Commutative Algebra \& Algebraic Geometry SS 2010

(8) This exercise is used in the proof of Theorem 2.2.8 about the determination of the radical of a 0-dimensional ideal. It appears originally as Exercise 9 in [CLO98], p.43. Suppose we have an ideal $I \subset K\left[x_{1}, \ldots, x_{n}\right]$, and let $p=\left(x_{1}-a_{1}\right) \cdots\left(x_{1}-a_{d}\right)$, where a_{1}, \ldots, a_{d} are distinct. The goal of this exercise is to prove that

$$
I+\langle p\rangle=\bigcap_{j=1}^{d}\left(I+\left\langle x_{1}-a_{j}\right\rangle\right)
$$

(a) Prove that $I+\langle p\rangle \subset \bigcap_{j}\left(I+\left\langle x_{1}-a_{j}\right\rangle\right)$.
(b) Let $p_{j}=\prod_{i \neq j}\left(x_{1}-a_{i}\right)$. Prove that $p_{j} \cdot\left(I+\left\langle x_{1}-a_{j}\right\rangle\right) \subset I+\langle p\rangle$.
(c) Show that p_{1}, \ldots, p_{d} are relatively prime, and conclude that there are polynomials h_{1}, \ldots, h_{d} such that $1=\sum_{j} h_{j} p_{j}$.
(d) Prove that $\bigcap_{j}\left(I+\left\langle x_{1}-a_{j}\right\rangle\right) \subset I+\langle p\rangle$. Hint: Given h in the intersection, write $h=\sum_{j} h_{j} p_{j} h$ and use part b.
(9) Consider the 0 -dimensional ideal $I \subset \mathbb{C}[x, y]$ generated by

$$
\begin{aligned}
& x y^{2}-2 x y-y^{2}+x+2 y-1, \\
& y^{3}-y^{2}+y x-x-y+1 \\
& x^{2}+y^{2}-1
\end{aligned}
$$

Compute the normed reduced Gröbner basis for \sqrt{I} w.r.t. the graduated lexicographic term ordering with $x>y$.
(10) Prove Lemma 3.1.3.

