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What is a rational algebraic curve ?

Some plane algebraic curves can be expressed by means of

rational parametrizations, i.e. pairs of univariate rational

functions.
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For instance, the tacnode curve defined in A2(C) by the

polynomial equation

f(x, y) = 2x4 − 3x2y + y2 − 2y3 + y4 = 0

can be represented, for instance, as

{(

t3 − 6t2 + 9t − 2

2t4 − 16t3 + 40t2 − 32t + 9
,

t2 − 4t + 4

2t4 − 16t3 + 40t2 − 32t + 9

)
∣

∣

∣

∣

t ∈ C

}
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Figure 1: Tacnode curve
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However, not all plane algebraic curves can be rationally

parametrized, for instance the curve defined by

x3 + y3 = 1
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Definition 1.1: The affine curve C in A2(K) defined by the

square–free polynomial f(x, y) is rational (or parametrizable)

if there are rational functions χ1(t), χ2(t) ∈ K(t) such that

(1) for almost all t0 ∈ K (i.e. for all but a finite number of

exceptions) the point (χ1(t0), χ2(t0)) is on C, and

(2) for almost every point (x0, y0) ∈ C there is a t0 ∈ K

such that (x0, y0) = (χ1(t0), χ2(t0)).

In this case (χ1(t), χ2(t)) is called an affine rational

parametrization of C.

We say that (χ1(t), χ2(t)) is in reduced form if the rational

functions χ1(t), χ2(t) are in reduced form; i.e. if for i = 1, 2

the gcd of the numerator and the denominator of χi is

trivial.
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Definition 1.2: The projective curve C in P2(K) defined

by the square–free homogeneous polynomial F (x, y, z) is

rational (or parametrizable) if there are polynomials

χ1(t), χ2(t), χ3(t) ∈ K[t], gcd(χ1, χ2, χ3) = 1, such that

(1) for almost all t0 ∈ K the point (χ1(t0) : χ2(t0) : χ3(t0))

is on C, and

(2) for almost every point (x0 : y0 : z0) ∈ C there is a

t0 ∈ K such that (x0 : y0 : z0) = (χ1(t0) : χ2(t0) : χ3(t0)).

In this case, (χ1(t), χ2(t), χ3(t)) is called a projective rational

parametrization of C.
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Some basic facts

Fact 1: The notion of rational parametrization can be

stated by means of rational maps. More precisely, let C be

a rational affine curve and P(t) ∈ K(t)2 a rational

parametrization of C. The parametrization P(t) induces

the rational map

P : A
1(K) −→ C
t 7−→ P(t),

and P(A1(K)) is a dense (in the Zariski topology) subset of

C. Sometimes, by abuse of notation, we also call this

rational map a rational parametrization of C.
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Fact 2: Every rational parametrization P(t) defines a

monomorphism from the field of rational functions K(C) to

K(t) as follows:

ϕ : K(C) −→ K(t)

R(x, y) 7−→ R(P(t)).

Fact 3: Every rational curve is irreducible.
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Fact 4: Let C be an irreducible affine curve and C∗ its

corresponding projective curve. Then C is rational if and

only if C∗ is rational. Furthermore, a parametrization of C
can be computed from a parametrization of C∗ and vice

versa.

Fact 5: Let C be an affine rational curve over K, f(x, y)

its the defining polynomial, and

P(t) = (χ1(t), χ2(t))

a rational parametrization of C. Then, there exists r ∈ N

such that

rest(H
P
1 (t, x), HP

2 (t, y)) = (f(x, y))r.
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Fact 6: An irreducible curve C, defined by f(x, y), is

rational if and only if there exist rational functions

χ1(t), χ2(t) ∈ K(t), not both constant, such that

f(χ1(t), χ2(t)) = 0. In this case, (χ1(t), χ2(t)) is a rational

parametrization of C.

Fact 7: An irreducible affine curve C is rational if and only

if the field of rational functions on C, i.e. K(C), is

isomorphic to K(t) (t a transcendental element).

Fact 8: An affine algebraic curve C is rational if and only

if it is birationally equivalent to K (i.e. the affine line

A1(K)).

Fact 9: If an algebraic curve C is rational then

genus(C) = 0.
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Proper parametrizations

Definition 2: An affine parametrization P(t) of a rational

curve C is proper if the map

P : A1(K) −→ C
t 7−→ P(t)

is birational, or equivalently, if almost every point on C is

generated by exactly one value of the parameter t.

We define the inversion of a proper parametrization P(t) as

the inverse rational mapping of P , and we denote it by

P−1.

12



Lüroth’s Theorem: Let L be a field (not necessarily

algebraically closed), t a transcendental element over L. If

K is a subfield of L(t) strictly containing L, then K is

L-isomorphic to L(t).

Theorem: Every rational curve can be properly

parametrized.
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Theorem: Let C be an affine rational curve defined over

K with defining polynomial f(x, y) ∈ K[x, y], and let

P(t) = (χ1(t), χ2(t)) be a parametrization of C. Then, the

following statements are equivalent:

(1) P(t) is proper.

(2) The monomorphism ϕP induced by P is an

isomorphism.

ϕP : K(C) −→ K(t)

R(x, y) 7−→ R(P(t)).

(3) K(P(t)) = K(t).

(4) deg(P(t)) = max{degx(f), degy(f)}.

Furthermore, if P(t) is proper and χ1(t) is non-zero, then

deg(χ1(t))=degy(f); similarly, if χ2(t) is non-zero then

deg(χ2(t))=degx(f).
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Example: We consider the rational quintic C defined by the

polynomial f(x, y) = y5 + x2y3 − 3 x2y2 + 3 x2y − x2. By the

previous theorem, any proper rational parametrization of C
must have a first component of degree 5, and a second

component of degree 2. It is easy to check that

P(t) =

(

t5

t2 + 1
,

t2

t2 + 1

)

properly parametrizes C. Note that f(P(t)) = 0.
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Parametrization algorithm

Theorem (parametrization of conics) The irreducible

projective conic C defined by the polynomial

F (x, y, z) = f2(x, y) + f1(x, y)z

(fi a form of degree i, resp.), has the rational projective

parametrization

P(t) = (−f1(1, t),−tf1(1, t), f2(1, t)).

Corollary: Every irreducible conic is rational.
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Example: Let C be the affine ellipse defined by

f(x, y) = x2 + 2x + 2y2 = 0 .

So, a parametrization of C is

P(t) = (−1 + 2 t2,−2 t, 1 + 2 t2).
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This approach can be immediately generalized to the situation

where we have an irreducible projective curve C of degree d

with a (d − 1)–fold point P . W.l.o.g. we assume that

P = (0 : 0 : 1). So the defining polynomial of C is of the form

F (x, y, z) = fd(x, y) + fd−1(x, y)z ,

where fi is a form of degree i, respectively. Of course, there can

be no other singularity of C, since otherwise the line passing

through the two singularities would intersect C more than d

times.
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Theorem (curves with point of high multiplicity) Let C be an

irreducible projective curve of degree d defined by the

polynomial F (x, y, z) = fd(x, y) + fd−1(x, y)z (fi a form of

degree i, resp.), i.e. having a (d− 1)–fold point at (0 : 0 : 1).

Then C is rational and a rational parametrization is

P(t) = (−fd−1(1, t),−tfd−1(1, t), fd(1, t)).

Corollary. Every irreducible curve of degree d with a

(d − 1)-fold point is rational.
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Example: Let C be the affine quartic curve defined by (see

Figure 2)

f(x, y) = 1 + x − 15 x2 − 29 y2 + 30 y3 − 25 xy2 + x3y

+35 xy + x4 − 6 y4 + 6 x2y

–4
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4
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Figure 2: Quartic C

C has an affine triple point at (1, 1). By moving this point to

the origin, applying the theorem, and inverting the

transformation, we get the rational parametrization of C

P(t) =

(

4 + 6 t3 − 25 t2 + 8 t + 6 t4

−1 + 6 t4 − t
,
4 t + 12 t4 − 25 t3 + 9 t2 − 1

−1 + 6 t4 − t

)

.
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Now let C will be an irreducible projective curve of degree

d > 2 and genus 0.

Definition: A linear system of curves H parametrizes C iff

(1) dim(H) = 1,

(2) the intersection of a generic element in H and C contains a

non–constant point whose coordinates depend rationally on

the free parameter in H,

(3) C is not a component of any curve in H.

In this case we say that C is parametrizable by H.
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Theorem: Let F (x, y, z) be the defining polynomial of C,

and let H(t, x, y, z) be the defining polynomial of a linear

system H(t) parametrizing C. Then, the proper

parametrization P(t) generated by H(t) is the solution in

P2(K(t)) of the system of algebraic equations

ppt(resy(F, H)) = 0

ppt(resx(F, H)) = 0

}

.

Theorem: Let C be a projective curve of degree d and

genus 0, let k ∈ {d − 1, d − 2}, and let Sk ⊂ C \ Sing(C) be

such that card(Sk) = kd − (d − 1)(d − 2) − 1. Then

Ak(C) ∩H(k,
∑

P∈Sk

P )

parametrizes C.
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Example: Let C be the quartic over C (see Figure 3) of

equation

F (x, y, z) = −2xy2z−48x2z2+4xyz2−2x3z+x3y−6y4+48y2z2+6x4.

The singular locus of C is
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Figure 3: C⋆,z

Sing(C) = {(0 : 0 : 1), (2 : 2 : 1), (−2 : 2 : 1)},

all three points being double points. Therefore, genus(C) = 0,

and hence C is rational.
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We proceed to parametrize the curve. The defining polynomial

of A2(C) (adjoint curves of degree 2) is

H(x, y, z) = (−2 a02 − 2 a20) yz+a02y
2−2 a11xz+a1,1xy+a20x

2.

We choose a set S ⊂ (C \ Sing(C)) with 1 point, namely

S = {(3 : 0 : 1)}. We compute the defining polynomial of

H := A2(C) ∩H(2, Q), where Q = (3 : 0 : 1). This leads to

H(x, y, z) = (−2 a02 − 2 a20) yz+a02y
2−3 a20xz+

3

2
a20xy+a20x

2.

Setting a02 = 1, a20 = t, we get the defining polynomial

H(t, x, y, z) = (−2 − 2 t) yz + y2 − 3 txz +
3

2
txy + tx2

of the parametrizing system. Finally, the solution of the system

defined by the resultants provides the following affine

parametrization of C

P(t) =
(

12 9 t4+t3−51 t2+t+8
126 t4−297 t3+72 t2+8 t−36

,

−2 t(162 t3−459 t2+145 t+136)
126 t4−297 t3+72 t2+8 t−36

)

.
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Further important topics:

• optimal field of parametrization, finding rational points on

conics

• making a non-proper parametrization proper (proper

reparametrization)

• making a parametrization polynomial

• making a parametrization normal
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Application: Solving Diophantine Equations

Curve parametrizations can be used to solve certain types of

Diophantine equations. For further details on this application

we refer to (Poulakis,Voskos, JSC, 2000 & 2002).

We consider a polynomial f(x, y) ∈ Z[x, y] and the curve C
defined by f . If C cannot be parametrized over Q, then the only

integer solutions are the integer singular points of the curve.

Otherwise, we compute a rational proper parametrization of C
over Q in reduced form,

P(t) =

(

u(t)

w1(t)
,

v(t)

w2(t)

)

∈ Q(t).

We homogenize the rational functions of the parametrization,

say

P∗(t, s) =

(

U(t, s)

W1(t, s)
,

V (t, s)

W2(t, s)

)

.
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Now, because of our assumptions, either W1(t, s) or W2(t, s)

have at least three different factors. Let us assume w.l.o.g. that

W1 satisfies this property. Then, we compute the resultant

R1 = rest(U(t, 1), W1(t, 1)), and the greatest common divisor,

δ1, of the cofactors of the first column of the Sylvester matrix of

U(t, 1), W1(t, 1). A similar strategy is applied to

U(1, s), W1(1, s) to get R2 and δ2. Next we determine the

integer solutions (t, s) with gcd(t, s) = 1 and t ≥ 0, of the

Thue equations

W1(t, s) = k,

where k ∈ Z divides lcm(R1/δ1, R2/δ2). Let us say that S is

the set of integer solutions of these Thue equations.

Then, the integer singular points of C and the points in

{P∗(t, s) | (t, s) ∈ S} ∩ Z2 are all the integer solutions of the

equation f(x, y) = 0.
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Specific example:

Let n be a positive integer, and let Cn be the curve defined by

fn(x, y) = x3 − (n − 1)x2y − (n + 2)xy2 − y3 − 2ny(x + y).

All these curves Cn are irreducible cubics with a double point at

the origin and can be parametrized:

Parametrization of Cn:

Pn(t) =
(

2nt2+2nt
t3−(n−1)t2−(n+2)t−1

, 2nt+2n
t3−(n−1)t2−(n+2)t−1

)

.

Now, we consider

U(n, t, s) = 2nt2s + 2nts2, V (n, t, s) = 2nts2 + 2ns3,

W (n, t, s) = t3 − (n − 1)t2s − (n + 2)ts2 − s3.

Note that in this example, W1 = W2 = W (n, t, s). Therefore,

P∗
n(t, s) =

(

2nt2s+2nts2

t3−(n−1)t2s−(n+2)ts2−s3 ,
2nts2+2ns3

t3−(n−1)t2s−(n+2)ts2−s3

)

.

We get:

R1 = 8n3, δ1 = 4n2, R1/δ1 = −2n

R2/δ2 = −2n

lcm(R1/δ1, R2/δ2) = 2n

S = {(1, 0), (0, 1), (1,−1), (1, 1), (1,−2), (2,−1),

(1,−n − 1), (n, 1), (n + 1,−n)}.

So
{P∗

n(t, s) | (t, s) ∈ S} ∩ Z2 =

{(0, 0) = P∗
n(1, 0), (0,−2n) = P∗

n(0, 1)}.

Since the only singularity of Cn is (0, 0), we deduce that the

integer solutions to fn(x, y) = 0 are (0, 0) and (0,−2n).
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Application: General Solutions of First Order

ODEs

This is described in (Feng,Gao, Proc. ISSAC 2004).

Let F (y, y′) be a first order irreducible differential polynomial

with coefficients in Q. If

y =
anx

n + · · · + a0

xm + bm−1xm−1 + · · · + b0

,

is a nontrivial solution of F (y, y′) = 0, where ai, bj ∈ Q, and

an 6= 0, then (for an arbitrary constant c)

ŷ =
an(x + c)n + · · · + a0

(x + c)m + bm−1(x + c)m−1 + · · · + b0

,

is a general solution of F (y, y′) = 0. Therefore, the problem of

finding a rational general solution is reduced to the problem of

finding a nontrivial rational solution.
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The polynomial F (y, y1) ∈ Q[y, y1] defines an algebraic plane

curve C. Now, if y = r(x) ∈ Q(t) is a nontrivial rational

solution of F (y, y′) = 0, then

P(x) = (r(x), r′(x)) ∈ Q(x)2

can be regarded as a rational parametrization of C. In fact,

P(x) is a proper parametrization of C. Feng,Gao show that

given a proper rational parametrization

P(x) = (r(x), s(x)) ∈ Q(x)2 of C, the differential equation

F (y, y′) has a rational solution if and only if one of the

following relations

ar′(x) = s(x) or a(x − b)2r′(x) = s(x), (∗)

is satisfied, where a, b ∈ Q, and a 6= 0. Moreover, if one of the

above relations holds, replacing

x by a(x + c) or by (ab(x + c) − 1)/(a(x + c)),

respectively, in y(x) = r(x), one obtains a rational general

solution of F (y, y′) = 0, where c is an arbitrary constant.
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Specific example:

We consider the differential equation

F (y, y′) = 229 − 144y + 16y(y′)2 + 16y4 − 128y2 + 4y(y′)3

+4y3 − 4y3(y′)2

−y2(y′)2 + 6(y′)2 + (y′)3 + (y′)4 = 0.

The curve C associated to the differential equation is defined by

F (y, y1) = 229 − 144y + 16yy2
1 + 16y4 − 128y2 + 4yy3

1 + 4y3

−4y3y2
1 − y2y2

1 + 6y2
1 + y3

1 + y4
1.

C is rational and a parametrization is

(r(x), s(x)) =

(

x3 + x4 + 1

x2
,
x3 + 2x4 − 2

x

)

.

Now, we see that
s

r′
= x2.

Therefore, the second condition in (∗) is satisfied with

a = 1, b = 0. Substituting

ab(x + c) − 1

a(x + c)
=

−1

x + c
,

in r(x) we get the following rational general solution of the

differential equation:

ŷ =
−x − c + 1 + x4 + 4x3c + 6x2c2 + 4xc3 + c4

(x + c)2
.
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Applications in CAGD

Computer aided geometric design (cagd) is a natural

environment for practical applications of algebraic curves and

surfaces, and in particular of rational curves and rational

surfaces. The widely used Bézier curves and surfaces are typical

examples of rational curves and surfaces. Offsetting and

blending of such geometrical objects lead to interesting

problems.

32



The notion of an offset is directly related to the concept of an

envelope. More precisely, the offset curve, at distance d, to an

irreducible plane curve C is “essentially” the envelope of the

system of circles centered at the points of C with fixed radius d

(see Figure 4). Offsets arise in practical applications such as

Figure 4: Generation of the offsets to the parabola

tolerance analysis, geometric control, robot path-planning and

numerical-control machining problems.
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In general the rationality of the original curve is not preserved

in the transition to the offset. For instance, while the parabola,

the ellipse, and the hyperbola are rational curves (compare

Figure 5), the offset of a parabola is rational but the offset of

an ellipse or a hyperbola is not rational.

Figure 5: Offsets to the parabola (left), to the hyperbola (center), to the ellipse (right)
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Let C be the original rational curve and let

P(t) = (P1(t), P2(t))

be a proper rational parametrization of C.

We determine the normal vector associated to the

parametrization P(t), namely

N (t) := (−P
′

2(t), P
′

1(t)).

Note that the offset at distance d basically consist of the points

of the form

P(t) ±
d

√

P
′

1(t)
2 + P

′

2(t)
2

N (t).
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Now we check whether this parametrization satisfies the

“rational Pythagorean hodograph condition”, i.e. whether

P
′

1(t)
2 + P

′

2(t)
2,

written in reduced form, is the square of a rational function in

t. If the condition holds, then the offset to C has two

components, and both components are rational. In fact, these

two components are parametrized as

P(t) +
d

m(t)
N (t), and P(t) −

d

m(t)
N (t),

where P
′

1(t)
2 + P

′

2(t)
2 = a(t)2/b(t)2 and m(t) = a(t)/b(t).

If the rational Pythagorean hodograph condition does not hold,

then the offset is irreducible and we may determine its

rationality.
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Specific example:

We consider as initial curve the parabola of equation y = x2,

and its proper parametrization

P(t) = (t, t2).

The normal vector associated to P(t) is N (t) = (−2t, 1). Now,

we check the rational Pythagorean hodograph condition

P
′

1(t)
2 + P

′

2(t)
2 = 4t2 + 1,

and we observe that 4t2 + 1 is not the square of a rational

function. Therefore, the offset to the parabola is irreducible.

In fact, the offset to the parabola, at a generic distance d, can

be parametrized as
(

(t2 + 1 − 4dt)(t2 − 1)

4t (t2 + 1)
,
t6 − t4 − t2 + 1 + 32dt3

16t2 (t2 + 1)

)

.

The implicit equation of the offset to the parabola is

−y2+32x2d2y2−8x2yd2+d2+20x2d2−32x2y2+8d2y2+2yx2−
8yd2 + 48x4d2 − 16x4y2 − 48x2d4 + 40x4y + 32x2y3 − 16d4y2 −
32d4y + 32d2y3 − x4 + 8d4 + 8y3 − 16x6 + 16d6 − 16y4 = 0.
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