F. Winkler

Commutative Algebra & Algebraic Geometry $$\mathrm{SS}\ 2010$$

- (15) Exhibit a field K such that $\mathbb{A}^2(K)$ is reducible.
- (16) Let I be the radical of the ideal generated by

$$f_1 = x^2 + 2x + y, \quad f_2 = xy - x.$$

Determine whether

$$h_1 = x + y, \quad h_2 = x - y$$

are in I.

- (17) Show the existence of polynomials f_i in the proof of Theorem 4.2.6.
- (18) Consider a squarefree polynomial $f(x, y) \in \mathbb{C}[x, y]$. (a) Is $V(f, \partial f / \partial x)$ finite? (b) Is $V(f, \partial f / \partial x, \partial f / \partial y)$ finite?