Commutative Algebra \& Algebraic Geometry SS 2010

(4) Determine a rational parametrization of the circle

$$
x^{2}+y^{2}=1
$$

(5) Decide whether the following algebraic curve \mathcal{C}_{5} defined by

$$
f_{5}(x, y)=y^{2}-x^{3}+x^{2}+x-1=0
$$

is rational (parametrizable), and if so, compute a rational parametrization:
(6) Decide whether the following algebraic curve \mathcal{C}_{6} defined by

$$
f_{6}(x, y)=y^{2}-x^{3}+x=0
$$

is rational (parametrizable), and if so, compute a rational parametrization:
(7) Consider the algebraic curve \mathcal{C}_{7} having the rational parametrization

$$
P(t)=\left(\frac{t^{5}+1}{t^{2}+3}, \frac{t^{3}+t+1}{t^{2}+1}\right) .
$$

Compute the implicit defining polynomial $f_{7}(x, y)$ of \mathcal{C}_{7}.

