Commutative Algebra \& Algebraic Geometry
 SS 2010

(33) Determine the intersection multiplicity of the curves defined by f_{1} and f_{2} in Example 7.1.3 in the lecture notes.
(34) Consider the linear system \mathcal{S}_{3} of curves of degree 3.
(a) Is it possible to determine, for any given 3 points P_{1}, P_{2}, P_{3} in $\mathbb{P}^{2}(\mathbb{C})$, to find an element $\mathcal{C} \in \mathcal{S}_{3}$ having all these points as double points? If so, then determine such a curve for the points $(0: 0: 1),(0: 1: 1),(1: 0: 1)$.
(b) Is it possible to determine, for any given 4 points $P_{1}, P_{2}, P_{3}, P_{4}$ in $\mathbb{P}^{2}(\mathbb{C})$, to find an element $\mathcal{C} \in \mathcal{S}_{3}$ having all these points as double points? If so, then determine such a curve for the points $(0: 0: 1),(0: 1: 1),(1: 0: 1),(1: 1: 1)$.
(35) Consider the linear system of quartic curves

$$
\mathcal{S}=\{\mathcal{C} \text { defined by } h \mid a, b, c, d, e \in \mathbb{C}\},
$$

where

$$
h(x, y, z)=a x^{4}+b x^{3} y+c x^{2} y z+d x z^{3}+e y^{2} z^{2}-(a+b+c+d+e) z^{4} .
$$

Which base points (with which muliplicities) does \mathcal{S} have?
(36) Determine the genus (or, if there are non-ordinary singularities, give a genus bound) for the curves in Example 7.1.3 in the lecture notes.

