
Generating Random Structures

Manuel Kauers

Seminar on Selected Algorithms in Symbolic Computation
JKU · Summer Semester 2012

1

1. Random Bits

2

1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3

1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3

1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3

1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3

1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3

1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3

1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3

1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3

2. Random Integers

4

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

5

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

If n is a power of 2, say n = 2ν , this is easy:

I Choose ν random bits k0, k1, . . . , kν−1 ∈ {0, 1}
I Return k = k0 + 2k1 + 4k2 + 8k3 + · · ·+ 2ν−1kν−1.

It is clear that every output k is equally likely.

But what if n is not a power of two?

5

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

If n is a power of 2, say n = 2ν , this is easy:

I Choose ν random bits k0, k1, . . . , kν−1 ∈ {0, 1}

I Return k = k0 + 2k1 + 4k2 + 8k3 + · · ·+ 2ν−1kν−1.

It is clear that every output k is equally likely.

But what if n is not a power of two?

5

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

If n is a power of 2, say n = 2ν , this is easy:

I Choose ν random bits k0, k1, . . . , kν−1 ∈ {0, 1}
I Return k = k0 + 2k1 + 4k2 + 8k3 + · · ·+ 2ν−1kν−1.

It is clear that every output k is equally likely.

But what if n is not a power of two?

5

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

If n is a power of 2, say n = 2ν , this is easy:

I Choose ν random bits k0, k1, . . . , kν−1 ∈ {0, 1}
I Return k = k0 + 2k1 + 4k2 + 8k3 + · · ·+ 2ν−1kν−1.

It is clear that every output k is equally likely.

But what if n is not a power of two?

5

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

If n is a power of 2, say n = 2ν , this is easy:

I Choose ν random bits k0, k1, . . . , kν−1 ∈ {0, 1}
I Return k = k0 + 2k1 + 4k2 + 8k3 + · · ·+ 2ν−1kν−1.

It is clear that every output k is equally likely.

But what if n is not a power of two?

5

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

First version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I Return k mod n

THIS IS FLAWED!

5

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

First version:

I Let ν be the smallest integer with 2ν ≥ n

I Choose k ∈ {0, . . . , 2ν − 1}
I Return k mod n

THIS IS FLAWED!

5

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

First version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}

I Return k mod n

THIS IS FLAWED!

5

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

First version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I Return k mod n

THIS IS FLAWED!

5

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

First version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I Return k mod n

THIS IS FLAWED!

5

2. Random Integers

Example: Randomly choosing 65536 integers k with 0 ≤ k < 170
by this method gives the following output distribution:

0 50 100 150

100

200

300

400

500

600

Some outputs are more likely than others.

(A point (k, u) in the plot indicates that k appeared u times as output.)

6

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

First version:

Second version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I Return k mod n

bkn/2νc

THIS IS NOT BETTER!

7

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

First version:

Second version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I Return

k mod n

bkn/2νc

THIS IS NOT BETTER!

7

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

First version:

Second version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I Return

k mod n

bkn/2νc

THIS IS NOT BETTER!

7

2. Random Integers

Example: Randomly choosing 65536 integers k with 0 ≤ k < 170
by this method gives the following output distribution:

0 50 100 150

100

200

300

400

500

600

Some outputs are more likely than others.

(A point (k, u) in the plot indicates that k appeared u times as output.)

8

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

Third version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}

I If k ≥ n, try again

I Otherwise return k.

Now every output k with 0 ≤ k < n is equally likely.

(But more random bits are generated. Is there a better way?)

9

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

Third version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I If k ≥ n, try again

I Otherwise return k.

Now every output k with 0 ≤ k < n is equally likely.

(But more random bits are generated. Is there a better way?)

9

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

Third version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I If k ≥ n, try again

I Otherwise return k.

Now every output k with 0 ≤ k < n is equally likely.

(But more random bits are generated. Is there a better way?)

9

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

Third version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I If k ≥ n, try again

I Otherwise return k.

Now every output k with 0 ≤ k < n is equally likely.

(But more random bits are generated. Is there a better way?)

9

2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

Third version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I If k ≥ n, try again

I Otherwise return k.

Now every output k with 0 ≤ k < n is equally likely.

(But more random bits are generated. Is there a better way?)

9

3. Random Subsets

10

3. Random Subsets

Task: Given a set S := {x1, . . . , xn}, choose a random subset.

11

3. Random Subsets

Task: Given a set S := {x1, . . . , xn}, choose a random subset.

Naive:

I Construct the power set P(S) = {∅, {x1}, {x2}, . . . , S} of S

I Choose a random integer k ∈ {0, 1, . . . , 2|S| − 1}
I Return the kth element of P(S)

11

3. Random Subsets

Task: Given a set S := {x1, . . . , xn}, choose a random subset.

Naive:

I Construct the power set P(S) = {∅, {x1}, {x2}, . . . , S} of S

I Choose a random integer k ∈ {0, 1, . . . , 2|S| − 1}
I Return the kth element of P(S)

11

3. Random Subsets

Task: Given a set S := {x1, . . . , xn}, choose a random subset.

Naive:

I Construct the power set P(S) = {∅, {x1}, {x2}, . . . , S} of S

I Choose a random integer k ∈ {0, 1, . . . , 2|S| − 1}

I Return the kth element of P(S)

11

3. Random Subsets

Task: Given a set S := {x1, . . . , xn}, choose a random subset.

Naive:

I Construct the power set P(S) = {∅, {x1}, {x2}, . . . , S} of S

I Choose a random integer k ∈ {0, 1, . . . , 2|S| − 1}
I Return the kth element of P(S)

11

3. Random Subsets

Task: Given a set S := {x1, . . . , xn}, choose a random subset.

Better:

I Choose a random integer k ∈ {0, 1, . . . , 2|S| − 1}
I Let k = k1k2k3 · · · k|S| be the binary digit representation of k

I Return the subset {xi : ki = 1} ⊆ S

11

3. Random Subsets

Task: Given a set S := {x1, . . . , xn}, choose a random subset.

Better:

I Choose a random integer k ∈ {0, 1, . . . , 2|S| − 1}

I Let k = k1k2k3 · · · k|S| be the binary digit representation of k

I Return the subset {xi : ki = 1} ⊆ S

11

3. Random Subsets

Task: Given a set S := {x1, . . . , xn}, choose a random subset.

Better:

I Choose a random integer k ∈ {0, 1, . . . , 2|S| − 1}
I Let k = k1k2k3 · · · k|S| be the binary digit representation of k

I Return the subset {xi : ki = 1} ⊆ S

11

3. Random Subsets

Task: Given a set S := {x1, . . . , xn}, choose a random subset.

Better:

I Choose a random integer k ∈ {0, 1, . . . , 2|S| − 1}
I Let k = k1k2k3 · · · k|S| be the binary digit representation of k

I Return the subset {xi : ki = 1} ⊆ S

11

3. Random Subsets

More generally: if A is some finite (but possibly very big) set of
combinatorial objects (e.g., P(S)), we can efficiently pick a
random element if we know a bijection

b : {0, 1, 2, . . . , |A| − 1} → A

which can be computed efficiently:

I Choose a random integer x ∈ {0, 1, . . . , |A| − 1}
I Return b(x)

12

3. Random Subsets

More generally: if A is some finite (but possibly very big) set of
combinatorial objects (e.g., P(S)), we can efficiently pick a
random element if we know a bijection

b : {0, 1, 2, . . . , |A| − 1} → A

which can be computed efficiently:

I Choose a random integer x ∈ {0, 1, . . . , |A| − 1}

I Return b(x)

12

3. Random Subsets

More generally: if A is some finite (but possibly very big) set of
combinatorial objects (e.g., P(S)), we can efficiently pick a
random element if we know a bijection

b : {0, 1, 2, . . . , |A| − 1} → A

which can be computed efficiently:

I Choose a random integer x ∈ {0, 1, . . . , |A| − 1}
I Return b(x)

12

4. Random Binary Trees

13

4. Random Binary Trees

Definition:

I ◦ is a binary tree of size 0.

I If A is a binary tree of size a and B is a binary tree of size b,
then

•
A B

is a binary tree of size a+ b+ 1, of which A is called the left
subtree and B is called the right subtree.

I There are no other binary trees.

14

4. Random Binary Trees

Definition:

I ◦ is a binary tree of size 0.

I If A is a binary tree of size a and B is a binary tree of size b,
then

•
A B

is a binary tree of size a+ b+ 1, of which A is called the left
subtree and B is called the right subtree.

I There are no other binary trees.

14

4. Random Binary Trees

Definition:

I ◦ is a binary tree of size 0.

I If A is a binary tree of size a and B is a binary tree of size b,
then

•
A B

is a binary tree of size a+ b+ 1, of which A is called the left
subtree and B is called the right subtree.

I There are no other binary trees.

14

4. Random Binary Trees

Definition:

I ◦ is a binary tree of size 0.

I If A is a binary tree of size a and B is a binary tree of size b,
then

•
A B

is a binary tree of size a+ b+ 1, of which A is called the left
subtree and B is called the right subtree.

I There are no other binary trees.

14

4. Random Binary Trees

Example: Here is a random binary tree of size 63:

•
•
•
•
•

◦ •
•

◦ •
•
•

◦ •
◦ •

•
◦ •
◦ ◦

•
•
◦ ◦

•
•

◦ •
•
•
◦ ◦
◦
◦

◦

◦
◦

•
•

•
◦ ◦

•
•
◦ ◦

•
◦ ◦

◦

•
•
◦ ◦

•
•
•
◦ ◦
◦
◦

◦
•
•
◦ ◦
◦

•
•

•
•
•
◦ ◦
◦
◦

•
•
•

•
•
◦ ◦

•
◦ •
•
◦ ◦

•
◦ •
◦ •
◦ ◦

•
•

◦ •
•
◦ •
◦ •
◦ ◦

◦

•
•
•

◦ •
•
•
◦ ◦
◦
•
◦ ◦

◦
◦

◦
◦

◦

15

4. Random Binary Trees

Example: Here is a random binary tree of size 63:

•
•
•
•
•

◦ •
•

◦ •
•
•

◦ •
◦ •

•
◦ •
◦ ◦

•
•
◦ ◦

•
•

◦ •
•
•
◦ ◦
◦
◦

◦

◦
◦

•
•

•
◦ ◦

•
•
◦ ◦

•
◦ ◦

◦

•
•
◦ ◦

•
•
•
◦ ◦
◦
◦

◦
•
•
◦ ◦
◦

•
•

•
•
•
◦ ◦
◦
◦

•
•
•

•
•
◦ ◦

•
◦ •
•
◦ ◦

•
◦ •
◦ •
◦ ◦

•
•

◦ •
•
◦ •
◦ •
◦ ◦

◦

•
•
•

◦ •
•
•
◦ ◦
◦
•
◦ ◦

◦
◦

◦
◦

◦

15

4. Random Binary Trees

Example: Here is a random binary tree of size 63:

•
•
•
•
•

◦ •
•

◦ •
•
•

◦ •
◦ •

•
◦ •
◦ ◦

•
•
◦ ◦

•
•

◦ •
•
•
◦ ◦
◦
◦

◦

◦
◦

•
•

•
◦ ◦

•
•
◦ ◦

•
◦ ◦

◦

•
•
◦ ◦

•
•
•
◦ ◦
◦
◦

◦
•
•
◦ ◦
◦

•
•

•
•
•
◦ ◦
◦
◦

•
•
•

•
•
◦ ◦

•
◦ •
•
◦ ◦

•
◦ •
◦ •
◦ ◦

•
•

◦ •
•
◦ •
◦ •
◦ ◦

◦

•
•
•

◦ •
•
•
◦ ◦
◦
•
◦ ◦

◦
◦

◦
◦

◦

15

4. Random Binary Trees

Example: Here is a random binary tree of size 63:

•
•
•
•
•

◦ •
•

◦ •
•
•

◦ •
◦ •

•
◦ •
◦ ◦

•
•
◦ ◦

•
•

◦ •
•
•
◦ ◦
◦
◦

◦

◦
◦

•
•

•
◦ ◦

•
•
◦ ◦

•
◦ ◦

◦

•
•
◦ ◦

•
•
•
◦ ◦
◦
◦

◦
•
•
◦ ◦
◦

•
•

•
•
•
◦ ◦
◦
◦

•
•
•

•
•
◦ ◦

•
◦ •
•
◦ ◦

•
◦ •
◦ •
◦ ◦

•
•

◦ •
•
◦ •
◦ •
◦ ◦

◦

•
•
•

◦ •
•
•
◦ ◦
◦
•
◦ ◦

◦
◦

◦
◦

◦

15

4. Random Binary Trees

16

4. Random Binary Trees

How many binary trees are there?

If Cn is the number of binary trees of size n, then

Cn =
n−1∑
k=0

CkCn−1−k (n ≥ 1), C0 = 1.

This follows directly from the definition.

By induction, it can be shown that the solution of this recurrence is

Cn =
1

n+ 1

(
2n

n

)
(n ≥ 1).

These numbers are known as Catalan numbers.

17

4. Random Binary Trees

How many binary trees are there?

If Cn is the number of binary trees of size n, then

Cn =

n−1∑
k=0

CkCn−1−k (n ≥ 1), C0 = 1.

This follows directly from the definition.

By induction, it can be shown that the solution of this recurrence is

Cn =
1

n+ 1

(
2n

n

)
(n ≥ 1).

These numbers are known as Catalan numbers.

17

4. Random Binary Trees

How many binary trees are there?

If Cn is the number of binary trees of size n, then

Cn =

n−1∑
k=0

CkCn−1−k (n ≥ 1), C0 = 1.

This follows directly from the definition.

By induction, it can be shown that the solution of this recurrence is

Cn =
1

n+ 1

(
2n

n

)
(n ≥ 1).

These numbers are known as Catalan numbers.

17

4. Random Binary Trees

How many binary trees are there?

If Cn is the number of binary trees of size n, then

Cn =

n−1∑
k=0

CkCn−1−k (n ≥ 1), C0 = 1.

This follows directly from the definition.

By induction, it can be shown that the solution of this recurrence is

Cn =
1

n+ 1

(
2n

n

)
(n ≥ 1).

These numbers are known as Catalan numbers.

17

4. Random Binary Trees

Goal: Construct a bijection between {0, 1, . . . , Cn − 1} and the set
of binary trees of size n.

Need:

I Encoding: Given a binary tree of size n, encode it faithfully
into an integer x ∈ {0, . . . , Cn − 1}.

I Decoding: Given an integer x ∈ {0, . . . , Cn − 1}, reconstruct
the corresponding binary tree of size n.

18

4. Random Binary Trees

Goal: Construct a bijection between {0, 1, . . . , Cn − 1} and the set
of binary trees of size n.

Need:

I Encoding: Given a binary tree of size n, encode it faithfully
into an integer x ∈ {0, . . . , Cn − 1}.

I Decoding: Given an integer x ∈ {0, . . . , Cn − 1}, reconstruct
the corresponding binary tree of size n.

18

4. Random Binary Trees

Goal: Construct a bijection between {0, 1, . . . , Cn − 1} and the set
of binary trees of size n.

Need:

I Encoding: Given a binary tree of size n, encode it faithfully
into an integer x ∈ {0, . . . , Cn − 1}.

I Decoding: Given an integer x ∈ {0, . . . , Cn − 1}, reconstruct
the corresponding binary tree of size n.

18

4. Random Binary Trees

Goal: Construct a bijection between {0, 1, . . . , Cn − 1} and the set
of binary trees of size n.

Need:

I Encoding: Given a binary tree of size n, encode it faithfully
into an integer x ∈ {0, . . . , Cn − 1}.

I Decoding: Given an integer x ∈ {0, . . . , Cn − 1}, reconstruct
the corresponding binary tree of size n.

18

4. Random Binary Trees

Encoding.

19

4. Random Binary Trees

Encoding.

I There are precisely CkCn−1−k binary trees of size n whose left
subtree has size exactly k.

I Consequently, there are
∑k

i=0CiCn−1−i binary trees of size n
whose left subtree has size at most k.

I We choose to use the numbers in the segment{ k−1∑
i=0

CiCn−1−i, ,
k∑
i=0

CiCn−1−i − 1

}
for representing trees of size n with left subtrees of size k.

19

4. Random Binary Trees

Encoding.

I There are precisely CkCn−1−k binary trees of size n whose left
subtree has size exactly k.

I Consequently, there are
∑k

i=0CiCn−1−i binary trees of size n
whose left subtree has size at most k.

I We choose to use the numbers in the segment{ k−1∑
i=0

CiCn−1−i, ,
k∑
i=0

CiCn−1−i − 1

}
for representing trees of size n with left subtrees of size k.

19

4. Random Binary Trees

Encoding.

I There are precisely CkCn−1−k binary trees of size n whose left
subtree has size exactly k.

I Consequently, there are
∑k

i=0CiCn−1−i binary trees of size n
whose left subtree has size at most k.

I We choose to use the numbers in the segment{ k−1∑
i=0

CiCn−1−i, ,

k∑
i=0

CiCn−1−i − 1

}
for representing trees of size n with left subtrees of size k.

19

4. Random Binary Trees

Encoding.

I The tree T of size 0 is encoded by enc(T) := 0.

I Suppose we already know for every k < n how to encode trees
of size k into an integer x ∈ {0, . . . , Ck − 1}.

I Then, for a given tree T of size n with subtrees A and B of
sizes k and n− 1− k, we set

enc(T) :=

k−1∑
i=0

CiCn−1−i + enc(A)︸ ︷︷ ︸
0≤ ·<Ck

+ Ck enc(B)︸ ︷︷ ︸
0≤ ·<Cn−1−k︸ ︷︷ ︸

0≤ ·<CkCn−1−k︸ ︷︷ ︸
k−1∑
i=0

CiCn−1−i≤ ·<
k∑

i=0
CiCn−1−i

19

4. Random Binary Trees

Encoding.

I The tree T of size 0 is encoded by enc(T) := 0.

I Suppose we already know for every k < n how to encode trees
of size k into an integer x ∈ {0, . . . , Ck − 1}.

I Then, for a given tree T of size n with subtrees A and B of
sizes k and n− 1− k, we set

enc(T) :=

k−1∑
i=0

CiCn−1−i + enc(A)︸ ︷︷ ︸
0≤ ·<Ck

+ Ck enc(B)︸ ︷︷ ︸
0≤ ·<Cn−1−k︸ ︷︷ ︸

0≤ ·<CkCn−1−k︸ ︷︷ ︸
k−1∑
i=0

CiCn−1−i≤ ·<
k∑

i=0
CiCn−1−i

19

4. Random Binary Trees

Encoding.

I The tree T of size 0 is encoded by enc(T) := 0.

I Suppose we already know for every k < n how to encode trees
of size k into an integer x ∈ {0, . . . , Ck − 1}.

I Then, for a given tree T of size n with subtrees A and B of
sizes k and n− 1− k, we set

enc(T) :=

k−1∑
i=0

CiCn−1−i + enc(A)︸ ︷︷ ︸
0≤ ·<Ck

+ Ck enc(B)︸ ︷︷ ︸
0≤ ·<Cn−1−k︸ ︷︷ ︸

0≤ ·<CkCn−1−k︸ ︷︷ ︸
k−1∑
i=0

CiCn−1−i≤ ·<
k∑

i=0
CiCn−1−i

19

4. Random Binary Trees

Encoding.

I The tree T of size 0 is encoded by enc(T) := 0.

I Suppose we already know for every k < n how to encode trees
of size k into an integer x ∈ {0, . . . , Ck − 1}.

I Then, for a given tree T of size n with subtrees A and B of
sizes k and n− 1− k, we set

enc(T) :=

k−1∑
i=0

CiCn−1−i + enc(A)︸ ︷︷ ︸
0≤ ·<Ck

+ Ck enc(B)︸ ︷︷ ︸
0≤ ·<Cn−1−k︸ ︷︷ ︸

0≤ ·<CkCn−1−k︸ ︷︷ ︸
k−1∑
i=0

CiCn−1−i≤ ·<
k∑

i=0
CiCn−1−i

19

4. Random Binary Trees

Encoding.

I The tree T of size 0 is encoded by enc(T) := 0.

I Suppose we already know for every k < n how to encode trees
of size k into an integer x ∈ {0, . . . , Ck − 1}.

I Then, for a given tree T of size n with subtrees A and B of
sizes k and n− 1− k, we set

enc(T) :=

k−1∑
i=0

CiCn−1−i + enc(A)︸ ︷︷ ︸
0≤ ·<Ck

+ Ck enc(B)︸ ︷︷ ︸
0≤ ·<Cn−1−k︸ ︷︷ ︸

0≤ ·<CkCn−1−k︸ ︷︷ ︸
k−1∑
i=0

CiCn−1−i≤ ·<
k∑

i=0
CiCn−1−i

19

4. Random Binary Trees

Encoding.

I The tree T of size 0 is encoded by enc(T) := 0.

I Suppose we already know for every k < n how to encode trees
of size k into an integer x ∈ {0, . . . , Ck − 1}.

I Then, for a given tree T of size n with subtrees A and B of
sizes k and n− 1− k, we set

enc(T) :=

k−1∑
i=0

CiCn−1−i + enc(A)︸ ︷︷ ︸
0≤ ·<Ck

+ Ck enc(B)︸ ︷︷ ︸
0≤ ·<Cn−1−k︸ ︷︷ ︸

0≤ ·<CkCn−1−k︸ ︷︷ ︸
k−1∑
i=0

CiCn−1−i≤ ·<
k∑

i=0
CiCn−1−i

19

4. Random Binary Trees

Encoding.

I The tree T of size 0 is encoded by enc(T) := 0.

I Suppose we already know for every k < n how to encode trees
of size k into an integer x ∈ {0, . . . , Ck − 1}.

I Then, for a given tree T of size n with subtrees A and B of
sizes k and n− 1− k, we set

enc(T) :=

k−1∑
i=0

CiCn−1−i + enc(A)︸ ︷︷ ︸
0≤ ·<Ck

+ Ck enc(B)︸ ︷︷ ︸
0≤ ·<Cn−1−k︸ ︷︷ ︸

0≤ ·<CkCn−1−k︸ ︷︷ ︸
k−1∑
i=0

CiCn−1−i≤ ·<
k∑

i=0
CiCn−1−i

19

4. Random Binary Trees

Decoding.

I Set dec(0, 0) to the tree of size 0.

I Suppose we already know how to compute dec(x, k) for every
x ∈ {0, . . . , Ck − 1} and every k < n.

I Then a given x ∈ {0, . . . , Cn − 1} can be decoded as follows.

I Find k < n with
∑k−1

i=0 CiCn−1−i ≤ x <
∑k

i=0 CiCn−1−i.
I Set x := x−

∑k−1
i=0 CiCn−1−i.

I Set a := rem(x,Ck) and b := quo(x,Ck).
I Compute A := dec(a, k) and B := dec(b, n− 1− k).
I Return

•
A B

20

4. Random Binary Trees

Decoding.

I Set dec(0, 0) to the tree of size 0.

I Suppose we already know how to compute dec(x, k) for every
x ∈ {0, . . . , Ck − 1} and every k < n.

I Then a given x ∈ {0, . . . , Cn − 1} can be decoded as follows.

I Find k < n with
∑k−1

i=0 CiCn−1−i ≤ x <
∑k

i=0 CiCn−1−i.
I Set x := x−

∑k−1
i=0 CiCn−1−i.

I Set a := rem(x,Ck) and b := quo(x,Ck).
I Compute A := dec(a, k) and B := dec(b, n− 1− k).
I Return

•
A B

20

4. Random Binary Trees

Decoding.

I Set dec(0, 0) to the tree of size 0.

I Suppose we already know how to compute dec(x, k) for every
x ∈ {0, . . . , Ck − 1} and every k < n.

I Then a given x ∈ {0, . . . , Cn − 1} can be decoded as follows.

I Find k < n with
∑k−1

i=0 CiCn−1−i ≤ x <
∑k

i=0 CiCn−1−i.
I Set x := x−

∑k−1
i=0 CiCn−1−i.

I Set a := rem(x,Ck) and b := quo(x,Ck).
I Compute A := dec(a, k) and B := dec(b, n− 1− k).
I Return

•
A B

20

4. Random Binary Trees

Decoding.

I Set dec(0, 0) to the tree of size 0.

I Suppose we already know how to compute dec(x, k) for every
x ∈ {0, . . . , Ck − 1} and every k < n.

I Then a given x ∈ {0, . . . , Cn − 1} can be decoded as follows.

I Find k < n with
∑k−1

i=0 CiCn−1−i ≤ x <
∑k

i=0 CiCn−1−i.
I Set x := x−

∑k−1
i=0 CiCn−1−i.

I Set a := rem(x,Ck) and b := quo(x,Ck).
I Compute A := dec(a, k) and B := dec(b, n− 1− k).
I Return

•
A B

20

4. Random Binary Trees

Decoding.

I Set dec(0, 0) to the tree of size 0.

I Suppose we already know how to compute dec(x, k) for every
x ∈ {0, . . . , Ck − 1} and every k < n.

I Then a given x ∈ {0, . . . , Cn − 1} can be decoded as follows.

I Find k < n with
∑k−1

i=0 CiCn−1−i ≤ x <
∑k

i=0 CiCn−1−i.

I Set x := x−
∑k−1

i=0 CiCn−1−i.
I Set a := rem(x,Ck) and b := quo(x,Ck).
I Compute A := dec(a, k) and B := dec(b, n− 1− k).
I Return

•
A B

20

4. Random Binary Trees

Decoding.

I Set dec(0, 0) to the tree of size 0.

I Suppose we already know how to compute dec(x, k) for every
x ∈ {0, . . . , Ck − 1} and every k < n.

I Then a given x ∈ {0, . . . , Cn − 1} can be decoded as follows.

I Find k < n with
∑k−1

i=0 CiCn−1−i ≤ x <
∑k

i=0 CiCn−1−i.
I Set x := x−

∑k−1
i=0 CiCn−1−i.

I Set a := rem(x,Ck) and b := quo(x,Ck).
I Compute A := dec(a, k) and B := dec(b, n− 1− k).
I Return

•
A B

20

4. Random Binary Trees

Decoding.

I Set dec(0, 0) to the tree of size 0.

I Suppose we already know how to compute dec(x, k) for every
x ∈ {0, . . . , Ck − 1} and every k < n.

I Then a given x ∈ {0, . . . , Cn − 1} can be decoded as follows.

I Find k < n with
∑k−1

i=0 CiCn−1−i ≤ x <
∑k

i=0 CiCn−1−i.
I Set x := x−

∑k−1
i=0 CiCn−1−i.

I Set a := rem(x,Ck) and b := quo(x,Ck).

I Compute A := dec(a, k) and B := dec(b, n− 1− k).
I Return

•
A B

20

4. Random Binary Trees

Decoding.

I Set dec(0, 0) to the tree of size 0.

I Suppose we already know how to compute dec(x, k) for every
x ∈ {0, . . . , Ck − 1} and every k < n.

I Then a given x ∈ {0, . . . , Cn − 1} can be decoded as follows.

I Find k < n with
∑k−1

i=0 CiCn−1−i ≤ x <
∑k

i=0 CiCn−1−i.
I Set x := x−

∑k−1
i=0 CiCn−1−i.

I Set a := rem(x,Ck) and b := quo(x,Ck).
I Compute A := dec(a, k) and B := dec(b, n− 1− k).

I Return
•

A B

20

4. Random Binary Trees

Decoding.

I Set dec(0, 0) to the tree of size 0.

I Suppose we already know how to compute dec(x, k) for every
x ∈ {0, . . . , Ck − 1} and every k < n.

I Then a given x ∈ {0, . . . , Cn − 1} can be decoded as follows.

I Find k < n with
∑k−1

i=0 CiCn−1−i ≤ x <
∑k

i=0 CiCn−1−i.
I Set x := x−

∑k−1
i=0 CiCn−1−i.

I Set a := rem(x,Ck) and b := quo(x,Ck).
I Compute A := dec(a, k) and B := dec(b, n− 1− k).
I Return

•
A B

20

5. Random Topics

21

5. Random Topics

Possible topics for seminar talks: similar constructions for other
combinatorial objects

I Permutations (Knuth-shuffle)

I Young Tableaux (Robinson-Schensted-Knuth algorithm)

I Unrooted labeled trees with arbitrary number of subtrees
(Prüfer transform)

I Subsets with prescribed number of elements

I Integer Partitions

22

