
Chapter 6

Functions and mappings on

varieties

6.1 Coordinate rings and polynomial functions

Throughout this chapter let K be a fixed algebraically closed field. We will consider
algebraic sets in An = An(K), for a fixed n. In particular, we will investigate varieties,
i.e. irreducible algebraic sets.

All the rings and fields in this section will contain K as a subring. A homomorphism
of such rings, ϕ : R −→ S, will always be a ring homomorphism which leaves K fixed,
i.e. ϕ(λ) = λ for all λ ∈ K.

Definition 6.1.1. Let V be a variety. W is a subvariety of V , iff W is a variety and
W ⊂ V . •

If V ⊆ An is a variety, then I(V ) is prime, so K[x1, . . . , xn]/I(V ) is an integral
domain.

Definition 6.1.2. Let V ⊆ An be a variety. The integral domain

Γ(V ) = K[x1, . . . , xn]/I(V )

is called the coordinate ring of V . •

For a set V 6= ∅ let J (V,K) be the set of all functions from V to K. The set
J (V,K) becomes a ring if we define

(f + g)(x) = f(x) + g(x),
(f · g)(x) = f(x) · g(x),

for all f, g ∈ J (V,K), x ∈ V . The natural homomorphism from K into J (V,K),
which maps a λ ∈ K to the constant function x 7→ λ, makes K a subring of J (V,K).
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Definition 6.1.3. Let V ⊆ An be a variety. A function ϕ ∈ J (V,K) is called a
polynomial function on V , iff there exists a polynomial f ∈ K[x1, . . . , xn] with

ϕ(a1, . . . , an) = f(a1, . . . , an)

for all (a1, . . . , an) ∈ V . In this case we say that f represents the function ϕ. •

The polynomial functions on a variety V form a subring of J (V,K) containing K
(via the natural homomorphism). Two polynomials f, g represent the same function if
and only if (f − g)(P ) = 0 for all P ∈ V , i.e. f − g ∈ I(V ). So we can identify the
polynomial functions on V with the elements of the coordinate ring Γ(V ).

Lemma 6.1.1. Let I be an ideal in the ring R, π : R −→ R/I the natural homomor-

phism.

(a) Let J ′ be an ideal of R/I. Then J = π−1(J ′) is a superideal of I in R. This

relation between ideals of R/I and superideals of I is 1-1.

(b) Let J and J ′ correspond as in (a). Then J is radical, prime, or maximal, respec-

tively, if and only if J ′ is radical, prime, or maximal, respectively.

Proof: (a) Obviously, if J ′ is an ideal in R/I, then π−1(J ′) is a superideal of I in R,
and if J is a superideal of I in R, then π(J) is an ideal in R/I.

Now let J1, J2 be two different superideals of I. W.l.o.g. let f1 ∈ J1 \ J2. If π(f1)
were in π(J2), then there would be an f2 ∈ J2 with π(f1) = π(f2). So f1 − f2 ∈ I, and
therefore f1 = (f1 − f2) + f2 ∈ J2. Thus, π(J1) 6= π(J2).

If J ′
1, J

′
2 are two different ideals in R/I, then obviously π−1(J1) 6= π−1(J2).

(b) Let J be radical. If π(a)n = π(an) ∈ J ′, then an ∈ J , so a ∈ J , and therefore
π(a) ∈ J ′. Thus, J ′ is also radical. Conversely, let J ′ = π(J) be radical in R/I. Let
fn ∈ J . Then π(fn) = π(f)n ∈ J ′. So π(f) ∈ J ′, and therefore f ∈ π−1(π(f)) ⊆ J .
Thus, J is also radical.

Let J be maximal. If J ′ were not maximal, then there would be an H ′ with
J ′ ⊂ H ′ ⊂ R/I (all inclusions proper). So we would have J ⊂ H ⊂ R (all inclusions
proper), in contradiction to the maximality of J .
The rest of the proof is left as an exercise. •

Theorem 6.1.2. Let V ⊆ An be a variety. There is a 1-1 correspondence between

algebraic subsets, subvarieties, and points, respectively, of V and radical ideals, prime

ideals, and maximal ideals, respectively, in Γ(V ).

Proof: Let the mapping

ϕ : {alg. subsets of V } −→ ideals of Γ(V )

be defined as
ϕ = ϕ2 ◦ ϕ1,
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where
ϕ1 : {alg. subs. of V } −→ ideals in K[x1, . . . , xn]

W 7→ I(W )

and

ϕ2 : K[x1, . . . , xn] −→ K[x1, . . . , xn]/I(V ) (natural homomorphism).

Let W be an algebraic subset of V . Then

W is algebraic ⇐⇒(Thm. 4.2.4)

ϕ1(W ) is radical ⇐⇒(Lemma 6.1.1)

ϕ(W ) = ϕ2(ϕ1(W )) is radical.

Furthermore,

W is a variety or a point, respectively, ⇐⇒(Thm. 4.2.5)

ϕ1(W ) is prime or maximal, respectively, ⇐⇒(Lemma 6.1.1)

ϕ(W ) = ϕ2(ϕ1(W )) is prime or maximal, respectively.

This completes the proof. •

So for the algebraic subsets of V , Γ(V ) plays the same role as the polynomial ring
K[x1, . . . , xn] plays for the algebraic sets in An.

Remark.

(1) There is an effective method for computing in Γ(V ). Let G be a Gröbner basis
for the prime ideal I(V ) Then

Γ(V ) ≃ NG = { f ∈ K[x1, . . . , xn] | f is in normal form w.r.t. G }.

So, if we have a Gröbner basis G for I(V ) w.r.t. any term ordering, then the
irreducible terms w.r.t. G are representatives of the elements of Γ(V ). Addition
in Γ(V ) = NG is simply addition of the representatives, for multiplication we
multiply the representatives and then reduce modulo the Gröbner basis G.

(2) If V is a hypersurface, then the ideal I(V ) is principal, and the defining polyno-
mial of V is a Gröbner basis for I(V ). Hence, arithmetic in the coordinate ring
Γ(V ) can be carried out by means of remainders. •

Example 6.1.1.

(a) If V = An, then I(V ) = 〈0〉 and Γ(V ) = K[x1, . . . , xn].

(b) Let V ⊆ An a variety. Then V is a point if and only if Γ(V ) = K. To see
this, let P = (a1, . . . , an) and V = {P}. Then I(V ) = 〈x1 − a1, . . . , xn − an〉, so
Γ(V ) = K[x1, . . . , xn]/I(V ) = K. Conversely, let Γ(V ) = K. The only subideals
of Γ(V ) are K and 〈0〉. So, the only algebraic subsets of V are V and ∅. Thus,
V must be a single point.
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(c) Let V be defined by x · y = 1 in A2. Then

Γ(V ) = { f(x) + g(y) | f ∈ K[x], g ∈ K[y] }. •

Theorem 6.1.3. Let V be a variety. Then Γ(V ) is a Noetherian ring.

Proof: By Lemma 6.1.1 there is a 1-1 relation between the ideals J ′ in Γ(V ) and
the superideals J of I(V ) in K[x1, . . . , xn]. The theorem follows from the fact that
K[x1, . . . , xn] is a Noetherian ring (satisfying the ascending chain condition for ideals).
•

Definition 6.1.4 Let V ⊆ An,W ⊆ Am be varieties (over the same field K). A
function ϕ : V →W is called a polynomial or regular mapping iff there are polynomials
f1, . . . , fm ∈ K[x1, . . . , xn] such that ϕ(P ) = (f1(P ), . . . , f(P )) for all P ∈ V . •

Theorem 6.1.4. Let V ⊆ An,W ⊆ Am be varieties. There is a natural 1-1 corre-

spondence between the polynomial mappings ϕ : V → W and the homomorphisms

ϕ̃ : Γ(W ) → Γ(V ).

Proof: Let ϕ : V →W be regular. With ϕ we associate the homomorphism

ϕ̃ : Γ(W ) → Γ(V )
f 7→ f ◦ ϕ .

The map ˜ : ϕ→ ϕ̃ is injective:

let ϕ = (f1, . . . , fm), ϕ′ = (f ′
1, . . . , f

′
m) be two regular mappings from V to W ,

where fi, f
′
i ∈ K[x1, . . . , xn] for 1 ≤ i ≤ m. ϕ̃ = ϕ̃′ means that ϕ̃(f) = ϕ̃′(f) for

all f ∈ Γ(W ) (as functions on V ). So, in particular,

f1 = x1 ◦ ϕ = ϕ̃(x1) = ϕ̃′(x1) = x1 ◦ ϕ
′ = f ′

1

as functions on V . Thus, as functions on V , fi = f ′
i for 1 ≤ i ≤ m, i.e. ϕ = ϕ′.

The map ˜ : ϕ→ ϕ̃ is surjective, i.e. every λ ∈ Hom(Γ(W ),Γ(V )) is reached by :̃

let λ : Γ(W ) → Γ(V ) be an arbitrary element of Hom(Γ(W ),Γ(V )), and fi ∈
K[x1, . . . , xn] such that λ(xi) ≡I(V ) fi, for 1 ≤ i ≤ m. We define

µ : A
n → A

m

(a1, . . . , an) 7→ (f1(a1, . . . , an), . . . , fm(a1, . . . , an)).

For g ∈ I(W ) we have (as functions on V ):

g(f1, . . . , fm) ≡I(V ) g(λ(x1), . . . , λ(xm)) = λ(g) ≡I(V ) 0.
↑ ↑

λ homom. g ∈ I(W )
g polynomial

76



Therefore, for P = (a1, . . . , an) ∈ V :

g(µ(P )) = g(f1(P ), . . . , fm(P )) = 0.

So, every element g ∈ I(W ) vanishes on µ(P ), i.e. µ(P ) ∈ W . Thus, µ|V , the
restriction of µ on V , is a regular mapping from V to W .
λ and µ̃ agree on x1, . . . , xm, and therefore on arbitrary functions in Γ(W ). •

Definition 6.1.5. A regular mapping ϕ : V →W is a regular isomorphism iff there is
a regular mapping ψ : W → V , such that

ϕ ◦ ψ = idW and ψ ◦ ϕ = idV .

In this case the varieties V and W are regularly isomorphic (it via ϕ, ψ). •

Theorem 6.1.5. V and W are regularly isomorphic via ϕ if and only if ϕ̃ : Γ(W ) →
Γ(V ) is an isomorphism of K–algebras.

Proof: By Theorem 6.1.4 ϕ̃ is a homomorphism. Let ψ : W → V be such that ϕ◦ψ =
idW , ψ ◦ ϕ = idV . ψ̃ is a homomorphism from Γ(V ) to Γ(W ). ϕ̃ ◦ ψ̃ : Γ(V ) → Γ(V ) is
the identity on Γ(V ), since

ϕ̃ ◦ ψ̃(f) = ϕ̃(f ◦ ψ) = f ◦ ψ ◦ ϕ = f.

Analogously we get that ψ̃ ◦ ϕ̃ = idΓ(W ). Thus, ϕ̃ is an isomorphism.
Conversely, if λ is an isomorphism from Γ(W ) to Γ(V ), then the corresponding ϕ

is an isomorphism from V to W . •

Example 6.1.2.

(a) Let the (generalized) parabola V ⊂ A
2(C) be defined by y = xk. V and A

1(C)
are isomorphic via

ϕ : V → A
1 , ψ : A

1 → V
(x, y) 7→ x t 7→ (t, tk) .

(b) The projection ϕ(x, y) = x of the hyperbola xy = 1 to the x–axis (A1) is not an
isomorphism. There is no point (x, y) on the hyperbola such that ϕ(x, y) = 0.

(c) Let V ⊂ A2(C) be defined by y2 = x3.
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Then Γ(V ) ∼= {p(x) + q(x)y|p, q ∈ C[x]}.
The mapping ϕ : t 7→ (t2, t3) from A1 to V is 1-1, but not an isomorphism.
Otherwise we would have that ϕ̃ : Γ(V ) → Γ(A1) = C[t] is an isomorphism. But
for arbitrary p, q ∈ C[x] we have ϕ̃(p(x) + q(x)y) = p(t2) + q(t2)t3 6= t. •

Theorem 6.1.6. Let V ⊆ An,W ⊆ Am be varieties. Let ϕ : V → W be a regular

mapping, X an algebraic subset of W , ϕ surjective on X.

(a) ϕ−1(X) is an algebraic subset of V .

(b) If ϕ−1(X) is irreducible, then also X is irreducible.

Proof: Let ϕ = (ϕ1, . . . , ϕm), f1 = . . . = fr = 0 be the defining equations for X,
gi = fi(ϕ1, . . . , ϕm) ∈ K[x1, . . . , xn] for 1 ≤ i ≤ r. Let P = (a1, . . . , an) be an arbitrary
point in V . Then

P ∈ ϕ−1(X) ⇐⇒ ϕ(P ) ∈ X ⇐⇒ g1(P ) = · · · = gr(P ) = 0.

(b) If X = X1 ∪X2, then ϕ−1(X) = ϕ−1(X1) ∪ ϕ
−1(X2). Suppose X1 6⊂ X2. Because

of surjectivity, ϕ−1(P ) 6= ∅. Therefore, ∅ 6= ϕ−1(P ) ⊆ ϕ−1(X1) 6⊂ ϕ−1(X2) and thus
ϕ−1(X1) 6⊂ ϕ−1(X2). So if X is reducible, then so is ϕ−1(X). •

Example 6.1.3. We show that V = V (y − x2, z − x3) ⊂ A
3 is a variety. The regular

mapping
ϕ : A1 → V

t 7→ (t, t2, t3)

is surjective and A1 is irreducible. So by Theorem 6.1.6 also V is irreducible. •

There are some kinds of very frequently used and important regular mappings. One
such kind of mappings are the projections

πr : An → Ar

(a1, . . . , an) 7→ (a1, . . . , ar),

for n ≥ r.
Let V ⊆ An be a variety, f ∈ Γ(V ). Let

G(f) = {(a1, . . . , an+1) | (a1, . . . , an) ∈ V, an+1 = f(a1, . . . , an)} ⊆ A
n+1

be the graph of f . G(f) is an affine variety, and

ϕ : V → G(f)
(a1, . . . , an) 7→ (a1, . . . , an, f(a1, . . . , an))

is an isomorphism between V and G(f). The projection from A
n+1 to A

n is the inverse
of ϕ.
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Another important kind of regular mappings are changes of coordinates.

Definition 6.1.6. (Compare Def. 5.2.6) An affine change of coordinates in An is a
bijective linear polynomial mapping, i.e. a bijective mapping of the form

T : An → An

(a1, . . . , an) 7→ (T1(a1, . . . , an), . . . , Tn(a1, . . . , an)),

where deg(Ti) = 1 for 1 ≤ i ≤ n.
If V = V (f1, . . . , fm) is an algebraic set in An, then by V T we denote the image of

V under T , i.e.
V T = V (fT

1 , . . . , f
T
m),

where fT (x1, . . . , xn) = f(T1(x1, . . . , xn), . . . , Tn(x1, . . . , xn)), for any polynomial f .
Affine geometry is the geometry of properties which are invariant under affine

changes of coordinates. •

Using column notation for the coordinates of points, every linear polynomial map-
ping from An into itself can be written as

T (x) = A · x+ b

for some matrix A and vector b. T is an affine change of coordinates, if and only if A
is an invertible matrix.
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6.2 Rational functions and local rings

The coordinate ring Γ(V ) of a variety V ⊆ An is an integral domain. So it can be
embedded into its quotient field.

Definition 6.2.1. The field of rational functions K(V ) of a variety V ⊆ An(K) is the
quotient field of Γ(V ). So

K(V ) ≃ {
f

g
| f, g ∈ K[x1, . . . , xn], g 6∈ I(V )}/ ∼ ,

where f

g
∼ f ′

g′
⇐⇒ fg′ − f ′g ∈ I(V ). •

Definition 6.2.2. A rational function ϕ ∈ K(V ) is defined or regular at P ∈ V iff ϕ
can be written as ϕ = f/g with g(P ) 6= 0. In this case f(P )/g(P ) is the value of ϕ at
P . The set of points in V at which a rational function ϕ is defined is called the domain

of definition of ϕ. A point P ∈ V at which the function ϕ is not defined is a pole of ϕ.
For P ∈ V the local ring of V at P is defined as OP (V ) = {ϕ ∈ K(V ) | ϕ regular at P}.
•

The notion of value of a rational function at a point on a variety is well defined.
The local ring OP (V ) is indeed a local ring in the sense of having a unique maximal
ideal. This maximal ideal is the subset of OP (V ) containing those rational functions
which vanish on P . One easily verifies that OP (V ) is a subring of K(V ) containing
Γ(V ). So we have the following increasing chain of rings:

K ⊆ Γ(V ) ⊆ OP (V ) ⊆ K(V ).

Example 6.2.1. Let V be the unit circle in A2(C) defined by x2 + y2 = 1.

The rational function

ϕ(x, y) =
1 − y

x
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is obviously regular in all points of V except (0,±1). But ϕ is also regular in (0, 1),
which can be seen by the following transformation

1 − y

x
=
x(1 − y)

x2
=
x(1 − y)

1 − y2
=

x

1 + y
. •

Theorem 6.2.1. The set of poles of a rational function ϕ on a variety V ⊆ An is an

algebraic set.

Proof: Consider Jϕ = {g ∈ K[x1, . . . , xn] | gϕ ∈ Γ(V )}. Jϕ is an ideal in K[x1, . . . , xn]
containing I(V ). The points of V (Jϕ) are exactly the poles of ϕ: if P ∈ V (Jϕ), then
for every representation ϕ = f/g we have g ∈ Jϕ, so g(P ) = 0, and therefore P is a
pole. On the other hand, if P 6∈ V (Jϕ), then for some g ∈ Jϕ we have g(P ) 6= 0. So
there is an r ∈ Γ(V ) such that ϕ = r/g and g(P ) 6= 0, i.e. P is not a pole. •

Theorem 6.2.2. A rational function ϕ ∈ K(V ), which is regular on every point of

the variety V , is a regular function on V . So

Γ(V ) =
⋂

P∈V

OP (V ).

Proof: If ϕ is regular on every point of V , then V (Jϕ) = ∅ (proof of Theorem 6.2.1).
So, by Hilbert’s Nullstellensatz we have 1 ∈ Jϕ, i.e. 1 · ϕ = ϕ ∈ Γ(V ). •

Example 6.2.1. continued: ϕ = (1− y)/x cannot be regular on the whole variety V ,
because otherwise, by Theorem 6.2.2, there should be a polynomial p(x, y) ∈ C[x, y]
such that

ϕ(x, y) =
1 − y

x
= p(x, y).

This would mean 1 − y − x · p(x, y) ∈ I(V ) = 〈x2 + y2 − 1〉, or, equivalently, 1 − y ∈
〈x2 + y2 − 1, x〉 = 〈y2 − 1, x〉. This, however, is impossible, as can be seen from the
theory of Gröbner bases. •

As we have extended the notion of a regular function to that of a regular mapping,
we will now extend the notion of a rational function on a variety to that of a rational
mapping on the variety.

Definition 6.2.3. Let V ⊆ An,W ⊆ Am be varieties (over the algebraically closed field
K). An m-tuple ϕ of rational functions ϕ1, . . . , ϕm ∈ K(V ), with the property that for
an arbitrary point P ∈ V , at which all the ϕi are regular, we have (ϕ1(P ), . . . , ϕm(P )) ∈
W , is called a rational mapping from V to W , ϕ : V → W . ϕ is regular at P ∈ V iff
all the ϕi are regular at P . •

So, a rational mapping is not a mapping of the whole variety V into W , but of a
certain non-empty open (in the Zariski topology) subset U ⊆ V into W .
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Example 6.2.2. Let C be the curve in A2(C) defined by f(x, y) = y2 − x3 − x2 = 0.

The tuple of rational (in fact polynomial) functions

ϕ1(t) = t2 − 1, ϕ2(t) = t(t2 − 1)

determines a rational mapping ϕ from A
1 to C. This rational mapping has a rational

inverse, i.e. a rational mapping from C to A1:

χ(x, y) = y/x .

We check that χ really is the inverse of ϕ:

χ(ϕ1(t), ϕ2(t)) = t(t2−1)
t2−1

= t,

ϕ1(χ(x, y)) = y2

x2 − 1 = y2−x2

x2 = x3

x2 = x,

ϕ2(χ(x, y)) = y

x
·
(

y2

x2 − 1
)

= y(y2−x2)
x3 = y.

So, up to finitely many exceptions, the points in A1 and C correspond uniquely to each
other. Later (see Chapter 8) we will call (ϕ1(t), ϕ2(t)) a rational parametrization of
the curve C. •

Definition 6.2.4. Let the rational mapping ϕ : V → W have a rational inverse,
i.e. a rational mapping ψ : W → V such that ψ ◦ ϕ = idV , ϕ ◦ ψ = idW (wherever
the composition of these mappings is defined), and ϕ(V ), ψ(W ) are dense in W,V ,
respectively. In this case ϕ is called a birational isomorphism from V to W (and ψ a
birational isomorphism from W to V ), and that V and W are birationally isomorphic

or birationally equivalent. •

Definition 6.2.5. We say that a variety is rational if it is birationally isomorphic to
an affine space A

m. A variety W is called unirational if, for some A
m, there exists a

rational mapping ϕ : Am →W , such that ϕ(Am) ⊂W is dense. •

In the previous example we have seen that the curve defined by y2 − x3 − x2

is birationally isomorphic to the affine line, so it is a rational curve. In Chapter 8
rational plane curves over algebraically closed fields of characteristic zero are analyzed

82



in detail. In fact, the notions of rationality and unirationality for plane curves are
equivalent. This is a consequence of Lüroth’s Theorem. Furthermore, for surfaces
over an algebraically closed field the two concepts are also the same (Castelnuovo’s
theorem). However, in general the equivalence is not true. For further details see
[Sch72].

Isomorphism of varieties is reflected in the function fields of these varieties.

Theorem 6.2.3. The varieties V and W are birationally isomorphic if and only if the

corresponding function fields K(V ) and K(W ) are isomorphic. •

Proof: Let V ⊆ An(K) and W ⊆ Am(K).
Let ϕ : V → W be a birational isomorphism from V to W and let ψ : W → V be

its inverse. Consider the following homomorphisms between the function fields:

ϕ̃ : K(W ) → K(V ) ψ̃ : K(V ) → K(W )
r 7→ r ◦ ϕ s 7→ s ◦ ψ

(Actually by r ◦ ϕ we mean the rational function on K(V ) whose restriction to the
dense subset ϕ(W ) of W is r ◦ ϕ, and analogously for s ◦ ψ.) These homomorphisms
ϕ̃ and ψ̃ are inverses of each other, so we have an isomorphism of the function fields.

On the other hand, let α be an isomorphism from K(V ) to K(W ), and β its inverse,
i.e.

α : K(V ) → K(W ), β : K(W ) → K(V ).

Let x1, . . . , xn and y1, . . . , ym be the coordinate functions of V and W , respectively.
Then

β̃ = (β(y1)(x1, . . . , xn), . . . , β(ym)(x1, . . . , xn))

is a birational isomorphism from V to W and

α̃ = (α(x1)(y1, . . . , ym), . . . , α(xn)(y1, . . . , ym))

is its inverse from W to V . •
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