
Chapter 4

The algebraic-geometric

correspondence

4.1 The geometry of elimination

In Chapter 2 we have seen how Gröbner bases can be used for eliminating variables
from algebraic equations. A general method for determining the solutions of a system
of algebraic equations consists of two major steps:

• elimination: the goal is to “triangularize” the system, i.e. determine polynomials
not containing x, and polynomials not containing x and y. Ideally, we would like
to get a complete overview of these elimination polynomials.

• extension: after having solved the polynomials containing fewer variables, we
would like to extend these partial solutions to solutions containing also coordi-
nates for the other variables.

For the elimination step there are several methods available, such as resultants or
Gröbner bases. Gröbner bases have particularly nice theoretical properties. Resultants,
on the other hand, are faster to compute.

Def 4.1.1. Let I be an ideal in K[x1, . . . , xn]. The k-th elimination ideal Ik of I is the
ideal in K[xk+1, . . . , xn] defined by

Ik = I ∩K[xk+1, . . . , xn]. •

These elimination ideals can be determined via the elimination property of Gröbner
bases, see Theorem 2.2.5.

So now that we have a complete overview of the elimination step, let us turn to the
extension step. Let us first consider an example.
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Example 4.1.1. Consider the system

xy − 1 = 0,
xz − 1 = 0.

(1)

Let I be the ideal generated by these polynomials. A Gröbner basis for I w.r.t. the
lexicographic ordering with x > y > z has the form

{ xz − 1,
y − z }.

So I1 = 〈y − z〉, and I2 = ∅. The partial solutions, i.e. the solutions of I1, are

{(a, a)|a ∈ C}.

Such a partial solution can be extended to a complete solution (1/a, a, a) for all a ∈ C,
except for a = 0. Geometrically the situation is as follows:

We see that V (I) has no point lying over the partial solution (0, 0). •
The following theorem tells us when we can expect to be able to extend a partial

solution.

Theorem 4.1.1. (Extension Theorem) Let K be an algebraically closed field. Let
I = 〈f1, . . . , fm〉 be an ideal in K[x1, . . . , xn]. For each 1 ≤ i ≤ m write fi as a
polynomial in the main variable x1, i.e.

fi = gi(x2, . . . , xn)xdi

1 + terms of lower degree in x1,

where di ≥ 0 and gi ∈ K[x2, . . . , xn] is nonzero. (W.l.o.g. we assume that all the
fi are nonzero.) Let (a2, . . . , an) be a partial solution, i.e. (a2, . . . , an) ∈ V (I1). If
(a2, . . . , an) 6∈ V (g1, . . . , gm), then there exists a1 ∈ K such that (a1, a2, . . . , an) ∈ V (I).

Proof: We have already proven a simpler version of the Extension Theorem in Theorem
2.4.3. For the proof of this general theorem we refer to [CLO97], Theorem 3.6.5. •
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Observe that the extension theorem is false over fields which are not algebraically
closed, such as R. This can be seen in the simple example {x2 − y, x2 − z}.

The elimination ideals of an ideal I loosely correspond to the geometric operation
of projection applied to V = V (I). For 1 ≤ i ≤ n let

πi(V ) = {(ai+1, . . . , an) | (a1, . . . , ai, ai+1, . . . , an) ∈ V for some a1, . . . , ai ∈ K }.

elimination ideals : projections :
I1 π1(V )
I2 π2(V )
...

...
In πn(V )

So, for instance, the first elimination ideal I1 in Example 4.1.1 is 〈y − z〉, i.e. V (I1) is
the line y = z in the yz–plane. On the other hand, the first projection π1(V (I)) is

π1(V (I)) = {(a, a)|a ∈ C \ {0}}.

The projection π1(V (I)) is not an algebraic set, since the point (0, 0) is missing. The
relation between elimination ideals and projections is given in the following theorem.

Lemma 4.1.2. Let I be an ideal in K[x1, . . . , xn], and V = V (I). Then in An−1(K)
we have

πl(V ) ⊆ V (Il) .

Proof: Consider f ∈ Il. f is also in I, so for any point (a1, . . . , an) ∈ V we have

f(al+1, . . . , an) = f(πl(a1, . . . , an)) = 0 .

This shows that f vanishes on all points of πl(V ). •
Theorem 4.1.3. Let K be algebraically closed, V = V (f1, . . . , fm) an algebraic set
in An(K). Let I = 〈f1, . . . , fm〉. Let the leading coefficients gi be as in the Extension
Theorem. Then in An−1(K) we have the equality

V (I1) = π1(V ) ∪ (V (g1, . . . , gm) ∩ V (I1)).

Proof: This follows immediately from Lemma 4.1.2 and the Extension Theorem (Thm.
4.1.1). •
Example 4.1.1. (continued) Theorem 4.1.2 tells us that π1(V ) fills up the affine
variety V (I1), except possibly for a part that lies in V (g1, . . . , gm). Unfortunately, it is
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not clear how big this part is, and sometimes V (g1, . . . , gm) is unnaturally large. For
example, one can see that the equations

(y − z)x2 + xy − 1 = 0,
(y − z)x2 + xz − 1 = 0

(2)

generate the same ideal as equations (1). Since g1 = g2 = y−z generate the elimination
ideal I1, Theorem 4.1.3 tells us nothing about the size of π1(V ) in this case. •

Observe that in general gi 6∈ I1 (or in a prime component of it), so V (g1, . . . , gm) ∩
V (I1) will be a set of lower dimension than V (I1). At this point we cannot make this
more precise, since we still have to introduce the notion of dimension. So in this case
V (I1) and π1(V ) agree “nearly everywhere”.

We finish with a theorem which tells us how much smaller than V (I1) the projection
π1(V ) could be.

Theorem 4.1.4. (Closure Theorem) Let K be algebraically closed. Let I =
〈f1, . . . , fm〉 be an ideal in K[x1, . . . , xn], V = V (f1, . . . , fm). Then:

(a) V (Ik) is the smallest algebraic set containing πk(V ).

(b) If V 6= ∅, then there is an algebraic set W properly contained in V (Ik) such that
V (Ik) \W ⊂ πk(V ).

Proof: see [CLO97], Chap. 3.2. •
If V (Ik) is irreducible, then W must be of strictly smaller dimension, so that we

only have to take away “a few” points from V (Ik) to get πk(V ).
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4.2 Hilbert’s Nullstellensatz

We have already seen in previous chapters that for every polynomial ideal we have a
corresponding algebraic set, and for every algebraic set we have a corresponding ideal.

polyn. ideals algebraic sets
I −→ V (I)

I(V ) ←− V

In this section we will further investigate this correspondence. The key instrument
for this investigation is Hilbert’s Nullstellensatz.

Lemma 4.2.1. (Noether’s normalization lemma) Let K be infinite. Let f ∈
K[x1, . . . , xn] non-constant. There is a linear change of coordinates (i.e. an invert-
ible linear map) L such that the leading coefficient of L(f) w.r.t. x1 is a nonzero
constant.

Proof: Let d be the total degree of f . Consider the linear change of coordinates

L : x1 = x̃1,
x2 = x̃2 + a2x̃1,

...
xn = x̃n + anx̃1,

where the ai are still to be determined constants. Then

L(f) = f(x̃1, x̃2 + a2x̃1, . . . , x̃n + anx̃1)
= c(a2, . . . , an)x̃

d
1 + terms in which x̃1 has degree < d,

where c(a2, . . . , an) is a non-zero polynomial in the ai. Thus, by Theorem 3.1.1, we can
choose the ai so that c(a2, . . . , an) 6= 0. •
Theorem 4.2.2. (Weak Nullstellensatz) Let K be an algebraically closed field. Let I
be an ideal in K[x1, . . . , xn] satisfying V (I) = ∅. Then I = K[x1, . . . , xn].

Proof: We proceed by induction on n. K[x1] is a principal ideal domain, so I = 〈f〉
for some f ∈ K[x1]. Since K is algebraically closed, V (I) can be empty only if f is a
non-zero constant. So I = K[x1].

Now let n > 1. Let I = 〈f1, . . . , fm〉, where none of these basis polynomials is 0.
If any of the fi is a constant, then obviously I = K[x1, . . . , xn]. So let us assume that
none of the fi is a constant. Let d ≥ 1 be the total degree of f1. Because of Lemma
4.2.1 we can assume that f1 is of the form

f1 = cxd
1 + terms in which x1 has degree < d.
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If f1 does not have this form to start with, we can apply a linear transformation L as
in Lemma 4.2.1. The set Ĩ = {L(f)|f ∈ I} is an ideal in K[x̃1, . . . , x̃n]. Note that
we still have V (Ĩ) = ∅ since if the transformed equations had solutions, so would the
original ones. Moreover, if we can show that 1 ∈ Ĩ, then also f−1(1) = 1 ∈ I.

Since f1 has this special form, from Theorem 4.1.2 we get

V (I1) = π1(V (I)).

This shows that V (I1) = π1(V (I)) = π1(∅) = ∅. By the induction hypothesis, it follows
that I1 = K[x2, . . . , xn]. But this implies that 1 ∈ I1 ⊂ I. Thus, I = K[x1, . . . , xn]. •
Theorem 4.2.3. (Hilbert’s Nullstellensatz) Let K be an algebraically closed field, and
I an ideal in K[x1, . . . , xn]. Then

I(V (I)) =
√

I.

(I.e., the ideal of an algebraic set is radical.)

Proof: Obviously
√

I ⊂ I(V (I)).
On the other hand, choose an arbitrary g ∈ I(V (I)). We have to show that g ∈

√
I.

Let {f1, . . . , fm} be a basis of I. Consider

J = 〈f1, . . . , fm, xn+1g − 1〉,

an ideal in K[x1, . . . , xn, xn+1]. Then V (J) = ∅, since g vanishes wherever all the fi

vanish. Applying the Weak Nullstellensatz to J , we see that 1 ∈ J . So there is an
equation

1 =
m

∑

i=1

ai(x1, . . . , xn+1)fi + b(x1, . . . , xn+1)(xn+1g − 1).

Let y = 1/xn+1, and multiply the equation by a high power of y, so that an equation

yk =

m
∑

i=1

ci(x1, . . . , xn, y)fi + d(x1, . . . , xn, y)(g − y)

in K[x1, . . . , xn, y] results. Substituting g for y gives the required equation. •
This idea of enlarging the ideal I by the polynomial xn+1g−1 is due to Rabinowitsch,

and it is usually called the “Rabinowitsch trick”.

Now the correspondence of ideals and algebraic sets can be expressed as a series of
corollaries to Hilbert’s Nullstellensatz. The field K is algebraically closed throughout
this section.

Theorem 4.2.4. If I is a radical ideal in K[x1, . . . , xn], then I(V (I)) = I. So there is
a 1-1 correspondence between radical ideals and algebraic sets.
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Proof: this is an obvious consequence of the Nullstellensatz. •
Theorem 4.2.5. If I is a prime ideal, then V (I) is irreducible. There is a 1-1
correspondence between prime ideals and irreducible algebraic sets. The maximal
ideals correspond to points.

Proof: The statement about irreducible sets was already proved.
Since the singleton set containing just one point is algebraic, any ideal I having a

V (I) properly containing this point cannot be maximal. The converse is also rather
obvious. •

The situation, in which the ideal I corresponds to a finite set of points, can be
characterized via the vector space dimension of the polynomial ring modulo I.

Theorem 4.2.6. Let I be an ideal in K[x1, . . . , xn]. Then V (I) is a finite set if and
only if K[x1, . . . , xn]/I is a finite dimensional vector space over K. If this occurs, we
have

|V (I)| ≤ dimK(K[x1, . . . , xn]/I).

Proof: Let P1, . . . , Pr ∈ V (I). Choose polynomials f1, . . . , fr ∈ K[x1, . . . , xn] such
that

fi(Pj) =

{

1, if i = j,

0, if i 6= j.

Such polynomials exist, see for instance [Win], Exercise 8.4.3. Let f i be the equiv-
alence class of fi w.r.t. I. If

∑

λif i = 0 for some λi ∈ K, then
∑

λifi ∈ I,
so λj = (

∑

λifi)(Pj) = 0. Thus, the f i are linearly independent over K, so
r ≤ dimK(K[x1, . . . , xn]/I).

Conversely, if V (I) = {P1, . . . , Pr} is finite, let Pi = (ai1, . . . , ain), and let

fj :=

r
∏

i=1

(xj − aij),

for j = 1, . . . , n. Then fj ∈ I(V (I)), so, by the Nullstellensatz, fm
j ∈ I for some

m > 0 (take m large enough to work for all fj). f
m

j = 0, so xrm
j is a K–linear combi-

nation of 1, xj , . . . , x
rm−1
j . It follows by induction that xs

j is a K–linear combination of

1, xj , . . . , x
rm−1
j for all s. Hence,

{xe1

1 · . . . · xen

n | ei < rm}

generate K[x1, . . . , xn]/I as a vector space over K. •
Example 4.2.1. We start with the ideal

I = 〈y2 + x2 − 1, (y − x)2〉 ⊆ Q[x, y].
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The corresponding algebraic set, in Q
2

or C2, is

V (I) =
{(

√
2

2
,

√
2

2

)

,
(

−
√

2

2
,−
√

2

2

)}

.

The polynomials
h1 = (y +

√
2/2)2 + (x−

√
2/2)2 − 2,

h2 = −17y − 6x2 + 17x + 3,
h3 = −51y + 28x3 − 102x2 + 37x + 51

x

y

2

1

-1

0
-1 1-2

-2

2

0

vanish on all the points in V (I), so h1, h2, h3 ∈ I(V (I)) =
√

I. However, none of these
polynomials is in I itself. So, clearly, I is not radical. •
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4.3 Primary decomposition of ideals

In Chapter 3 we have seen that every algebraic set V can be written as a finite non-
trivial union of irreducible algebraic sets or varieties,

V =
⋃

Vi ,

(see Theorem 3.3.3). These algebraic sets correspond to polynomial ideals, I =
I(V ), Ii = I(Vi), where the Ii are prime by Theorem 3.3.1. So we get that I(V )
can be represented as a finite non-trivial intersection of prime ideals

I(V ) =
⋂

I(Vi) .

But what if we want to decompose a general non-radical ideal in this way? Let us give
a short sketch of the general decomposition theory for ideals.

Def 4.3.1. Let R be a commutative ring with 1, and let I be an ideal in R.
I is primary iff for all a, b ∈ R:

ab ∈ I =⇒ (a ∈ I or bn ∈ I for some n ∈ N) .

I is prime iff for all a, b ∈ R:

ab ∈ I =⇒ (a ∈ I or b ∈ I) . •

In other words, an ideal is primary if in its residue class ring every ideal is nilpotent.

In this section we always consider R to be a commutative ring with 1.

Theorem 4.3.1. (i) For every primary ideal I the radical
√

I is a prime ideal.
(ii) If I is prime and J is primary with J ⊆ I, then also

√
J ⊆ I.

Proof: (i) Suppose a · b ∈
√

I and a 6∈
√

I. Then for some n we have (ab)n ∈ I and
an 6∈ I. So for some m we have bnm ∈ I, which means b ∈ I.
(ii) Exercise. •
Def 4.3.2. If I is a primary ideal then J =

√
I is called the associated prime ideal of

I; I is called a primary ideal belonging to J . •
Def 4.3.3. An ideal I is called irreducible iff it cannot be represented as the intersection
of two proper superideals; i.e. if J1, J2 are ideals and I = J1∩J2 then I = J1 or I = J2.
•
Theorem 4.3.2. If R is Noetherian, then every ideal in R is the intersection of finitely
many irreducible ideals.
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Proof: We will apply the Principle of Divisor Induction (Theorem 3.2.4 or [Wae70]
Chap. 15.1).
The statement is true for all irreducible ideals. Suppose then that I is reducible, i.e.
for J1, J2 we have

I = J1 ∩ J2, I ⊂ J1, I ⊂ J2 .

If the statement is true for all proper divisors of I, then it is true in particular for J1

and J2; i.e. there are irreducible ideals s.t.

J1 =

r
⋂

i=1

J1,i, J2 =

s
⋂

i=1

Js,i.

But this implies

I =
r

⋂

i=1

J1,i ∩
s

⋂

i=1

Js,i.

So the statement is also true for I. •
Theorem 4.3.3. If R is Noetherian and I is an irreducible ideal in R, then I is
primary.

Proof: We show that if I is not primary, then it is also not irreducible. So assume
that I is not primary. Then there are a, b ∈ R s.t.

ab ∈ I, a 6∈ I, and bn 6∈ I ∀n ∈ N .

For every n ∈ N we consider the ideal I : 〈bn〉. Clearly we have for all n:

I : 〈bn〉 ⊆ I : 〈bn+1〉 .

Since R is Noetherian, there must be a k ∈ N s.t.

I : 〈bk〉 = I : 〈bk+1〉 = · · · .

Now consider the ideals
A := 〈a〉, B := 〈bk〉 .

First we show that I is the intersection of two ideals:

I = (I + A) ∩ (I + B) . (∗)

Obviously we have “⊆”, because I ⊆ I + A and I ⊆ I + B.
For showing “⊇”, let x ∈ (I + A) ∩ (I + B). So there are i1, i2 ∈ I and r1, r2 ∈ R s.t.

i1 + r1a = x = i2 + r2b
k .

So xb = i1b + r1ab. Since ab ∈ I we get xb ∈ I. Also xb = i2b + r2b
k+1, so we

get r2b
k+1 ∈ I. This shows that r2 ∈ I : 〈bk+1〉 = I : 〈bk〉. So r2b

k ∈ I, and also
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x = i2 + r2b
k ∈ I. This proves (∗).

Now we show that I +A and I +B are proper divisors of I. Since a ∈ I +A and a 6∈ I,
we get I 6= I + A. Since bk ∈ I + B and bk 6∈ I we get I 6= I + B.
So we have shown that I is not irreducible. •

Theorems 4.3.2 and Theorem 4.3.3 together yield the following:

Corollary If R is Noetherian, then every ideal in R is the intersection of finitely many
primary ideals.

This theorem can be made still sharper. First, all redundant ideals of Ji of a
representation

I =

r
⋂

i=1

Ji =: [J1, . . . , Jr] ,

meaning all those Ji which contain the intersection of the other ideals, can be omitted.
We thus arrive at an irredundant representation, that is, one in which no component
Ji contains the intersection of the remaining ideals. In such a representation it is still
possible that several of the primary components might be combined to form a primary
ideal, that is, that their intersection is again a primary idea; this is the case if these
components all have the same associated prime ideal.

Theorem 4.3.4. ([Wae70] 15.4) Every ideal in a Noetherian ring R admits an irredun-
dant representation as the intersection of finitely many primary components. These
primary components all have distinct associated prime ideals.

This second decomposition theorem, proved for polynomial rings by E.Lasker and
in general by E.Noether, is the most important result of general ideal theory (according
to van der Waerden).

Example 4.3.1. ([Wae70] 15.5) The ideal

I = 〈x2, xy〉

in K[x, y] consists of all polynomials which are divisible by x and in which the linear
and constant terms are absent. The set of all polynomials divisible by x is the prime
ideal

J1 = 〈x〉 .

The set of all polynomials in which the linear and constant terms are absent is the
primary ideal

J2 = 〈x2, xy, y2〉 .

Hence
I = [J1, J2] .
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This is an irredundant representation, and the associated prime ideals, 〈x〉 and 〈x, y〉,
of J1 and J2 are distinct. This is therefore also a representation by greatest primary
ideals.

But in addition to this representation there is still another:

I = [J1, J3] ,

where
J3 = 〈x2, y〉 ,

for in order that a polynomial lie in I, it is sufficient to require that the polynomial be
divisible by x and that it contain no linear or constant term. If the field K is infinite,
then there are even an infinite number of representations of this type:

I = [J1, J
(λ)
3 ], J

(λ)
3 = 〈x2, y + λx〉 .

All these decompositions of I have the common feature that the number of primary
components and the associated prime ideals,

〈x〉, 〈x, y〉 ,

are the same. •
Theorem 4.3.4. (Uniqueness Theorem, [Wae70] Chap. 15.5) In two irredundant
representations of an ideal I in R, a Noetherian commutative ring with 1, by primary
components the number of components and the associated prime ideals are the same
(although the components themselves need not be).
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