
Chapter 5

Projective algebraic sets and

varieties

5.1 Projective space

In affine space we often have the problem that certain relations hold only up to some
exceptions. So, for instance, two different lines meet in a point, except if they are
parallel. A line intersects a hyperbola in two points, except if the line is one of the
two asymptotes. These, and many other, exceptions in geometric statements can be
eliminated by moving from affine to projective space.

model of P
1 in A

2 hyperbola
Figure 5.1

Consider Figure 5.1. Every point P on the line L is uniquely determined by the
line through the origin and P . On the other hand, every such line through the origin
determines a point P on L, except for the line y = 0. We say that this line, which is
parallel to L, meets L “at infinity”, i.e. it determines the “point at infinity”, which
we add to L. The line L is just a copy of the affine line A

1, and by adding this point
at infinity we get what we call the projective line P

1. Every point in P
1 is uniquely
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determined by a line in A
2 through the origin.

As another example, consider the hyperbola y2 = x2 +1. Every line in A
2 intersects

the hyperbola in 2 points in A
2(C) (counted with multiplicity) except for the 2 lines

y = ±x. Proceeding in analogy to the treatment of 1–dimensional space above, we
introduce a “point at infinity” in every direction. We identify a point P = (a, b) ∈ A

2

with the line in A
3 through (a, b, 1) and (0, 0, 0), written as (a : b : 1) since only the

proportionality of the coordinates is important. We get the coordinates of the point
at infinity in the direction OP as

lim
n→∞

(na : nb : 1) = lim
n→∞

(a : b :
1

n
) = (a : b : 0).

The lines in A
3 through (a, b, 0) and (0, 0, 0) correspond to the “points at infinity” in

the projective plane P
2.

Throughout this chapter we let K be an algebraically closed field.

Def. 5.1.1. Let n ∈ N0. For (c1, . . . , cn+1) ∈ A
n+1(K) \ {(0, . . . , 0)}, by (c1 : . . . : cn+1)

we denote the line in A
n+1(K) through (c1, . . . , cn+1) and O = (0, . . . , 0). So

(c1 : . . . : cn+1) := { (λc1, . . . , λcn+1) | λ ∈ K}.

The n–dimensional projective space P
n(K) over K is the set of all such lines through

the origin in A
n+1, i.e.

P
n(K) := { (c1 : . . . : cn+1) | (c1 : . . . : cn+1) ∈ A

n+1(K) \ {O} }.

The line (c1 : . . . : cn+1) ∈ A
n+1(K) is a point in P

n(K). The (n+1)–tuple (c1, . . . , cn+1)
is called (a set of ) homogeneous coordinates of the point (c1 : . . . : cn+1). •
Remark. (c1, . . . , cn+1), (d1, . . . , dn+1) ∈ Kn+1 \ {O} are homogeneous coordinates of
the same point in projective space if and only if for some λ ∈ K \ {0} we have

(c1, . . . , cn+1) = λ(d1, . . . , cn+1).

If we call such tuples equivalent, c ∼ d, then

P
n(K) = (Kn+1 \ {O})/∼.

Remark. Let K ⊆ C, n ∈ N0. Let π be the canonical surjective projection

π : Kn+1 \ {O} → P
n(K)

(c1, . . . , cn+1) 7→ (c1 : . . . : cn+1) .

The n–sphere Sn(K) ⊂ Kn+1 \ {O} is defined as

Sn(K) := { c = (c1, . . . , cn+1) ∈ Kn+1 | ‖c‖2 =

√

√

√

√

n+1
∑

i=1

|ci|2 = 1 }.
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Consider the mapping

ρ : Kn+1 \ {O} → Sn(K)

c = (c1, . . . , cn+1) 7→
(

c1
‖c‖2

, . . . ,
cn1

‖c‖2

)

.

We have the following commuting diagram, where π, ρ, π′ are surjective:

Kn+1 \ {O} -
π

P
n(K)

Sn(K)

Q
Q

Q
Q

Q
Qs �

�
�

�
�

�3

ρ π′ = π|Sn(K)

Example 5.1.1.

(a) The real projective line, K = R, n = 1.

R
2 \ {O} -

π
P

1(R)

S1(R)

Q
Q

Q
Q

Q
Qs �

�
�

�
�

�3

ρ π′

Figure 5.2

(b) The real projective plane, K = R, n = 2.

R
3 \ {O} -

π
P

2(R)

S2(R)

Q
Q

Q
Q

Q
Qs �

�
�

�
�

�3

ρ π′
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π′ identifies the two points opposite to each other on the 2-sphere S2(R). So
P

2(R) can be viewed as the upper half of S2 plus half the equator. Lines in P
2(R)

correspond to great circles on S2(R), so they always have a point of intersection.
•

For a point (c1 : . . . : cn+1) ∈ P
n the i–th coordinate ci is not well–defined. But

the property ci 6= 0 is well–defined. And if ci 6= 0, then the proportions cj/ci are
well–defined.

Definition 5.1.2. (and remark) For 1 ≤ i ≤ n + 1 let Ui := { (c1 : . . . : cn+1) ∈
P

n | ci 6= 0 }. Then

P
n =

n+1
⋃

i=1

Ui. (∗)

Every point P ∈ Ui has uniquely determined coordinates of the form

P = (c1 : . . . : ci−1 : 1 : ci+1 : . . . : cn+1).

These coordinates (c1, . . . , ci−1, ci+1, . . . , cn+1) are called the non–homogeneous coordi-

nates of P w.r.t. Ui (or xi, or i). The mapping

ϕi : A
n → Ui

(a1, . . . , an) 7→ (a1 : . . . : ai−1 : 1 : ai : . . . : an)

is a bijection between A
n and Ui. Because of (∗) P

n can be covered by n + 1 affine
spaces of dimension n.
The set

H∞ := P
n \ Un+1 = { (c1 : . . . : cn : 0) }

is the hyperplane at infinity (w.r.t. xn+1 or n + 1), the points on H∞ are the points

at infinity. Because of the correspondence (c1 : . . . : cn : 0) ↔ (c1 : . . . : cn), the
hyperplane at infinity H∞ can be identified with P

n−1. So we get

P
n = Un+1 ∪H∞ ∼ A

n ∪ P
n−1,

i.e. P
n can be viewed as an n–dimensional affine space plus points at infinity corre-

sponding to the directions in n–dimensional space. •
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Example 5.1.2.

(a) Consider the line y = ax + b in A
2(C). Identifying A

2 with U3 ⊂ P
2, then the

points on the line in affine space correspond to the points (x : y : z) ∈ P
2 with

y = ax + bz and z 6= 0. Note that we have to make the defining polynomial
homogeneous in order to make the solutions invariant under the equivalence ∼
of homogeneous coordinates.

{ (x : y : z) ∈ P
2 | y = ax + bz } ∩H∞ = { (1 : a : 0) }.

So we see that the point at infinity (1 : a : 0) is common to all lines of slope a.
Two lines of the same slope intersect in a point at infinity.

(b) We reconsider the hyperbola y2 = x2 + 1. The corresponding set in P
2 consists

of the solutions of the homogeneous equation y2 = x2 + z2 with z 6= 0. The set
{ (x : y : z) ∈ P

2 | y2 = x2 + z2 } intersects H∞ in the two points (1 : 1 : 0)
and (1 : −1 : 0). These are the points in which the hyperbola intersects the
asymptotic lines y = x and y = −x, respectively. •
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5.2 Homogeneous ideals and projective algebraic

sets

Def. 5.2.1. A form or homogeneous polynomial in the polynomial ring R[x1, . . . , xm]
over the ring R is a polynomial, in which every term has the same degree.

Let f = f0 + f1 + . . . fd ∈ R[x1, . . . , xn] be such that the fi, 0 ≤ i ≤ d, are forms of
degree i, respectively. Then

f ∗ = f0x
d
n+1 + f1x

d−1
n+1 + . . . + fd = xd

n+1 · f(
x1

xn+1

, . . . ,
xn

xn+1

)

is a form of degree d, and it is called the homogenization of f w.r.t. xn+1.
Conversely, if F ∈ R[x1, . . . , xn+1] is a form, then

F∗ = F (x1, . . . , xn, 1) ∈ R[x1, . . . , xn]

is the dehomogenization of F w.r.t. xn+1. •
The proof of the following theorem is rather obvious and is left to the reader.

Theorem 5.2.1. Let f, g ∈ R[x1, . . . , xn], F, G forms in R[x1, . . . , xn, xn+1].

(a) (F ·G)∗ = F∗ ·G∗ and (f · g)∗ = f ∗ · g∗.

(b) If r is the highest power such that xr
n+1 |F , then xr

n+1(F∗)
∗ = F .

(f ∗)∗ = f .

(c) (F + G)∗ = F∗ + G∗.
xt

n+1(f + g)∗ = xr
n+1f

∗ + xs
n+1g

∗,
where r = deg(g), s = deg(f), t = r + s− deg(f + g).

The second equation in part (c) of the previous theorem is not minimal. In fact, it

can be divided by x
min(r,s)
n+1 .

Def. 5.2.2. P ∈ P
n is a root of the polynomial f(x1, . . . , xn+1) ∈ K[x1, . . . , xn+1] iff

f(c1, . . . , cn+1) = 0 for every choice of homogeneous coordinates (c1 : . . . : cn+1) of P .
In this case we write f(P ) = 0.
For S ⊆ K[x1, . . . , xn+1] we define

Vp(S) := {P ∈ P
n | f(P ) = 0 for all f ∈ S }.

Vp(S) is a projective algebraic set. •
Usually we will just write V (S) instead of Vp(S), if it is clear from the context that

we mean a projective algebraic set. In particular, this holds for this chapter.
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Lemma 5.2.2. Let K be an infinite field, f ∈ K[x1, . . . , xn+1], f0, . . . , fd forms with
deg(fi) = i such that f =

∑d
i=0 fi. P is a root of f if and only if P is a root of fi for

all 0 ≤ i ≤ d.

Proof: If P is a root of every fi, then obviously it is also a root of f .
Conversely, let (c1 : . . . : cn+1) be a fixed tuple of homogeneous coordinates of P .

We consider the polynomial

g(λ) = f(λc1, . . . , λcn+1) =
d

∑

i=0

λi · fi(c1, . . . , cn+1).

For P to be a root of f , the polynomial g must vanish on all λ ∈ K \ {0}. Since K is
infinite, this is only possible if g = 0, i.e. fi(c1, . . . , cn+1) = 0 for all 0 ≤ i ≤ d. •

If I = 〈f (1), . . . , f (r)〉, where f (i) =
∑

f
(i)
j , f

(i)
j a form of degree j, then Vp(I) =

V (I) = V ({f (i)
j }). So every projective algebraic set is the set of roots of a finite set of

forms.

Def. 5.2.3. For a set X ⊆ P
n let

I(X) := { f ∈ K[x1, . . . , xn+1] | f(P ) = 0 for every P ∈ X }.

I(X) is the ideal of X. •
If f ∈ I(X) then, by Lemma 5.2.2, all homogeneous components of f are contained

in I(X).

Def. 5.2.4. The ideal I ⊆ K[x1, . . . , xn+1] is homogeneous iff, for every

f =
d

∑

i=0

fi ∈ I, fi form of degree i,

also fi ∈ I for 0 ≤ i ≤ d. •
So for every X ⊆ P

n, the ideal I(X) is homogeneous. The proof of the following
lemma is left as an exercise.

Lemma 5.2.3. (a) A homogeneous ideal I ⊆ K[x1, . . . , xn+1] is prime if and only if

f · g ∈ I =⇒ f ∈ I ∨ g ∈ I,

for arbitrary forms f, g ∈ K[x1, . . . , xn+1].
(b) If I is homogeneous, then also

√
I is homogeneous. •

Theorem 5.2.4. The ideal I ⊆ K[x1, . . . , xn+1] is homogeneous if and only if it is
generated by a (finite) set of forms.
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Proof: “=⇒”: If I = 〈f (1), . . . , f (r)〉 is homogeneous, f (i) =
∑

f
(i)
j , where f

(i)
j are

forms of the respective degrees, then I = 〈{f (i)
j }〉.

“⇐=”: Let I = 〈S〉, S = {f (i)} a set of forms with deg(f (i)) = di. Consider an
arbitrary

g = gm + gm−1 + . . . + gr ∈ I, deg(gi) = i.

It suffices to show gm ∈ I, for then also g − gm ∈ I, and the statement follows by
induction. For some polynomials a(i) we have

g =
∑

a(i)f (i).

Comparing terms of the same degree on both sides of this equations, we get

gm =
∑

di≤m

a
(i)
m−di

· f (i).

So gm ∈ I. •
As for affine sets, we call a projective algebraic set V ⊆ P

n irreducible iff it cannot
be written as the union of two proper algebraic subsets. An irreducible projective
algebraic set is a projective variety. Analogously to the affine case one proofs that
every projective algebraic set can be decomposed uniquely into a union of finitely
many projective varieties. These are called the irreducible components of the projective
algebraic set.

Furthermore, in analogy to the affine case, one shows (using Lemma 5.2.3.(a)) that
the projective algebraic set V is irreducible if and only if I(V ) is prime.

For the (projective) mappings

homogeneous ideals
V−→ algebraic sets

K[x1, . . . , xn+1]
←−
I in P

n(K)

we again have the facts (1) — (6) of Section 3.1., and also the properties analogous to
the ones in Lemma 3.1.3.

If confusion might arise, we write Vp, Ip for the projective mappings, and Va, Ia for
the affine ones.

Def. 5.2.5. For a projective algebraic set V ⊆ P
n we call

C(V ) := { (c1, . . . , cn+1) ∈ A
n+1 | (c1 : . . . : cn+1) ∈ V } ∪ {(0, . . . , 0)}

the cone over V . •
The proof of the following lemma is left as an exercise.

Lemma 5.2.5. (a) If K is infinite, ∅ 6= V ⊆ P
n(K), then Ia(C(V )) = Ip(V ).
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(b) If I is a homogeneous ideal in K[x1, . . . , xn+1] with Vp(I) 6= ∅, then C(Vp(I)) =
Va(I). •
Theorem 5.2.6. (Projective Nullstellensatz) Let K be an algebraically closed field, I
a homogeneous ideal in K[x1, . . . , xn+1].

(a) Vp(I) = ∅ ⇐⇒ I contains all forms of degree ≥ N , for some N ∈ N.

(b) If Vp(I) 6= ∅, then Ip(Vp(I)) =
√

I.

Proof: (a)
Vp(I) = ∅ ⇐⇒
Va(I) ⊆ {(0, . . . , 0)} ⇐⇒↑ by the affine Nullstellensatz√

I = Ia(Va(I)) ⊇ 〈x1, . . . , xn+1〉 ⇐⇒
〈x1, . . . , xn+1〉N ⊆ I for some N ∈ N.

(b)
Ip(Vp(I)) =↑ Lemma 5.2.5.(a)

Ia(C(Vp(I))) =↑ Lemma 5.2.5.(b)

Ia(Va(I)) =↑ aff. Nullst.satz√
I. •

The usual corollaries to the Nullstellensatz also hold for the projective case. How-
ever, we always have to exclude the ideal 〈x1, . . . , xn+1〉.
Def. 5.2.6. An affine change of coordinates is an invertible linear mapping

T : A
n −→ A

n

x 7→ A · x + b,

i.e. A is an invertible matrix.
An affine change of coordinates of the form

T : A
n+1 −→ A

n+1

x 7→ A · x

where A is an invertible (n + 1)× (n + 1)–matrix, transforms lines through the origin
into lines through the origin. So T determines a mapping from P

n to P
n. Such a

mapping is called a projective change of coordinates. •
The proofs of the following statements are left as exercises.

Theorem 5.2.7. Let V ⊆ P
n be a set of points, T = (T1, . . . , Tn+1) a projective change

of coordinates in P
n.

(a) V is algebraic if and only if V T := T−1(V ) is algebraic.

(b) If V = V (f1, . . . , fr), then V T = V (fT
1 , . . . , fT

r ), where fT
i = fi(T1, . . . , Tn+1).
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(c) V is a variety if and only if V T is a variety. •

Lemma 5.2.8. Let P1, P2, P3 and Q1, Q2, Q3 be non–collinear points in P
2, respectively.

Then there is a projective change of coordinates T : P
2 → P

2 such that T (Pi) = Qi for
1 ≤ i ≤ 3. •

By way of the mapping
ϕn+1 : A

n → Un+1 ⊂ P
n

(compare Def. 5.1.2) the affine space A
n can be viewed as a subset of the projective

space P
n. In the sequel we want to investigate the relations between algebraic sets in

A
n and P

n.
As we can homogenize and dehomogenize polynomials, we can do the same for

polynomial ideals.

Def. 5.2.7. For an ideal I ⊆ K[x1, . . . , xn] we call I∗ := 〈{f ∗|f ∈ I}〉 ⊆
K[x1, . . . , xn+1] the homogenization of I.
For a homogeneous ideal I ⊆ K[x1, . . . , xn+1] we call I∗ := {f∗|f ∈ I} ⊆ K[x1, . . . , xn]
the dehomogenization of I (w.r.t. xn+1). •
Lemma 5.2.9.

(i) For an ideal I in K[x1, . . . , xn], the homogenization I∗ is a homogeneous ideal in
K[x1, . . . , xn+1].

(ii) For a homogeneous ideal I ⊆ K[x1, . . . , xn+1], the dehomogenization I∗ :=
{f∗|f ∈ I} ⊆ K[x1, . . . , xn] is an ideal in K[x1, . . . , xn].

Def. 5.2.8. For an algebraic set V in A
n we define the projective closure of V as

V ∗ := Vp(I(V )∗) in P
n.

Conversely, for an algebraic set V in P
n we define the restriction to affine space of V

as V∗ := Va(I(V )∗) in A
n. •

Theorem 5.3.1. Let V, W be algebraic sets.

(1) If V ⊆ A
n then ϕn+1(V ) = V ∗ ∩ Un+1 and (V ∗)∗ = V .

(2) If V ⊆W ⊆ A
n then V ∗ ⊆W ∗ ⊆ P

n.
If V ⊆W ⊆ P

n then V∗ ⊆W∗ ⊆ A
n.

(3) If V is irreducible in A
n then V ∗ is irreducible in P

n.

(4) For V ⊆ A
n, the projective closure V ∗ is the smallest algebraic set in P

n containing
V (= ϕn+1(V )).

(5) If V ⊆ A
n and V =

⋃r
i=1 Vi is the irreducible decomposition of V , then V ∗ =

⋃r
i=1 V ∗

i is the irreducible decomposition of V ∗ in P
n.
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(6) If V ⊂ A
n, V 6= A

n, then there is no component V ∗
i of V ∗ such that V ∗

i ⊆ H∞ =
P

n \ Un+1 or H∞ ⊆ V ∗
i .

(7) If V ⊆ P
n and there is no component Vi of V such that Vi ⊆ H∞ or H∞ ⊆ Vi,

then V∗ ⊂ A
n, V∗ 6= A

n, and (V∗)
∗ = V .

Proof: (1) follows from Theorem 5.2.1.
(2) is obvious.
(3): Let I=I(V). For a form F ∈ K[x1, . . . , xn+1] we have F ∈ I∗ ⇐⇒ F∗ ∈ I. So if I
is prime, then also I∗ is prime.
(4): Let W be algebraic in P

n such that ϕn+1(V ) ⊆ W . If F ∈ I(W ) then F∗ ∈ I(V ),
so F = xr

n+1(F∗)
∗ ∈ I(V )∗. Thus, I(W ) ⊆ I(V )∗, and therefore W ⊇ V ∗.

(5): follows from (2), (3), and (4).
(6): w.l.o.g. we can assume that V is irreducible. V ∗ 6⊆ H∞ by (1). If H∞ ⊆ V ∗, then
we would have (by (4)) I(V )∗ ⊆ I(V ∗) ⊆ I(H∞) = 〈xn+1〉. But for f ∈ I(V ) \ {0} we
have f ∗ ∈ I(V )∗ and f ∗ 6∈ 〈xn+1〉. Thus, H∞ 6⊆ V ∗.
(7): Again, w.l.o.g. we can assume that V is irreducible. ϕn+1(V∗) ⊆ V . (V∗)

∗ is the
smallest variety containing V∗ (by (4)). So (V∗)

∗ ⊆ V .
Conversely, we have to show V ⊆ (V∗)

∗, or I((V∗)
∗) ⊆ I(V ). Observe that I(V∗)

∗ is
radical, so I((V∗)

∗) = I(V (I(V∗)
∗)) = I(V∗)

∗. Let f ∈ I(V∗). By the Nullstellensatz

fN ∈
√

I(V∗) = I(V (I(V (I(V )∗)))) = I(V )∗, for some N . So, by Theorem 5.2.1,

xt
n+1 · (fN)∗ ∈ I(V ) for some t. But I(V ) is prime and xn+1 6∈ I(V ) (since V 6⊆ H∞),

therefore f ∗ ∈ I(V ). •
Furthermore, one can show:

– If H∞ ⊆ V ⊆ P
n, V a variety, then V = P

n or V = H∞,

– if V = P
n, then V∗ = A

n,

– if V = H∞, then V∗ = ∅.

So there is a 1-1 correspondence between affine varieties and projective varieties not
contained in H∞.

For plane curves these observations specialize in the following way: Let C = V (f) ⊂
A

2 be an affine plane curve defined by f(x, y) = 0. The corresponding projective curve
is C∗ = V (f)∗ = V (f ∗), where

f ∗ = fd(x, y) + fd−1(x, y) · z + . . . + f0(x, y) · zd,

the homogenization of f . Every point (a, b) ∈ C corresponds to a point (a : b : 1) ∈ C∗,
and every additional point on C∗ is a point at infinity, i.e. a solution of fd(x, y) =
0, z = 0. So the curve C∗ has only finitely many points at infinity.
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