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1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3



1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3



1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3



1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3



1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3



1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3



1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3



1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

I By hand: Toss a coin!

I On a computer: theoretically impossible

I In practice: use a “pseudo-random number generator”

I Better: extract random bits from some chaotic physical
process (e.g., quantom phenomena, atmospheric fluctuations)

I www.random.org

I Today: We simply assume that we can generate uniformly
distributed random bits somehow.

I Question: How can we use them to create other random
objects?

3



2. Random Integers

4



2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.
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2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

If n is a power of 2, say n = 2ν , this is easy:

I Choose ν random bits k0, k1, . . . , kν−1 ∈ {0, 1}
I Return k = k0 + 2k1 + 4k2 + 8k3 + · · ·+ 2ν−1kν−1.

It is clear that every output k is equally likely.

But what if n is not a power of two?
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2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

First version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I Return k mod n

THIS IS FLAWED!
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2. Random Integers

Example: Randomly choosing 65536 integers k with 0 ≤ k < 170
by this method gives the following output distribution:

0 50 100 150

100

200

300

400

500

600

Some outputs are more likely than others.

(A point (k, u) in the plot indicates that k appeared u times as output.)
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2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

First version:

Second version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}
I Return k mod n

bkn/2νc

THIS IS NOT BETTER!
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2. Random Integers

Task: Given n ∈ N, choose a random integer k with 0 ≤ k < n.

Third version:

I Let ν be the smallest integer with 2ν ≥ n
I Choose k ∈ {0, . . . , 2ν − 1}

I If k ≥ n, try again

I Otherwise return k.

Now every output k with 0 ≤ k < n is equally likely.

(But more random bits are generated. Is there a better way?)
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3. Random Subsets

Task: Given a set S := {x1, . . . , xn}, choose a random subset.
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Task: Given a set S := {x1, . . . , xn}, choose a random subset.

Naive:

I Construct the power set P(S) = {∅, {x1}, {x2}, . . . , S} of S

I Choose a random integer k ∈ {0, 1, . . . , 2|S| − 1}
I Return the kth element of P(S)
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3. Random Subsets

Task: Given a set S := {x1, . . . , xn}, choose a random subset.

Better:

I Choose a random integer k ∈ {0, 1, . . . , 2|S| − 1}
I Let k = k1k2k3 · · · k|S| be the binary digit representation of k

I Return the subset {xi : ki = 1} ⊆ S
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3. Random Subsets

More generally: if A is some finite (but possibly very big) set of
combinatorial objects (e.g., P(S)), we can efficiently pick a
random element if we know a bijection

b : {0, 1, 2, . . . , |A| − 1} → A

which can be computed efficiently:

I Choose a random integer x ∈ {0, 1, . . . , |A| − 1}
I Return b(x)
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4. Random Binary Trees

Definition:

I ◦ is a binary tree of size 0.

I If A is a binary tree of size a and B is a binary tree of size b,
then

•
A B

is a binary tree of size a+ b+ 1, of which A is called the left
subtree and B is called the right subtree.

I There are no other binary trees.
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4. Random Binary Trees

Example: Here is a random binary tree of size 63:
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4. Random Binary Trees

How many binary trees are there?

If Cn is the number of binary trees of size n, then

Cn =
n−1∑
k=0

CkCn−1−k (n ≥ 1), C0 = 1.

This follows directly from the definition.

By induction, it can be shown that the solution of this recurrence is

Cn =
1

n+ 1

(
2n

n

)
(n ≥ 1).

These numbers are known as Catalan numbers.
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4. Random Binary Trees

Goal: Construct a bijection between {0, 1, . . . , Cn − 1} and the set
of binary trees of size n.

Need:

I Encoding: Given a binary tree of size n, encode it faithfully
into an integer x ∈ {0, . . . , Cn − 1}.

I Decoding: Given an integer x ∈ {0, . . . , Cn − 1}, reconstruct
the corresponding binary tree of size n.
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4. Random Binary Trees

Encoding.
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4. Random Binary Trees

Encoding.

I There are precisely CkCn−1−k binary trees of size n whose left
subtree has size exactly k.

I Consequently, there are
∑k

i=0CiCn−1−i binary trees of size n
whose left subtree has size at most k.

I We choose to use the numbers in the segment{ k−1∑
i=0

CiCn−1−i, . . . . . . ,
k∑
i=0

CiCn−1−i − 1

}
for representing trees of size n with left subtrees of size k.
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4. Random Binary Trees

Encoding.

I The tree T of size 0 is encoded by enc(T ) := 0.

I Suppose we already know for every k < n how to encode trees
of size k into an integer x ∈ {0, . . . , Ck − 1}.

I Then, for a given tree T of size n with subtrees A and B of
sizes k and n− 1− k, we set

enc(T ) :=

k−1∑
i=0

CiCn−1−i + enc(A)︸ ︷︷ ︸
0≤ ·<Ck

+ Ck enc(B)︸ ︷︷ ︸
0≤ ·<Cn−1−k︸ ︷︷ ︸

0≤ ·<CkCn−1−k︸ ︷︷ ︸
k−1∑
i=0

CiCn−1−i≤ ·<
k∑

i=0
CiCn−1−i
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4. Random Binary Trees

Decoding.

I Set dec(0, 0) to the tree of size 0.

I Suppose we already know how to compute dec(x, k) for every
x ∈ {0, . . . , Ck − 1} and every k < n.

I Then a given x ∈ {0, . . . , Cn − 1} can be decoded as follows.

I Find k < n with
∑k−1

i=0 CiCn−1−i ≤ x <
∑k

i=0 CiCn−1−i.
I Set x := x−

∑k−1
i=0 CiCn−1−i.

I Set a := rem(x,Ck) and b := quo(x,Ck).
I Compute A := dec(a, k) and B := dec(b, n− 1− k).
I Return

•
A B
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5. Random Topics

Possible topics for seminar talks: similar constructions for other
combinatorial objects

I Permutations (Knuth-shuffle)

I Young Tableaux (Robinson-Schensted-Knuth algorithm)

I Unrooted labeled trees with arbitrary number of subtrees
(Prüfer transform)

I Subsets with prescribed number of elements

I Integer Partitions
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