dimV; = codim\V,) iff
(V1+Vo =V anddimV; = codimV,).
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So for testing whether two subspadésandV, with dimV; = codimV, < o
establish a direct decompositivh= V; + V>, we have to check only one of the two
defining condition®; NV, = 0 andVy + Vo = V.

The hypothesis that the dimensions are finite is necessat be a fieldV =
KN, and consider for example the two subspaces

Vi = {(07X1,O,X2,O,X3,...) | (Xn) EV}
V2: {(0,0,X1,0,X2,0,X3,...) | (Xn) GV}.

Then dinV; = codimV, = dimV = o, V; NV, = 0 but codintV; +V,) = 1.
We use the following corollary in Section 4.3 as a regularést for abstract
boundary problems.

Corollary 4.14. Let\, = [v4,...,Vm| be a subspace of a vector space V adgd—=
[B1,...,Bn] a subspace of Vwith B and v, linearly independent. Then

V=Vt %
iff m= n and the matrix5i(vj)) is regular.

Proof. By Equation (4.12), codimg; = dim%1, so we know from the previ-
ous corollary thaV =V + %1 iff Vin %} =0 andm=n. Let B = (Bi(vj))
with columnsbj. Now note thaiB is singular iff there exists a linear combination
s Ajbj = 0 with at least ond +# 0 iff there exists a nonzem= y Ajvj in V1N %; .

O

4.3 Abstract Boundary Problems

In this section, we first defingbstract boundary problenand their Green’s opera-
tors in a linear algebra setting. We use the notion of orthadjp closed subspaces
and the results on sections from the two previous sectidms.sEtting includes also
boundary problems for LPDEs as exemplified for the wave eguaelow. Then we
discuss algorithmic aspects for abstract boundary proglerere the correspond-
ing linear maps have finite dimensional kernels and the spaickoundary condi-
tions are finite dimensional. Note that this includes boupgaoblems for (systems
of) ordinary differential equations and systems of padifierential equations with
finite dimensional solution space.

An abstract boundary problens given by a painT, %), whereT:V — W is
a surjective linear map between vector spaée®/ and.Z < V* an orthogonally
closed subspace dbundary conditionsWe say thati € V is a solution of(T, %)
foragivenf e W if

Tu=f and ue%*‘.

A boundary probleniT, %) is calledregularif %~ is a complement of K&T) so
that



28 4 Solving Boundary Problems in Linear Algebra

V =Ker(T) + %+

Then by Proposition 4.1 there exists a unique sediokV — V of T with Im(G) =
%+ . We callG theGreen'’s operatofor the boundary problerfiT, %). SinceT Gf =

f andGf € '+, we see that the Green’s operator maps every forcing fumétiow

to its unique solutiom= Gf € V. Hence we say th& solves the boundary problem
(T, %), and we use the notation

G=(T,%) L

Conversely, if there exists any sectiGhof T for a boundary probleniT, %)
such that IniG) = £+, it is regular by (4.2). Given any sectighof T, we know
with Corollary 4.2 that the Green'’s operator for a regulautdary problen{T, %)
is given by

G=(1-P)G, (4.13)
whereP is the projector with INiP) = Ker(T) and KefP) = %+*.

If T is invertible, thenT,0) is the only regular boundary problem for and its
Green’s operator i§T,0)~ = T~1. In particular, we have

(Lo =1 (4.14)

for the identity operator. problem for theave equatioron the domain2 = R x
R0, writing V for C*(Q): Givenf €V, findu € V such that

Ut — Uxy = T,
u(x,0) = w(x,0) = 0. (4.15)

Example 4.15.As an example of how boundary problems for LPDEs can be seen as
abstract boundary problems, we consider the following Tdwendary conditions in
(4.15) can be expressed by the infinite family of linear fioralsfBx: u— u(x,0),

¥ U— W (X,0) with x ranging ovefR. So we can represent the boundary problem
by the pair(T, %) consisting of the differential operat®r= D? — D2 and the (here
infinite dimensional) boundary spacé = [Bx, i|xer < V*. Here][...] denotes the
orthogonal closure of the subspace spanned.ljyfor example, the functionals
u— fgu(&,0)d& andu— uy(x,0), for arbitraryx € R, are in the orthogonal closure
but not in the span. a

For the rest of this section we consider boundary problgmg?) whereT has a
finite dimensional kernel and the space of boundary conditis = [(31,..., 3] is
also finite dimensional. We can rewrite the condition thatV is a solution of the
boundary probleniT, %) for a givenf € W in the following traditional form

u=

T
Ba(u

"

~

... = Pa(u) =0.

By Corollary 4.14, a necessary condition for the regulasftyT, %) is
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dimKer(T) = dim.4#,

meaning that we have the “correct” number of boundary camtit Moreover, we
get the following algorithmic regularity test for boundamoblems (to be found in
Kamke [23, p. 184] for the special case of two-point boundannyditions). It hinges
on the so-calle@valuation matrix

Bi(uz) -+ Ba(un)

Bn(uz) -+ Bn(un)
formed by evaluating a bas(g;) of % on a basigu;) of Ker(T).

c Kn><n

Proposition 4.16.A boundary problen(T, %) with dimKer(T) = dim# < « is
regular iff the evaluation matrixgi(u;)) is regular, where th¢f;) and(u;) are any
basis of respectivelyd andKer(T).

We can now compute the Green’s operator for a boundary prolgezen any
section of the defining operator and a basis for its kernel.

Theorem 4.17.Let (T, %) be a regular boundary problem witdimKer(T) =
dim% < . Let w,...,uy and f,..., Bn be respectively a basis fdter(T) and
A, and letG be any section of T. Then

(T,2) 1=1-P)G

is the corresponding Green’s operator, where\P— V is the projector defined by

n

Pv= _;<V|éi>ui

with (81, ..., Bn)t = B (By,...,Bn)" and B= (Bi(u;)).

Proof. By Equation (4.13), the Green’s operator for a regular bamngroblem
(T,#) is given byG = (1— P)G, whereP is the projector with IniP) = Ker(T)
and Ke(P) = 2. We can inverB since it is regular by the previous proposition.
Then the(B) and(u;) are obviously biorthogonal. Henégis the projector with
Im(P) = Ker(T) and Ke(P) = %~ by Proposition 47.






Chapter 5
Integro-Differential Operators

We have now built up an algebraic frame for treating boungaoplems (currently
only for LODES). This is clearly an indispensible ingrediéar a Symbolic Com-
putation treatment, but it is not sufficient. Our next goabibuild up an algorithmic
structure for encoding the three objects involved in boupgeoblems: For stating
them, we have to specify differential equation and the bawndonditions; for solv-
ing them we must use integral operators. Titegro-differential operatorgrovide
a unified language for expressing these three objects irgkesiperator algebra.

5.1 The Algebra of Integro-Differential Operators

Let us recall the familiar algebra dffferential operatorsGiven a differential alge-
bra(.#,d) over a ground fieldK, they are usually introduced as the “operators” that

we shall now write as .

iZOCi Di

for arbitrary degre@ € IN and coefficientgy,...,c, € .%. The collection of these
“operators” becomes i-algebra by defining addition and scalar multiplication in
the obvious way, and by introducing a multiplication througe commutator rela-
tion Dc = cD+ d(c). Due to its obvious connection to the Leibniz axiom (3.2 th
relation is known as Leibniz rule.

One can now introduce aaction of #[D] on % by declaringf - g = fg and
D-g=odgforall f,g € .%#. SinceD acts on% just as the original derivatiod on
Z, one usually writeg instead oD and consequently?[d] instead of% D]. This
“abus de langage” means that the commutator relation nods@a= cd + 0 - c.
This notation is very intuitive, but we emphasize that oneusth be clear about the
different roles of the symbal; we will commit the same abuse in what follows.

In a certain sene (that could by made precise), the algé@ contains all
arithmetic terms i like 92cy(d + 29¢1(9%cy + (dcz — c40°¢s)) — dcy) + csd, and

31
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it providescanonical formdor them. Furthermore, the Leibniz rule extracts all the
essential algebraic properties that we know from analyBisercise: Consider the
free R-algebra generated b9”(IR) and @ modulo the relations induced by the
multiplication inC”(IR). Then the substitutiod — (j’—x induces a homomorphism
whose kernel is encodes an ideal of relations. Is this ideakrated by the the
instances of the Leibniz rule?)

We want to do the same for integro-differential algekté@s d, | ), so our notion
of integro-differential operatoshould capture arithmetic termsdnand [, possibly
supplemented by various evaluations at potential boungiaints (such that we can
formulate boundary problems). One canonical choice forldltter is to take all
characters on# since characters are the obvious algebraic counterpagisiof
evaluation. In a concrete model lik& = C*[0, 1], we can then form other boundary
operators by combining them withand [, for exampleu — u’(0) — 3u(1) or even

1/2 . X :
u— [,/“u(&)dé as a composition of = [ and evaluation at /2.

As for the differential operators, we will have to factor autideal of relations
Of course we have now more relations than just the Leibniz gt us study them
systematically. We have four types of basic operatorsvegond, integral [, multi-
plication operator$, and characterg. We study them now with the modef’[a, b]
in mind.

e Takingd on the left, we have to consid@® andd [ anddf andd¢. The first
cannot be reduced, the second should give unity by the seaxiom (3.1), the
third is regulated by the Leibniz axiom (3.2), the fourth uanish sincep
corresponds via Corollary 4.4 to an integfq,l such thatp =1— f¢0.

e Taking | on the left, let us first look afd and [ [. The first gives - E, whereg
is a character by Corollary 3.22. The second can be compuytttklpure Baxter
axiom (3.6); substituting = 1 yields [ [g=x [g— [(xg) or in operator notation
J| = x[ = [x where as always = [ -1.

e The next combination to consider would Hyf. But by itself, this cannot be
reduced. In fact, we have just hd in the previous relation, and we cannot im-
prove on that. But we could have leftgeneral instead of takinf = 1, which
leads to thaveak Baxter ruleff [ — F [ — [F, whereF = [ - f. So [ f is irre-
ducible butf f [ is not. Sincef fg is trivially reducible, it remains to checkfd
and[f¢.

e For reducing the monomidlfd, we can directly translate thevaluation vari-
ant (3.5) of integration by part into operator form, which novelgs thestrong
Baxterrule[fd — f— [(d-f)— (Ef)E.

e The reduction off f ¢ is simple sincep maps any function to a constant, which
can be pulled in front of the integral, meanifi§¢ — (/- f) ¢. Obviously this
also covers the casgp.

e Starting with f on the left, we now turn tdd and f [ and fg and f¢. Obvi-
ously all of these cannot be reduced. Exceptffgrthat is: Precisely speaking,
the composition of the multiplication operators correqtiog to f andg yields
a single multiplication operator, which correspondsftp We will make this
explicit below.
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e Finally, we consider products wit on the left, namelyd and¢ [ and¢ f and
¢ . The first two are obviously irreducible; in fact, they aredisn boundary
functionals like the above examplégd — 3¢, and¢1/2j, writing ¢ for evalua-
tion até. Applying the third to a functiomyields¢ - fu= ¢ (f)¢(u) or¢ f =c¢
with c= ¢ - f. Similarly for the fourthg@-u=¢(c)=cd (1) =cwithc=¢-u,
which just meang @ = .

For casting this into a solid algebraic form, we must takend [  as well as the
f and ¢ as indeterminates in free algebra factoring out the relations discussed
above. Note that the elements of the free algebra have amwbeiction on the
given integro-differential algebra. As we did above, wel witite - for this action.
In particular,f - g denotes the product of functions.jA. Furthermore, we have to
fix a K-basis: Choose#* such that{ 1} U.Z* is aK-basis of 7.

Definition 5.1. Let (.#,0, [) be an ordinary integro-differential algebra over a
field K and @ C .#°. Theintegro-differential operatorsZ4|d, [] are defined as
the K-algebra generated by the symbdlsnd [, the “functions”f € Z% and the
“characters® € ® U{E}, modulo the rewrite rules given in Table 5.1 @®f= .7%°,

we write simply.Z 2, [].

fg — f-g of - 0-f+fo [ff=0U-Hf=f-1
oY — ¢ op — 0 [fo—f—[(0-f)—(E-f)E
¢f —(¢-f)¢ | 0] -1 JTo—(-T)¢

Table 5.1 Rewrite Rules for Integro-Differential Operators

Note that the usage of a bas&” introduces soméechnical complicationsn the rewrite v
system given below. Whenever an action on a basis elefen#* is involved in a rule, its result
has to be expanded with respe&t’. For example, take the exponential polynomigs= K [x, &<X]
with their naturalK-basis.Z* = (Xe!* | i € N,A € K), and consider the weak Baxter rule for
f =xe. Then we havg - f = 1— €+ xe, and the right-hand side of the rule must be understood
as[ — e[ +xe [ — [+ [e— [xe.

In order to avoid this type of difficulties, it is desirableftod an alternative formulation that
does not need the choice of a basis. Suchadinate-free formulationould be obtained by taking
as a starting point for the quotient construction not the Kealgebra in{d, [} U.Z#U @ but a
slightly finer algebra that incorporates already all reliasi of.7. Of course, we can then also omit
the rulefg— f-gof Table 5.1.

An algebra of this type is given by what we shall call ticommutative polynomialget X
be a set of indeterminate, an algebra over a commutative rikg Then.%x (X) is defined as the
algebra generated b andX, modulo centralizind<. This means one adjoins & all elements
of X and factors out the centralizing relatiohgs= xA for all A € K andx € X. The notationZk (X)
for this algebra is taken from [16, p. 171]; we call its elefsethe uncommutative polynomials in
X with coefficients inZ overK. If K =7, we may also drop the qualification “ov&¥’; this is the
case considered in the appendix of [36].

Note that one can also descrilf& (X) as auniversal polynomial algebran the sense of [29],
namely as the polynomials X with coefficients.7, taken in the variety oK-algebras (which
coincides with the variety of rings Ik = 7). It is also clear that the free algebigX) arises as
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the special cask = .7; its elements are usually referred to as “noncommutatigs’dpposed to
“uncommutative”) polynomials.

The constructionZ (X) can now be applied to ordinary integro-differential algedir7, 9, [)
over afieldK, using the indeterminates= {0, [} U ®. As already announced, we can now define
the algebra ointegro-differential operators#|d, [] as the quotient modulo the ideal spanned
by the rewrite rules of Table 5.1, except fog — f - g. The only problem with this approach is
that we cannot directly prove confluence with the machindr@extion 5.2, which is set up for
noncommutative rather than uncommutative polynomialsvdtild be worthwhile to develop a
generalization that can handle these cases (not only fgsresent purposes); the remarks given in
Section 6 of [4] seem to be a good starting point for such arxaking.

We have now written the relations in the form mefwrite rules Algebraically
speaking, itis enough to consider the corresponding icea ated by elements like
df —0-f —f0. In fact, Table 5.1 provides an algorithmic realization as\arite
system since we will see that it is Noetherian and confluegfioi® proving this, let
us add a few further remarks on this definition:

e We use the variablek g, h for functions meaning elements of#, and the vari-
ablesg, @, x for characters meaning elements @ C .#°. The same applies to
the decorated versions of these variables.

e Fixing ambiguous terminology, we say that an integro-défdial operator is a
sum ofmonomialsand a monomial a coefficient timeseam

e The rewrite system is understood as includimglicit rulesfor [ [, [0 and [¢
by substitutingf = 1 inthe rulesforf f [, [fd and| f ¢, respectively. Moreover,
we have thelerived rulee [ = 0 from the definition of the evaluation

e It is an easy matter to check that the rewrite rules of Tahlease fulfilled in
(Z,0,[), so we may transporto anactionof .74, [] on.Z.

Some words on theotation of integral operatorsSimilar to Corollary 4.4, we
use the abbreviatiofy, for the operatot1—¢) [ € 7[9, [] since it acts as an inte-
gral with evaluatiorp. Of course /[ itself commdeSWltth If one works with multi-
ple integral (and dlfferennal) structures, it is importémdistinguish them by labels
like x andy, writing j andj"y for the corresponding integrals. The standard example
of combining two integro-differential structures is givien(C* (IR?), dx,ﬁy,f fy
with the obvious interpretation of the operations. Notele/terivations are labelled
below, the corresponding integrals are labelled above-etelynreminiscent of the
index conventions for tensors. In conjunction with the jwag conventions, the
meaning of operators I|k§ should now be clear.

Even without other mtegrals it is sometimes convenient®the notatioif, in-
stead off , since then one can wnﬁ’ as arebbreviatiorfor — j and smﬂarfyL
for the deﬂmte mtegrall,uj f +fx In the standard examp(é:""[a b], dx, [ ?
we may furthermore |dent|fythe characters> u(c) with the real numberse [a b,
thus writing the fam|I|arJ"C for the integral initialized at.

It is sometimes practical to specializ€¢ [0, [] to the frequently occurring
situation of two-point boundary problems. For that purpose have introduced
biintegro-differential algebrayﬁ,j*,f*) in Section 3.2, effectively as integro-
differential algebras with two distinguished initializat points. Accordingly, we
define the algebra# [D, A, B] of biintegro-differential operatorspreviously named
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“analytic polynomials” [37, p. 176], as eithefo [0, [*] or Fo[d,—[,] with the
twin character se® = {~,~ }; both algebras are clearly the same (the sig#r i

is merely conventional for makinfj” and [, adjoints of each other). In this context,
we use the symbols

g, L
J‘*:(*}_l)f*’ R
L=C-Df  [f]

Moreover, we use the abbreviatibn= A+ B for the operator of definite integration.
The reason for using new symbdds A, B, L, R, [ f] is that they can be treated as
distinct indeterminates, if additional rewrite rules ang@duced for compensating
the associated redudancy [37].

w > O
Il

The case of biintegro-differential operators suggestsl@nmnative way of defining# |0, [], v
one in which all integrals likeA and —B are treated on an equal footing. This is not the case
in Definition 5.1, where the evaluation plays the role of a distinguished character. For many
applications, this is indeed a convenient approach, but il@ew sketch an alternative treatment
based on a&ollection of integrals

Fix an ordinary integro-differential algebi@#,d) over a fieldK and charactersb C .7°.
Every charactep € @ corresponds to the direct decompositigh= K + .73 with .7 = Ker(¢).

By Proposition 4.1, this in turn corresponds to the uniquﬂisB J’; . F — & of the derivation
0. .F — 7 that satisfies Irhj = 9. Of course, every’, 4 is an integral ford according to
Corollary 3.22. Itis therefore natural to define tuitable integro-differential operator 9, [ ]
as theK-algebra generated by and [ and f with ¢ ranging over® and f over.Z#, modulo a
suitable set of rewrite rules that we will specify below.

Our guiding principle for finding the rewrite rules will beatwe must eventually come up with
atranslation isomorphism

1: Zo[0,[] = Z[0, [y (5.1)

that send® and thef € .# to “themselves” but otherwise translates between integnati charac-
ters. In view of Corollary 3.22, we defing¢¢) = 1— j € 710, [,], and in view of Corollary 4.4
also1~ (fq,) (1-9)f € Zo[0, [] for the inverse map. Note that the latter was introduced
above as an abbreviation withifie [, []; similarly the former may be regarded as an abbrevia-
tion within .7[9, [,,]. Supplementing the definition of (5.1) by[) = [} with the distinguished
charactere = 1— [d € @, we extendi and (! to homomorphisms between the free algebras
underlyingZ¢ [0, [] and.Z [0, [].

Using the rulegpy — Y andd [ — 1 forJq,[a ], one may immediately verify 1 = 1. For
ensurmglFl = 1, we need the rewrite ruld 7 — 1 for .7[d, [,,]. In fact, we will add section
rulesdj — 1 forall ¢ € @. Hence we may infer that the mapwill indeed be arisomorphism
with mverseFl if only we can make sure thatrespects all relations existing ifo[0, /] and

1~1 all the ones to be defined foF (3, [ ).

Since we need an |somorph|c copy.#fd] within # 1[4, [ ,], we clearly must retain the rewrite
rulesfg— f- gandﬁf¢ — 1forall f,ge.Z%and for allp € ®. Thestrong Baxter ruleeneralizes
immediately to

10—t [X0-1)—(0- 1) = [50-1)—9-T+(¢-1)[30

since the character = E is in no way intrinsically special (the expression on thé-kefnd side of
the equality is not inZ[d, [,], so we view it viar as an abbreviation). Note that—as opposed to
the strong Baxter rule of Table 5.1—the implicit rule for tgecial casd = 1 is trivial. In fact,
J’;a must be a normal form since it appears on the right-hand dittemew strong Baxter rule!



36 5 Integro-Differential Operators

The only rule that needs proper generalization iswiieak Baxter ruldecause i[9, [,] is
must describe the interaction of two integral operator$ different evaluations. We can find it by
calculating inZo 4, [] with the abbreviations mediated by*, which leads at first to

St =0t (JS+ 1) = oL+ 15105

Of course, we may apply the weak Baxter rule for the chargctgielding J’ )J’ J’ (50
for the right summamjd, ff¢ We can also apply thé-version of the Iower left rule |n Table 5.1
to obtain( J’; f) ¢ for the factorj’¢7 f ¢ appearing in the left summand. Hence we have

Fetly =g DLy +Us- 05— 15 Ug- O =5 DG+ 1)~ T35 1)

where we can finally simplif),fw + j¢ = jw. Altogether we have thus found

Jothy—Us O —Jg s )

as the desired generalization of the weak Baxter rule (neglby equatingd and (), now also
including a nontrivial implicit rule forf = 1. This rule appears in the special cgse- f — (0)
andy = f — f(1) in the rewrite system for biintegro-differential operat¢87], where one has
accordmglyf =Aand[Y =B.

We can now conclude the definition 6F [0, [,] by summarizingall required relationsin the
following rewrite system:

fg —fg | ot —oa-trfa | [Nt — (5O Ji(h 1)
oy — 1 [510 =t =[50 1)—¢-t+(p-1)f30

Table 5.2 Rewrite Rules for Equitable Integro-Differential Operrato

Note that we need only five instead of nine rules this time, scan see that the more symmetric
formulation of.7[d, [, has also gained in economy.

It remains to prove that the translation isomorphisnasdi —* respect the relations (such that
they are well-defined). Starting with the translatioom left to right we must prove that the-
translation of Table 5.1 yield valid relations of [d, []. This is trivial for the rule onfg, the
Leibniz rule, and the section rule. Sinod’) = [7, the weak Baxter rule translates into the mixed
Baxter rule of.7[d, [,] with ¢ = ¢y = E. Let us now check the relatiopy = . Indeed, the
left-hand side translates correctly to

(1—[30)(1—[30) =1—[30— [,0+ [30[,0 =1- [0,

where we have applied the mstan@§ =1 of the section rule forZ [0, []. The ruled¢ =0
follows immediately from ap-instance of the section rule. The strong Baxter rulezaf[d, [] is
respected since it corresponds to théstance of the last rule in Table 5.2 above. It remains to
check the rules fop f and [ f ¢. The first is respected since it translates to

(1ff;d)f:ffj;(fder-f):ff(ffj;(d-f)fqb-f+(¢»f)j;fd)fj;(d-f)
=¢-f—(9-1)f30=(9-1)(1-[30)

where we have used the Leibniz rule and the strong Baxtewofu[d, [,]. The second involves
both the weak and the strong Baxter rule as well as the inplitg 1 (€ /) = 0, leading to
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SR 30) = [EE = (U2 D= JEUE D)o = [ = (- D30
(2= SR e F (BfE DEfR0) = X T = (S D) 30 = (JE- D)2 - [30).

which is indeed the proper translation of the relatfdip = ([ - f)¢. Finally, note that the implicit
rulet(Ef) = (1— [£0) [ = 0 follows immediately from the-instance of the section rule.

The translatiorfrom right to left via the isomorphism 7, is much easier to treat since we have
only five relations to check. The rules fég andd f are again trivial. The (mixed) weak Baxter
rule is respected i#4 (9, [] since we have actually constructed it viaiits-image. The section
rule correctly translates ®(1— ¢) [ = — d¢ [ = 1. It remains to check the strong Baxter rule,
which clearly follows by multiplying the corresponding eubf Table 5.1 from the left by & ¢,
yielding

(1—¢)ffo=(f—J(@ D)= (e D) ((#-No—pf(@- 1)~ (e- D))
= f—(1-9)f(@-1)=(9- )¢

where we have also used the rulesgdrand¢ (¢ of Table 5.1. The above right-hand side translates
the right-hand side of the corresponding rule of Table S2esi

- f50)=1-(1-$)(1-E) =1-(1-9)=9¢.

This concludes the proof that®: .7 (9, [,] — Fo[d, [] is also well-defined, so bothand:~1
are homomorphism of algebras. Since we have already seeihdlyaare inverse to each other, we
see that they are indeed isomorphisms so.#@fd, [] = .Z (3, []. A

5.2 Parametrized Noncommutative Gbbner Bases

The goal of this section is to prove that the rules of Tablec®rtespond to a non-
commutative Grobner basis in the corresponding free adgétor that purpose, we
will—very briefly—review the basic facts of noncommutat8edbner basis theory
Since most expositions do not allow for infinitely generdtezils, we will base our
account on the somewhat dated but still highly readable lBargpaper [4]; for a
short summary of it, we refer 8.3 of [13]. Other approaches to noncommutative
Grobner bases can be found in [30, 31, 41].

We start with some general notions fbstract reduction relationsee the first
chapter of [1] for the broader background. We consider diogla—~ C A x Afor a
setA,; typically — realizes a single step in a simplification process like thagy
formation of integro-differential operators accordingTable 5.1. The transitive
closure of— is denoted byi, its reflexive-transtive closure bi.

We calla € A irreducibleif there is noag € A with a— ag; we write A| for the
set of all irreducible elements. #-% ag with ag € A, we callag a normal formof
a, denoted byl a=ag in case it is unique. If this should always be the case, we have
to impose two conditions: Noetherianity for banning infinfeduction chains and
confluence for bringing forks together.

More precisely— is calledNoetheriarif there are no infinite chaireg —a, — . ..
andconfluentf for all a,a;,a, € Athe “hill” a; <~ a- a, has a “valley’a; = ap < a,
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for someag € A. If the reduction relation— is both Noetherian and confluent, it
is calledconvergentin this case, every elemeatc A has a unique normal form
lae Aj; Noetherianity gives existence while confluence providdqueness.

Turning now to noncommutative Grobner bases theory, wasan reduction
relations on the free algebra. Since we will apply the thdorgrdinary integro-
differential algebrag.#, 0, [) over a fieldK, we will keep the same notation also
for the following general settingFor the time being, let” be an algebra over a
commutative ring<, andX an arbitary set of indeterminates. We wri¥) for the
the free monoid oiX andK (X) for the freeK-algebra ornX. Note thatk (X) is the
monoid algebra ofX).

A reduction systerfor K(X) is given by a sef C (X) x K(X), whose elements
are called theules of >. For any rulec = (W, f) and wordsA, B € (X), let a0s
denote theK-module endomorphism &€ (X) that fixes all elements diX) except
sendingAWBto AfB. We call aog thereductioninstantiating the rule with prefix
A and postfixB, briefly the(A, B)-reduction forg. A reductionagg for o = (W, f)
is said toact trivially ona € K(X) if the coefficient ofAWBIn a is zero.

Every reduction systerd induces thestep relation—s C K(X) x K(X) defined
by settinga—sb iff r(a) = b for some reductiom acting nontrivially ona. We
call its reflexive-transitive closuré: s thereduction relationinduced by, and we
say thata reduces td whena— s b. Accordingly, we have th&-moduleK (X) of
irreducible elements, we can speak of the normal fgare K(X), for a suitable
elementa € K(X), and we call> respectively Noetherian or confluentifs is.

For ensuring Noetherianity df, one usually imposes a Noetheris@migroup
orderon (X), meaning a partial order such ttak B’ impliesABC < AB'C for alll
A,B,B'.C € (X). ThenX will be Noetherian if itrespects< in the sense that/’ <W
for every rule(W, f) € X and every nonzero monomil’ of f. If < is total andK
is a field, the reduction systecan be replaced by the set

Ss = {W—f|(W,f)es}

called theideal basisassociated with>. We write | for the two-sidedideal of
K(X) generated bgs. As aK-module |5 is spanned byAgB| g € Ss; A,B e (X)}.
Conversely, a s C K(X) determines the reduction system

Ts< ={(Im-(g),lc-(g) *red-(g)) |g€ S},

where Im. and lc. are respectively the leading monomial and the leading coeffi
cient, while red (g) = g— Ic-(g) Im- (g) denotes the reductum gf

Itis often more difficult to ensure confluence of a reductipstesm. According
to the definition, we would have to investigate every &jl-a-% a,, which is usu-
ally much too laborious. The key for a practically usefuterion is to consider just
theminimal divergenceand see whether their difference eventually becomes zero.
This idea was first described by Buchberger in [9] for the carative case; see
also [10, 12]. In the lucid account [11], Buchberger compdhe idea of minimal
divergences for (commutative) polynomial reduction withuth-Bendix comple-
tion and Robinson’s resolution principle.
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An overlap ambiguityof X is given by a quintupléo, 7,A,B,C) with Z-rules
o= (W, f) 1= (V,g) and monomialA,B,C € (X)\{1} such thatw = AB and
V = BC. Its associated S-polynomial is defined f&&— Ag, and the ambiguity is
calledresolvablef the S-polynomial reduces to zero.

Although overlap ambiguities are much more important, it ba necessary to
study also the other type of minimial divergence: #elusion ambiguityof > is
likewise given by a quintupléo, 7,A,B,C) with Z-ruleso = (W, f) 1 = (V,g) and
monomialsA, B,C € (X)\{1}, but now with the condition that/ = BandV = ABC.
The associated S-polynomial is th&riC — g, and again we speak of a resolvable
ambiguity if the S-polynomial reduces to zero.

The reason why inclusion ambiguities are of lesser impedas that they are
in principle not needed—every reduction system with inicdmg&mbiguities can be
replaced by one without inclusion ambiguities that has #meesnotion of reducibil-
ity and—in case of confluence—induces the same canoniaal forthis sense one
may always work with reduction systems havimg inclusion ambiguitiesthis is
clearly the case for the one in Table 5.1.

Finally, we introduce the following refinement of the notwfiresolvability. Note
thata—5 0 is equivalent ta € |5, just as in the commutative case. Hence an (over-
lap or inclusion) ambiguityo, 7,A B,C) is resolvable iff its S-polynomial belongs
tols. Itis calledresolvable relative ta< iff all monomials of its S-polynomial are
belowABCwith respect to<.

We come now to the main result needed for proving convergefitable 5.1. It
is called theDiamond Lemma for Ring TheoiryBergman’s homonymous paper [4].

Theorem 5.2.Let X be a reduction system for(K) and < a Noetherian semigroup
order that respect&. Then the following conditions are equivalent:

1. All ambiguities of are resolvable.

2. All ambiguities of are resolvable relative tec.

3. The reduction relatior® s is convergent.

4. We have the direct decompositiof = K(X)| + I as K-modules.

When these conditions hold, the quotient algebkX /1> may be identified with
the K-module KX) |, having the multiplication ab= | ab.

Proof. See Theorem 1.2 in [4] or Theorem 3.21 in [13].

Proposition 5.3.For every ordinary integro-differential algebraZ,d, [') over a
field K and for all® C .%°, the rules of Table 5.1 constitute a convergent reduction
system on the corresponding free K-algebra.

Proof. We setX = {4, [,E} U.Z* U ® and write 5 for the reduction system de-
scribed by Talbe 5.1. Using 5.2, we construct a Noetherianigteup order< on
(X) that respect&, and we prove that all ambiguities &fare resolvable. Regard-
ing the former, we have a lot of freedom. We duk 2 for all f € .Z#, extended
to words by the graded lexicographic construction. The ltiegupartial order is
clearly Noetherian (since it is on the generators) and caitvipavith the monoid
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structure (by its grading). It respects the reduction sysiebecause all rules reduce
the word length except for the Leibniz rule, which is complagtbecause of < 0.

For proving that the ambiguities afare resolvable, we must consider 14 overlap
ambiguities (and no inclusion ambiguities as noted earlidre calculation is easy
in all 14 cases, using also the axioms of integro-diffeadratigebras for7. As a
representative example, let us compute the S-polynomialeofwo reduction rules

o=f[,(J-O)f—[(f-f)andT = ([gd,g— [(d-9) — (E-Q)E) as

(J-)fgo—J(f-f)go—[fg+[f[d+[f(E-Q)E

=([-Do-(-Dfd-(-H(E-ge-([-f)g+[((J-f)-9)
+(E((J-D)gE-[(f-9+(-O)fd—[(-)g+(E-9)([-T)E
f)-9)+(E-((J-T)-9)e—[(f-9—[(J-)d

9+ () - )g+0—[(f-9)—[([ -

meaning the overlap ambiguity, 7, [ f, [,gd) is resolvable. O

It should also be mentioned that—in the equational theohe-weak Baxter ruleactually
follows from the strong one (as the names suggest). In faetyeak Baxter rule is nothing else
than the S-polynomial of the strong Baxter rule and the sratile: Applying the former to the
overlap [fd [ yields f [ — [f'[ sinceE = 0, while applying the latter give$ f, so we obtain
the relationf [ — [f'[ — [f = 0. Replacingf by [ - f leads tof f [ = ([ - f)[ — [(J - f), which
is just the pure Baxter axiom (3.6). Could we possibly alderithe strong Baxter rule from the
weak? No because one may easily check that the rules of Tabdés® form a Grobner basis when
the strong Baxter rule is removed, and its leading tgrfd is clearly irreducible relative to the
diminished Grdbner basis.

The same holds for thequitable integro-differential operatot |4, [,,] introduced at the end
of Section 5.1, where one obtains the corresponding mixednteof the weak Baxter rule.

Just to make sure, let us emphasize that—in the rewriteraystbe weak Baxter rule is of
course absoluteljndispensablelf we left it out, it would actually be added by any completio
procedure “computing” the noncommutative Grobner basis.

5.3 Normal Forms for Integro-Differential Operators

We will prove that the rewrite system of Table 5.1 is Noetherand confluent,
meaning the corresponding polynomials form a two-sideccoommutative Grobner
basis. Postponing Grobner bases theory and the promisetitprthe next section,
we proceed immediately to a study of the associatmtnal forms

First of all, it should be clear that even a Noetherian andlaent rewrite system
provides a canonical simplifier only relative to a presumgosanonical simplifier
on the free algebra underlyingo [0, []. Expansion with respect to the fixed basis
7% provides such ground simplifiey but there may also be others. In [37], we have
implemented a ground simplifier via basis expansion (fartbgro-differential op-
erators over exponential polynomials). We will always assuhat the free algebra
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is equipped with some ground simplifier, but we will not reitit to any particular
choice.

We start by describing a set géneratorswhich will subsequently be restricted
to normal forms ofZ [, [].

Lemma 5.4.Every integro-differential operator it% |0, [] can be reduced to a
linear combination of monomialsgf[gyd', where i> 0 and each of f¢, [,g, ¢
may also be absent.

Proof. Call a monomial consisting only of functions and functian@lgebraic”.
Using the left column of Table 5.1, it is immediately cleaattll such monomials
can bereducedtbor ¢ or f ¢. Now letwbe an arbitrary monomial in the generators
of Z[d, []. By using the middle column of Table 5.1, we may assume tHat al
occurrences of are moved to the right, so that all monomials have the farm

Wi ---Whd' with i > 0 and each ofvy, . .., wy either a function, a functional gr. We
may further assume that there is at most one occurrenfaofong thews, ..., wp.
Otherwise the monomiais; - - - wy contain W/, where eaclw= f ¢ is an algebraic
monomial. But then we can reduce

Juf=(fe)f = -DeJ

by using the corresponding rule of Table 5.1. Applying thedes repeatedly, we
arrive at algebraic monomials left and rightfofor just a single algebraic monomial
if [ is absent). O

We turn now to the normal forms dfoundary functionalsmeaning those ele-
ments of.%4(d, [] that are used for describing various boundary conditiorsv H
can we describe them? Since boundary conditions always@wappings” — K,
it is near at hand to select those combinations of integiferéntial operators that
“end” in an evaluationp € @. If ¢ corresponds to evaluation at 1, composition
with @ gives the local boundary conditief(1) = 0 while composition withf yields
the global conditionfu(§)dé = 0. Of course, boundary conditions will in general
be linear combinations of such composites; they are knowleuthe name “Stielt-
jes conditions” in the literature [7, 8].

Definition 5.5. The elements of the right ideal

@) =@ Fo0l0, ]
are calledStieltjes boundary conditiormver.7; if there is no danger of ambiguity,
we will henceforth just speak of “boundary conditions”.

Thenormal forms of boundary conditior@ge exactly the linear combinations of
local and global conditions that we have just brought up oimauitive basis.

Proposition 5.6.Every boundary condition dfP) has the normal form

¢Z¢z <'z 40+ ¢J’f¢>

IEN
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with gy j € K and f, € .7 almost all zero.

Proof. By Lemma 5.4, every boundary condition|@®) is a linear combination of
monomials having the form

w=xfo[gpd or w=xfpd (5.2)

where each off, g, ¢, may also be missing. Using the left column of Table 5.1,

the prefixx f¢ can be reduced to a scalar multiple of a functional, so we nsay a
well assume thaf and¢ are not present; this finishes the right-hand case of (5.2).
For the remaining case = ngl[l@i, assume first thap is present. Then we have

X(Jaw)=x([-9u=Kx[-9xv=(X[ -9,

sow is again a scalar multiple apd', and we are done. Finally, assume we have
w=xJgd'". If i =0, this is already a normal form. Otherwise we obtain

w=x([90)0"t=(x-g)x0' - x[go - (E-g)EI T,

where the first and the last summand are in the required ndomal while the
middle summand is to be reduced recursively, eventualljitepto a middle term
in normal form+-x [¢'d% = +x [d'. 0

Let us now turn to the other two ingredients of integro-difetial operators:
We have already used tligferential operators#[d], now seen as a subalgebra of
Z¢0, []. Note that they have the usual normal forms since the Leituiézis part
of the rewrite system. Analogously, one can introduce thmakgebra ofintegral
operatorsgenerated by the functions arjd Using Lemma 5.4, it is clear that the
normal forms of integral operators ag itself and linear combinations dff'g with
f,g € .%, and the only rule applicable to them is the strong Baxtez.r8Ince we
have already included in .7[d], we introduceZ| [ | as theZ -bimodule generated
by [, which contains only monomials of the forfr{'g.

Finally, we must consider the two-sided id¢a}) of .79, [] generated byp;
its elements are calleStieltjes boundary operatofbriefly “boundary operators”).
In fact, a more economical description(@b) is as the left#-submodule generated
by |®) because anwxW with w,W € .Z[d, [] can be reduced tb¢ [gyad' xW by
Lemma 5.4. Hencé®) includes all finite dimensional projectolsalong Stieltjes
boundary conditions. Using Proposition 4.7, these can berted in the following
way: Ifuy,...,un € .Z% andpy, ..., B € |®) are biorthogonal, then

P_-iUi Bi, (5.3)

is the projector ontduy, ..., uy] along[B,...,Bs)*. From the representation (5.3)
it is immediately clear tha® € (®). Note that all elements ¢i®) have the normal
form (5.3), except that th@;) need not be biorthogonal to tif;).
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We can now characterize the normal forms&$ 9, [] in a very straightforward
and intuitive manner: Every monomial is eithedifferential operatoror anintegral
operatoror aboundary operatarHence every element of[d, [] can be written
uniquely as a sunT + G+ B, with a differential operatoll € .%#[d], an integral
operatoiG € .#|[], and a boundary operatBre (®).

Proposition 5.7.For an ordinary integro-differential algebra# and characters
® C .7*, we have the direct decompositiofy [0, [] = .Z (9] + Z[[] + (®).

Proof. Inspection of Table 5.1 confirms that all integro-diffeiahbperators hav-
ing the described sum representation G+ P are indeed in normal form. Let us
now prove that every integro-differential operatort® (0, [] has such a represen-
tation. It is sufficient to consider its monomiais If w starts with a functional, we
obtain a boundary condition by Proposition 5.6; so assumegimot the case. From
Lemma 5.4 we know that

w=f¢[gpd' or w=f¢d"

where each o, g,  may be absent. Bu € (®) unless¢ is absent, so we may
actually assume . _
w=f[gypd" or w=fd'"

The right-hand case yields € .7 [d]. If ¢ is present in the other case, we may
reducef gy to ([ -g) ¢, and we obtain agaiw € (®). Hence we are left witlv =
f[gd', and we may assunie> 0 since otherwise we hawec .7 [] immediately.
But then we can reduce

w=1(fg0)d' = f(g-[(0-9)~(e-g)E)d"
= (fg)d" ' —f[(9-9)0" '~ (e-g)fEF T,

where the first term is obviously iF [d] and the last one i0®). The middle term
may be reduced recursively until the exponenddfas dropped to zero, leading to
aterminZ|[]. O
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