Commutative Algebra \& Algebraic Geometry SS 2010

(19) Determine a linear change of coordinates $L: \mathbb{C}^{2} \rightarrow \mathbb{C}^{2}$ such that $L(f)=\tilde{f}$ is a Noether normalization of

$$
f(x, y, z)=x z^{3}-x^{2} y^{2}-2 x y z
$$

w.r.t. the variable x; i.e. \tilde{f} should contain the term x^{4}.
(20) Consider the elliptic curve \mathcal{E} defined by $e(x, y)=y^{2}-x^{3}+x$ (as in Example 1.3). Determine two different linear changes of coordinates L_{1}, L_{2} of $\mathbb{A}^{2}(\mathbb{C})$, s.t. the point $P=(1,1)$ is on $L_{i}(\mathcal{E}), i=1,2$. Prove that the L_{i} are indeed linear changes of coordinates, i.e. invertible linear maps.
(21) Primary ideals are not necessarily powers of prime ideals. In $\mathbb{Z}[x]$ consider the ideals

$$
I=\langle 4, x\rangle, \quad J=\langle 2, x\rangle .
$$

(a) Show that I is not prime; J is a prime divisor of I.
(Optional: J is the only proper non-trivial divisor of I.)
(b) I is not a power of J.
(22) Let R be a commutative ring with 1 , and let I, J be ideals in R.

Show: if I is prime and J is primary with $J \subseteq I$, then also $\sqrt{J} \subseteq I$ (Theorem 4.3.1(ii)).

