Generating Random Structures

Manuel Kauers

Seminar on Selected Algorithms in Symbolic Computation JKU • Summer Semester 2012

1. Random Bits

Task: Input: none; Output: 0 or 1 with equal probability.

Task: Input: none; Output: 0 or 1 with equal probability.

- By hand: Toss a coin!

Task: Input: none; Output: 0 or 1 with equal probability.

- By hand: Toss a coin!
- On a computer: theoretically impossible

Task: Input: none; Output: 0 or 1 with equal probability.

- By hand: Toss a coin!
- On a computer: theoretically impossible
- In practice: use a "pseudo-random number generator"

Task: Input: none; Output: 0 or 1 with equal probability.

- By hand: Toss a coin!
- On a computer: theoretically impossible
- In practice: use a "pseudo-random number generator"
- Better: extract random bits from some chaotic physical process (e.g., quantom phenomena, atmospheric fluctuations)

Task: Input: none; Output: 0 or 1 with equal probability.

- By hand: Toss a coin!
- On a computer: theoretically impossible
- In practice: use a "pseudo-random number generator"
- Better: extract random bits from some chaotic physical process (e.g., quantom phenomena, atmospheric fluctuations)
- www.random.org

Task: Input: none; Output: 0 or 1 with equal probability.

- By hand: Toss a coin!
- On a computer: theoretically impossible
- In practice: use a "pseudo-random number generator"
- Better: extract random bits from some chaotic physical process (e.g., quantom phenomena, atmospheric fluctuations)
- www.random.org
- Today: We simply assume that we can generate uniformly distributed random bits somehow.

Task: Input: none; Output: 0 or 1 with equal probability.

- By hand: Toss a coin!
- On a computer: theoretically impossible
- In practice: use a "pseudo-random number generator"
- Better: extract random bits from some chaotic physical process (e.g., quantom phenomena, atmospheric fluctuations)
- www.random.org
- Today: We simply assume that we can generate uniformly distributed random bits somehow.
- Question: How can we use them to create other random objects?

2. Random Integers
3. Random Integers

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
If n is a power of 2 , say $n=2^{\nu}$, this is easy:

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
If n is a power of 2 , say $n=2^{\nu}$, this is easy:

- Choose ν random bits $k_{0}, k_{1}, \ldots, k_{\nu-1} \in\{0,1\}$

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
If n is a power of 2 , say $n=2^{\nu}$, this is easy:

- Choose ν random bits $k_{0}, k_{1}, \ldots, k_{\nu-1} \in\{0,1\}$
- Return $k=k_{0}+2 k_{1}+4 k_{2}+8 k_{3}+\cdots+2^{\nu-1} k_{\nu-1}$.

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
If n is a power of 2 , say $n=2^{\nu}$, this is easy:

- Choose ν random bits $k_{0}, k_{1}, \ldots, k_{\nu-1} \in\{0,1\}$
- Return $k=k_{0}+2 k_{1}+4 k_{2}+8 k_{3}+\cdots+2^{\nu-1} k_{\nu-1}$.

It is clear that every output k is equally likely.

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
If n is a power of 2 , say $n=2^{\nu}$, this is easy:

- Choose ν random bits $k_{0}, k_{1}, \ldots, k_{\nu-1} \in\{0,1\}$
- Return $k=k_{0}+2 k_{1}+4 k_{2}+8 k_{3}+\cdots+2^{\nu-1} k_{\nu-1}$.

It is clear that every output k is equally likely.
But what if n is not a power of two?
2. Random Integers

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
First version:

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
First version:

- Let ν be the smallest integer with $2^{\nu} \geq n$

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
First version:

- Let ν be the smallest integer with $2^{\nu} \geq n$
- Choose $k \in\left\{0, \ldots, 2^{\nu}-1\right\}$

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
First version:

- Let ν be the smallest integer with $2^{\nu} \geq n$
- Choose $k \in\left\{0, \ldots, 2^{\nu}-1\right\}$
- Return $k \bmod n$

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
First version:

- Let ν be the smallest integer with $2^{\nu} \geq n$
- Choose $k \in\left\{0, \ldots, 2^{\nu}-1\right\}$
- Return $k \bmod n$

THIS IS FLAWED!

Example: Randomly choosing 65536 integers k with $0 \leq k<170$ by this method gives the following output distribution:

Some outputs are more likely than others.
(A point (k, u) in the plot indicates that k appeared u times as output.)

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$. First version:

- Let ν be the smallest integer with $2^{\nu} \geq n$
- Choose $k \in\left\{0, \ldots, 2^{\nu}-1\right\}$
- Return $k \bmod n$

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
Second version:

- Let ν be the smallest integer with $2^{\nu} \geq n$
- Choose $k \in\left\{0, \ldots, 2^{\nu}-1\right\}$
- Return $\left\lfloor k n / 2^{\nu}\right\rfloor$

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
Second version:

- Let ν be the smallest integer with $2^{\nu} \geq n$
- Choose $k \in\left\{0, \ldots, 2^{\nu}-1\right\}$
- Return $\left\lfloor k n / 2^{\nu}\right\rfloor$

THIS IS NOT BETTER!

Example: Randomly choosing 65536 integers k with $0 \leq k<170$ by this method gives the following output distribution:

Some outputs are more likely than others.
(A point (k, u) in the plot indicates that k appeared u times as output.)

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
Third version:

- Let ν be the smallest integer with $2^{\nu} \geq n$
- Choose $k \in\left\{0, \ldots, 2^{\nu}-1\right\}$

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
Third version:

- Let ν be the smallest integer with $2^{\nu} \geq n$
- Choose $k \in\left\{0, \ldots, 2^{\nu}-1\right\}$
- If $k \geq n$, try again

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
Third version:

- Let ν be the smallest integer with $2^{\nu} \geq n$
- Choose $k \in\left\{0, \ldots, 2^{\nu}-1\right\}$
- If $k \geq n$, try again
- Otherwise return k.

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
Third version:

- Let ν be the smallest integer with $2^{\nu} \geq n$
- Choose $k \in\left\{0, \ldots, 2^{\nu}-1\right\}$
- If $k \geq n$, try again
- Otherwise return k.

Now every output k with $0 \leq k<n$ is equally likely.

Task: Given $n \in \mathbb{N}$, choose a random integer k with $0 \leq k<n$.
Third version:

- Let ν be the smallest integer with $2^{\nu} \geq n$
- Choose $k \in\left\{0, \ldots, 2^{\nu}-1\right\}$
- If $k \geq n$, try again
- Otherwise return k.

Now every output k with $0 \leq k<n$ is equally likely.
(But more random bits are generated. Is there a better way?)

3. Random Subsets

Task: Given a set $S:=\left\{x_{1}, \ldots, x_{n}\right\}$, choose a random subset.

Task: Given a set $S:=\left\{x_{1}, \ldots, x_{n}\right\}$, choose a random subset.

Naive:

Task: Given a set $S:=\left\{x_{1}, \ldots, x_{n}\right\}$, choose a random subset.

Naive:

- Construct the power set $\mathcal{P}(S)=\left\{\emptyset,\left\{x_{1}\right\},\left\{x_{2}\right\}, \ldots, S\right\}$ of S

Task: Given a set $S:=\left\{x_{1}, \ldots, x_{n}\right\}$, choose a random subset.

Naive:

- Construct the power set $\mathcal{P}(S)=\left\{\emptyset,\left\{x_{1}\right\},\left\{x_{2}\right\}, \ldots, S\right\}$ of S
- Choose a random integer $k \in\left\{0,1, \ldots, 2^{|S|}-1\right\}$

Task: Given a set $S:=\left\{x_{1}, \ldots, x_{n}\right\}$, choose a random subset.

Naive:

- Construct the power set $\mathcal{P}(S)=\left\{\emptyset,\left\{x_{1}\right\},\left\{x_{2}\right\}, \ldots, S\right\}$ of S
- Choose a random integer $k \in\left\{0,1, \ldots, 2^{|S|}-1\right\}$
- Return the k th element of $\mathcal{P}(S)$

Task: Given a set $S:=\left\{x_{1}, \ldots, x_{n}\right\}$, choose a random subset.

Better:

Task: Given a set $S:=\left\{x_{1}, \ldots, x_{n}\right\}$, choose a random subset.

Better:

- Choose a random integer $k \in\left\{0,1, \ldots, 2^{|S|}-1\right\}$

Task: Given a set $S:=\left\{x_{1}, \ldots, x_{n}\right\}$, choose a random subset.
Better:

- Choose a random integer $k \in\left\{0,1, \ldots, 2^{|S|}-1\right\}$
- Let $k=k_{1} k_{2} k_{3} \cdots k_{|S|}$ be the binary digit representation of k

Task: Given a set $S:=\left\{x_{1}, \ldots, x_{n}\right\}$, choose a random subset.

Better:

- Choose a random integer $k \in\left\{0,1, \ldots, 2^{|S|}-1\right\}$
- Let $k=k_{1} k_{2} k_{3} \cdots k_{|S|}$ be the binary digit representation of k
- Return the subset $\left\{x_{i}: k_{i}=1\right\} \subseteq S$

More generally: if A is some finite (but possibly very big) set of combinatorial objects (e.g., $\mathcal{P}(S)$), we can efficiently pick a random element if we know a bijection

$$
b:\{0,1,2, \ldots,|A|-1\} \rightarrow A
$$

which can be computed efficiently:

More generally: if A is some finite (but possibly very big) set of combinatorial objects (e.g., $\mathcal{P}(S)$), we can efficiently pick a random element if we know a bijection

$$
b:\{0,1,2, \ldots,|A|-1\} \rightarrow A
$$

which can be computed efficiently:

- Choose a random integer $x \in\{0,1, \ldots,|A|-1\}$

More generally: if A is some finite (but possibly very big) set of combinatorial objects (e.g., $\mathcal{P}(S)$), we can efficiently pick a random element if we know a bijection

$$
b:\{0,1,2, \ldots,|A|-1\} \rightarrow A
$$

which can be computed efficiently:

- Choose a random integer $x \in\{0,1, \ldots,|A|-1\}$
- Return $b(x)$

4. Random Binary Trees

4. Random Binary Trees

Definition:

4. Random Binary Trees

Definition:

- \circ is a binary tree of size 0 .

Definition:

- \circ is a binary tree of size 0 .
- If A is a binary tree of size a and B is a binary tree of size b, then

$$
\stackrel{\bullet}{A B}
$$

is a binary tree of size $a+b+1$, of which A is called the left subtree and B is called the right subtree.

Definition:

- \circ is a binary tree of size 0 .
- If A is a binary tree of size a and B is a binary tree of size b, then

$$
\stackrel{\bullet}{A B}
$$

is a binary tree of size $a+b+1$, of which A is called the left subtree and B is called the right subtree.

- There are no other binary trees.

Example: Here is a random binary tree of size 63:

Example: Here is a random binary tree of size 63:

Example: Here is a random binary tree of size 63:

Example: Here is a random binary tree of size 63:

4. Random Binary Trees
4. Random Binary Trees

How many binary trees are there?

How many binary trees are there?
If C_{n} is the number of binary trees of size n, then

$$
C_{n}=\sum_{k=0}^{n-1} C_{k} C_{n-1-k} \quad(n \geq 1), \quad C_{0}=1
$$

This follows directly from the definition.

How many binary trees are there?
If C_{n} is the number of binary trees of size n, then

$$
C_{n}=\sum_{k=0}^{n-1} C_{k} C_{n-1-k} \quad(n \geq 1), \quad C_{0}=1
$$

This follows directly from the definition.
By induction, it can be shown that the solution of this recurrence is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} \quad(n \geq 1)
$$

How many binary trees are there?
If C_{n} is the number of binary trees of size n, then

$$
C_{n}=\sum_{k=0}^{n-1} C_{k} C_{n-1-k} \quad(n \geq 1), \quad C_{0}=1
$$

This follows directly from the definition.
By induction, it can be shown that the solution of this recurrence is

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} \quad(n \geq 1)
$$

These numbers are known as Catalan numbers.

Goal: Construct a bijection between $\left\{0,1, \ldots, C_{n}-1\right\}$ and the set of binary trees of size n.

Goal: Construct a bijection between $\left\{0,1, \ldots, C_{n}-1\right\}$ and the set of binary trees of size n.

Need:

Goal: Construct a bijection between $\left\{0,1, \ldots, C_{n}-1\right\}$ and the set of binary trees of size n.

Need:

- Encoding: Given a binary tree of size n, encode it faithfully into an integer $x \in\left\{0, \ldots, C_{n}-1\right\}$.

Goal: Construct a bijection between $\left\{0,1, \ldots, C_{n}-1\right\}$ and the set of binary trees of size n.

Need:

- Encoding: Given a binary tree of size n, encode it faithfully into an integer $x \in\left\{0, \ldots, C_{n}-1\right\}$.
- Decoding: Given an integer $x \in\left\{0, \ldots, C_{n}-1\right\}$, reconstruct the corresponding binary tree of size n.

4. Random Binary Trees

Encoding.

Encoding.

- There are precisely $C_{k} C_{n-1-k}$ binary trees of size n whose left subtree has size exactly k.

Encoding.

- There are precisely $C_{k} C_{n-1-k}$ binary trees of size n whose left subtree has size exactly k.
- Consequently, there are $\sum_{i=0}^{k} C_{i} C_{n-1-i}$ binary trees of size n whose left subtree has size at most k.

Encoding.

- There are precisely $C_{k} C_{n-1-k}$ binary trees of size n whose left subtree has size exactly k.
- Consequently, there are $\sum_{i=0}^{k} C_{i} C_{n-1-i}$ binary trees of size n whose left subtree has size at most k.
- We choose to use the numbers in the segment

$$
\left\{\sum_{i=0}^{k-1} C_{i} C_{n-1-i}, \quad \ldots \ldots, \quad \sum_{i=0}^{k} C_{i} C_{n-1-i}-1\right\}
$$

for representing trees of size n with left subtrees of size k.

Encoding.

- The tree T of size 0 is encoded by $\operatorname{enc}(T):=0$.

Encoding.

- The tree T of size 0 is encoded by $\operatorname{enc}(T):=0$.
- Suppose we already know for every $k<n$ how to encode trees of size k into an integer $x \in\left\{0, \ldots, C_{k}-1\right\}$.

Encoding.

- The tree T of size 0 is encoded by $\operatorname{enc}(T):=0$.
- Suppose we already know for every $k<n$ how to encode trees of size k into an integer $x \in\left\{0, \ldots, C_{k}-1\right\}$.
- Then, for a given tree T of size n with subtrees A and B of sizes k and $n-1-k$, we set

$$
\operatorname{enc}(T):=\sum_{i=0}^{k-1} C_{i} C_{n-1-i}+\operatorname{enc}(A)+C_{k} \operatorname{enc}(B)
$$

Encoding.

- The tree T of size 0 is encoded by $\operatorname{enc}(T):=0$.
- Suppose we already know for every $k<n$ how to encode trees of size k into an integer $x \in\left\{0, \ldots, C_{k}-1\right\}$.
- Then, for a given tree T of size n with subtrees A and B of sizes k and $n-1-k$, we set

$$
\operatorname{enc}(T):=\sum_{i=0}^{k-1} C_{i} C_{n-1-i}+\underbrace{\operatorname{enc}(A)}_{0 \leq \cdot<C_{k}}+C_{k} \operatorname{enc}(B)
$$

Encoding.

- The tree T of size 0 is encoded by $\operatorname{enc}(T):=0$.
- Suppose we already know for every $k<n$ how to encode trees of size k into an integer $x \in\left\{0, \ldots, C_{k}-1\right\}$.
- Then, for a given tree T of size n with subtrees A and B of sizes k and $n-1-k$, we set

$$
\operatorname{enc}(T):=\sum_{i=0}^{k-1} C_{i} C_{n-1-i}+\underbrace{\operatorname{enc}(A)}_{0 \leq \cdot<C_{k}}+C_{k} \underbrace{\operatorname{enc}(B)}_{0 \leq \cdot<C_{n-1-k}}
$$

Encoding.

- The tree T of size 0 is encoded by $\operatorname{enc}(T):=0$.
- Suppose we already know for every $k<n$ how to encode trees of size k into an integer $x \in\left\{0, \ldots, C_{k}-1\right\}$.
- Then, for a given tree T of size n with subtrees A and B of sizes k and $n-1-k$, we set

$$
\operatorname{enc}(T):=\sum_{i=0}^{k-1} C_{i} C_{n-1-i}+\underbrace{\underbrace{\operatorname{enc}(A)}_{0 \leq \cdot<C_{k}}+C_{k} \underbrace{\operatorname{enc}(B)}_{0 \leq \cdot<C_{n-1}}-k}_{0 \leq \cdot<C_{k} C_{n-1-k}}
$$

Encoding.

- The tree T of size 0 is encoded by $\operatorname{enc}(T):=0$.
- Suppose we already know for every $k<n$ how to encode trees of size k into an integer $x \in\left\{0, \ldots, C_{k}-1\right\}$.
- Then, for a given tree T of size n with subtrees A and B of sizes k and $n-1-k$, we set

$$
\operatorname{enc}(T):=\underbrace{\sum_{i=0}^{k-1} C_{n-1-i}+\underbrace{\underbrace{\operatorname{enc}(A)}_{0 \leq \cdot<C_{k}}+C_{k} \underbrace{\operatorname{enc}(B)}_{0 \leq \cdot<C_{n-1}}}_{0 \leq \cdot<C_{k} C_{n-1-k}}}_{\sum_{i=0}^{k-1} C_{i} C_{n-1-i} \leq \cdot<\sum_{i=0}^{k} C_{i} C_{n-1-i}}
$$

4. Random Binary Trees

Decoding.

Decoding.

- Set $\operatorname{dec}(0,0)$ to the tree of size 0 .

Decoding.

- Set $\operatorname{dec}(0,0)$ to the tree of size 0 .
- Suppose we already know how to compute $\operatorname{dec}(x, k)$ for every $x \in\left\{0, \ldots, C_{k}-1\right\}$ and every $k<n$.

Decoding.

- Set $\operatorname{dec}(0,0)$ to the tree of size 0 .
- Suppose we already know how to compute $\operatorname{dec}(x, k)$ for every $x \in\left\{0, \ldots, C_{k}-1\right\}$ and every $k<n$.
- Then a given $x \in\left\{0, \ldots, C_{n}-1\right\}$ can be decoded as follows.

Decoding.

- Set $\operatorname{dec}(0,0)$ to the tree of size 0 .
- Suppose we already know how to compute $\operatorname{dec}(x, k)$ for every $x \in\left\{0, \ldots, C_{k}-1\right\}$ and every $k<n$.
- Then a given $x \in\left\{0, \ldots, C_{n}-1\right\}$ can be decoded as follows.
- Find $k<n$ with $\sum_{i=0}^{k-1} C_{i} C_{n-1-i} \leq x<\sum_{i=0}^{k} C_{i} C_{n-1-i}$.

Decoding.

- Set $\operatorname{dec}(0,0)$ to the tree of size 0 .
- Suppose we already know how to compute $\operatorname{dec}(x, k)$ for every $x \in\left\{0, \ldots, C_{k}-1\right\}$ and every $k<n$.
- Then a given $x \in\left\{0, \ldots, C_{n}-1\right\}$ can be decoded as follows.
- Find $k<n$ with $\sum_{i=0}^{k-1} C_{i} C_{n-1-i} \leq x<\sum_{i=0}^{k} C_{i} C_{n-1-i}$.
- Set $x:=x-\sum_{i=0}^{k-1} C_{i} C_{n-1-i}$.

Decoding.

- Set $\operatorname{dec}(0,0)$ to the tree of size 0 .
- Suppose we already know how to compute $\operatorname{dec}(x, k)$ for every $x \in\left\{0, \ldots, C_{k}-1\right\}$ and every $k<n$.
- Then a given $x \in\left\{0, \ldots, C_{n}-1\right\}$ can be decoded as follows.
- Find $k<n$ with $\sum_{i=0}^{k-1} C_{i} C_{n-1-i} \leq x<\sum_{i=0}^{k} C_{i} C_{n-1-i}$.
- Set $x:=x-\sum_{i=0}^{k-1} C_{i} C_{n-1-i}$.
- Set $a:=\operatorname{rem}\left(x, C_{k}\right)$ and $b:=\operatorname{quo}\left(x, C_{k}\right)$.

Decoding.

- Set $\operatorname{dec}(0,0)$ to the tree of size 0 .
- Suppose we already know how to compute $\operatorname{dec}(x, k)$ for every $x \in\left\{0, \ldots, C_{k}-1\right\}$ and every $k<n$.
- Then a given $x \in\left\{0, \ldots, C_{n}-1\right\}$ can be decoded as follows.
- Find $k<n$ with $\sum_{i=0}^{k-1} C_{i} C_{n-1-i} \leq x<\sum_{i=0}^{k} C_{i} C_{n-1-i}$.
- Set $x:=x-\sum_{i=0}^{k-1} C_{i} C_{n-1-i}$.
- Set $a:=\operatorname{rem}\left(x, C_{k}\right)$ and $b:=\operatorname{quo}\left(x, C_{k}\right)$.
- Compute $A:=\operatorname{dec}(a, k)$ and $B:=\operatorname{dec}(b, n-1-k)$.

Decoding.

- Set $\operatorname{dec}(0,0)$ to the tree of size 0 .
- Suppose we already know how to compute $\operatorname{dec}(x, k)$ for every $x \in\left\{0, \ldots, C_{k}-1\right\}$ and every $k<n$.
- Then a given $x \in\left\{0, \ldots, C_{n}-1\right\}$ can be decoded as follows.
- Find $k<n$ with $\sum_{i=0}^{k-1} C_{i} C_{n-1-i} \leq x<\sum_{i=0}^{k} C_{i} C_{n-1-i}$.
- Set $x:=x-\sum_{i=0}^{k-1} C_{i} C_{n-1-i}$.
- Set $a:=\operatorname{rem}\left(x, C_{k}\right)$ and $b:=\operatorname{quo}\left(x, C_{k}\right)$.
- Compute $A:=\operatorname{dec}(a, k)$ and $B:=\operatorname{dec}(b, n-1-k)$.
- Return

$$
\stackrel{\bullet}{A B}
$$

5. Random Topics

Possible topics for seminar talks: similar constructions for other combinatorial objects

- Permutations (Knuth-shuffle)
- Young Tableaux (Robinson-Schensted-Knuth algorithm)
- Unrooted labeled trees with arbitrary number of subtrees (Prüfer transform)
- Subsets with prescribed number of elements
- Integer Partitions

