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Notation

I K is an algebraically closed field, Q ⊆ K
I K(t) denotes the field of rational functions over K

I K[x1, . . . , xn] denotes the ring of polynomials in the
indeterminates x1, . . . , xn

I An(K) = {(a1, . . . , an) | ak ∈ K} = An the n-dimensional
affine space over K

I C = {(a, b) ∈ A2 | f(a, b) = 0} is the affine algebraic curve
with defining polynomial f ∈ K[x, y];
C is irreducible, iff it has an irreducible defining polynomial
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Examples

f1(x, y) = x3 + x2 − y2

f1(−1, 1) = −1

f2(x, y) = y2 − x3 + x

f2(−1, 1) = 1

f3(x, y) = (x2 + 4y + y2)2 − 16(x2 + y2)

f3(−1, 1) = 0

f4(x, y) = 2x4 − 3x2y + y2 − 2y3 + y4

f4(−1, 1) = −1
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Rational

Parametrization

Instead of the implicit representation f(x, y) = 0, we seek for a
parametrization

t 7→ (r1(t), r2(t)) such that f(r1(t), r2(t)) = 0, ∀ t

I r1, r2 ∈ K(t)

I for almost all t0 ∈ K, (r1(t0), r2(t0)) is a point on C
I for almost all (x0, y0) on C there is a t0 ∈ K sucht that

(x0, y0) = (r1(t0), r2(t0))

Questions:

I When can we rationally parametrize a given curve?

I How do we do it?
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Properties

Definition. Let C be a curve, f ∈ K[x, y] its defining polynomial,
and P = (a, b) ∈ A2. P is a point on C if f(a, b) = 0.

P is a simple point on C, if

f(a, b) = 0 and

(
∂f

∂x
(a, b) 6= 0 or

∂f

∂y
(a, b) 6= 0

)
.

If P is a simple point, then the tangent to C at P is given by

∂f

∂x
(a, b) · (x− a) + ∂f

∂y
(a, b) · (y − b) = 0.

A point on C that is not simple is called multiple or singular point.

A curve having only simple points is called a non-singular curve.



Properties

Definition. Let C be a curve, f ∈ K[x, y] its defining polynomial,
and P = (a, b) ∈ A2 a point on C. P is a point of multiplicity m,
iff

I all partial derivatives ∂i+jf
∂xi∂yj

(a, b) vanish for i+ j < m

I at least one of the partial derivatives of order m does not
vanish

The multiplicity of P on C is denoted by mP (C) or just mP .

Example. Let C be defined by the polynomial f1(x, y)=x
3+x2−y2.

Then P = (0, 0) is a double point on C:

f(0, 0) = 0,
∂f

∂x
(0, 0) = 0,

∂f

∂y
(0, 0) = 0,

∂2f

∂y2
(0, 0) = −2.



Properties

Definition. Let C be a curve, f ∈ K[x, y] its defining polynomial,
and P = (a, b) ∈ A2 a point on C. P is a point of multiplicity m,
iff

I all partial derivatives ∂i+jf
∂xi∂yj

(a, b) vanish for i+ j < m

I at least one of the partial derivatives of order m does not
vanish

The multiplicity of P on C is denoted by mP (C) or just mP .

Example. Let C be defined by the polynomial f1(x, y)=x
3+x2−y2.

Then P = (0, 0) is a double point on C:

f(0, 0) = 0,
∂f

∂x
(0, 0) = 0,

∂f

∂y
(0, 0) = 0,

∂2f

∂y2
(0, 0) = −2.



Tangents at multiple points

Let 1 ≤ m = mP (C) be the multiplicity of P = (a, b) on C. The
linear factors of

m∑
i=0

(
m

i

)
∂mf

∂xi∂ym−i
(a, b)(x− a)i(y − b)m−i

are the tangents to C at P . An m-fold point is called ordinary, iff
all the tangents are different.

Example. Let C be defined by the polynomial f1(x, y)=x
3+x2−y2

and P = (0, 0). Then

2∑
i=0

(
2

i

)
∂2f

∂xi∂y2−i
(0, 0)xiy2−i = 2(x− y)(x+ y)
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More on multiplicities

Let C be defined by f ∈ K[x, y], deg f = d. There is an upper
bound for the number of singularities:

1
2(d− 1)(d− 2) ≥

∑
P∈C

1
2mP (mP − 1).



More on multiplicities

Let C be defined by f ∈ K[x, y], deg f = d. There is an upper
bound for the number of singularities:

1
2(d− 1)(d− 2) ≥

∑
P∈C

1
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Example. C defined by f1(x, y) = x3+x2−y2 has the double point
P = (0, 0) and no other singularities:

1
2(d−1)(d−2) =

1
22·1 = 1 and

∑
P∈C

1
2mP (mP−1) = 1

22·1 = 1.
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bound for the number of singularities:

1
2(d− 1)(d− 2) ≥

∑
P∈C
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Example. C defined by f3(x, y) = (x2+4y+y2)2−16(x2+y2) has
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Homogeneous polynomials

I A polynomial f ∈ K[x1, . . . , xn] is called homogeneous of
degree d iff all its terms are of total degree d.

I If f ∈ K[x1, . . . , xn] is homogeneous and defines the curve C,
then for any P = (a1, . . . , an) ∈ C and any λ ∈ K also
(λa1, . . . , λan) ∈ C.

I Given f ∈ K[x, y] of degree d, we define its homogenization
as f∗(x, y, z) = zdf(x/z, y/z), i.e., if

f(x, y) = f0(x, y) + f1(x, y) + · · ·+ fd(x, y), with deg fi = i,

then

f∗(x, y, z) = zdf0(x, y) + zd−1f1(x, y) + · · ·+ fd(x, y).

I If f∗ ∈ K[x, y, z] is a homogeneous polynomial, then its
dehomogenization is defined as f(x, y) = f∗(x, y, 1).
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Projective space

Definition. The n-dimensional projective space over K is defined as

Pn(K)={(c1 : · · · : cn+1) | (c1 : · · · : cn+1) ∈Kn+1\{(0, . . . , 0)}},

where

(c1 : · · · : cn+1) = {(λc1 : · · · : λcn+1) | λ ∈ K\{0}}.

I A point P = (a, b) ∈ A2 corresponds to a line in A3 through
(a, b, 1) and (0, 0, 0) written as (a : b : 1).

I The lines in A3 through (a, b, 0) and (0, 0, 0) correspond to
the points at infinity in P2 in direction (a, b, 1).

Let f∗ ∈ K[x, y, z] be a homogenous polynomial, then the
projective plane algebraic curve C∗ in P2 with defining polynomial
f∗ is

C∗ = {(c1 : c2 : c3) ∈ P2 | f∗(c1, c2, c3) = 0}.
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Bezout’s theorem

Let f∗, g∗ ∈ K[x, y, z] be relatively prime, homogeneous
polynomials and let C∗,D∗ be the corresponding projective curves.
Then C∗ and D∗ have exactly deg(f∗) · deg(g∗) projective points in
common counting multiplicities.

Example. Intersection of two parallel lines:

f1(x, y) = x+ y − 2, f2(x, y) = x+ y + 1.

Pass to the homogenization of f1, f2 and determine the
intersection in P2:

f∗1 (x, y, z) = x+ y − 2z, f∗2 (x, y, z) = x+ y + z.

In P2 we find the point at infinity (1 : −1 : 0).
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Pass to the homogenization of f1, f2 and determine the
intersection in P2:

f∗1 (x, y, z) = x+ y − 2z, f∗2 (x, y, z) = x+ y + z.

In P2 we find the point at infinity (1 : −1 : 0).



Genus of a curve

Let C∗ be an irreducible curve of degree d in P2 having only
ordinary points. Then

genus(C∗) = 1

2

(
(d− 1)(d− 2)−

∑
P∈C∗

mP (mP − 1)

)
.

The genus of an irreducible affine curve is the genus of the
associated projective curve.
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P = (0, 0) and no other singularities:
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1
22·1 = 1 and

∑
P∈C

1
2mP (mP−1) = 1
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Genus of a curve

Let C∗ be an irreducible curve of degree d in P2 having only
ordinary points. Then

genus(C∗) = 1

2

(
(d− 1)(d− 2)−

∑
P∈C∗

mP (mP − 1)

)
.

The genus of an irreducible affine curve is the genus of the
associated projective curve.

Theorem. An algebraic curve C (having only ordinary singularities)
is rationally parametrizable if and only if genus(C) = 0.



Simple case

I Let C1 be the curve defined by f1(x, y) = x3 + x2 − y2.

I We know genus(C1) = 0 and P = (0, 0) is a double point.

I Then the curves defined by the parametrized lines
gt(x, y) = y− tx are intersecting f1(x, y) in exactly one point.

I To compute the intersection points we use resultants.

resx(f1(x, y), gt(x, y)) = −y2
(
t3 − t− y

)
resy(f1(x, y), gt(x, y)) = x2

(
− t2 + x+ 1

)
.

This yields the parametrization

x(t) = t2 − 1, y(t) = t3 − t.



Simple case

I Let C1 be the curve defined by f1(x, y) = x3 + x2 − y2.

I We know genus(C1) = 0 and P = (0, 0) is a double point.

I Then the curves defined by the parametrized lines
gt(x, y) = y− tx are intersecting f1(x, y) in exactly one point.

I To compute the intersection points we use resultants.

resx(f1(x, y), gt(x, y)) = −y2
(
t3 − t− y

)
resy(f1(x, y), gt(x, y)) = x2

(
− t2 + x+ 1

)
.

This yields the parametrization

x(t) = t2 − 1, y(t) = t3 − t.



Simple case

I Let C1 be the curve defined by f1(x, y) = x3 + x2 − y2.

I We know genus(C1) = 0 and P = (0, 0) is a double point.

I Then the curves defined by the parametrized lines
gt(x, y) = y− tx are intersecting f1(x, y) in exactly one point.

I To compute the intersection points we use resultants.

resx(f1(x, y), gt(x, y)) = −y2
(
t3 − t− y

)
resy(f1(x, y), gt(x, y)) = x2

(
− t2 + x+ 1

)
.

This yields the parametrization

x(t) = t2 − 1, y(t) = t3 − t.



Simple case

I Let C1 be the curve defined by f1(x, y) = x3 + x2 − y2.

I We know genus(C1) = 0 and P = (0, 0) is a double point.

I Then the curves defined by the parametrized lines
gt(x, y) = y− tx are intersecting f1(x, y) in exactly one point.

I To compute the intersection points we use resultants.

resx(f1(x, y), gt(x, y)) = −y2
(
t3 − t− y

)
resy(f1(x, y), gt(x, y)) = x2

(
− t2 + x+ 1

)
.

This yields the parametrization

x(t) = t2 − 1, y(t) = t3 − t.



Simple case

I Let C1 be the curve defined by f1(x, y) = x3 + x2 − y2.

I We know genus(C1) = 0 and P = (0, 0) is a double point.

I Then the curves defined by the parametrized lines
gt(x, y) = y− tx are intersecting f1(x, y) in exactly one point.

I To compute the intersection points we use resultants.

resx(f1(x, y), gt(x, y)) = −y2
(
t3 − t− y

)
resy(f1(x, y), gt(x, y)) = x2

(
− t2 + x+ 1

)
.

This yields the parametrization

x(t) = t2 − 1, y(t) = t3 − t.



Simple case

I Let C1 be the curve defined by f1(x, y) = x3 + x2 − y2.

I We know genus(C1) = 0 and P = (0, 0) is a double point.

I Then the curves defined by the parametrized lines
gt(x, y) = y− tx are intersecting f1(x, y) in exactly one point.

I To compute the intersection points we use resultants.

resx(f1(x, y), gt(x, y)) = −y2
(
t3 − t− y

)
resy(f1(x, y), gt(x, y)) = x2

(
− t2 + x+ 1

)
.

This yields the parametrization

x(t) = t2 − 1, y(t) = t3 − t.



Simple case

I Let C1 be the curve defined by f1(x, y) = x3 + x2 − y2.

I We know genus(C1) = 0 and P = (0, 0) is a double point.

I Then the curves defined by the parametrized lines
gt(x, y) = y− tx are intersecting f1(x, y) in exactly one point.

I To compute the intersection points we use resultants.

resx(f1(x, y), gt(x, y)) = −y2
(
t3 − t− y

)
resy(f1(x, y), gt(x, y)) = x2

(
− t2 + x+ 1

)
.

This yields the parametrization

x(t) = t2 − 1, y(t) = t3 − t.



Simple case

I Let C1 be the curve defined by f1(x, y) = x3 + x2 − y2.

I We know genus(C1) = 0 and P = (0, 0) is a double point.

I Then the curves defined by the parametrized lines
gt(x, y) = y− tx are intersecting f1(x, y) in exactly one point.

I To compute the intersection points we use resultants.

resx(f1(x, y), gt(x, y)) = −y2
(
t3 − t− y

)
resy(f1(x, y), gt(x, y)) = x2

(
− t2 + x+ 1

)
.

This yields the parametrization

x(t) = t2 − 1, y(t) = t3 − t.



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Simple case

-1.0 -0.5 0.5

-0.5

0.5



Slightly more complicated

I Let C3 be the curve defined by

f3(x, y) = (x2 + 4y + y2)2 − 16(x2 + y2).

I The homogenization

f∗3 (x, y, z) = (x2 + 4yz + y2)2 − 16(x2 + y2)z2

I We know genus(C3) = 0 and P1 = (0 : 0 : 1),
P2,3 = (1 : ±i : 0) are the three double points.

I f∗2 and a polynomial a∗ of degree 2 have exactly 8 intersection
points counting multiplicities. Let A∗ denote the projective
curve corresponding to a∗.

I In general: deg(f∗) = d and a polynomial a∗ of degree d− 2
have exactly d(d− 2) intersection points counting
multiplicities.
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Slightly more complicated

I Generic ansatz for

a∗(x, y, z) = a0x
2 + a1xy + a2xz + a3y

2 + a4yz + a5z
2.

I Take every m-fold singularity of f∗ as an (m− 1)-fold
singularity of a∗.

I Need 1 extra simple point on C3 as base point for a∗.

I In general: Need d− 3 extra simple points on C3 as base
points for a∗.

I Use these points to determine the coefficients ak.

I Every intersection point (counting multiplicities) of C∗ and A∗
is fixed, except for one!
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Example

Let

a∗(x, y, z) = a0x
2 + a1xy + a2xz + a3y

2 + a4yz + a5z
2.

with simple points P1 = (0 : 0 : 1), P2,3 = (1 : ±i : 0) and
additional simple point Q = (0 : −8 : 1). Then

a∗(0, 0, 1) = 0 −→ a5 = 0

a∗(1, i, 0) = 0 −→ a0 + ia1 − a3 = 0

a∗(1,−i, 0) = 0 −→ a0 − ia1 − a3 = 0

a∗(0,−8, 1) = 0 −→ 64a3 − 8a4 + a5 = 0

This system has the solution

a0 =
1
8a4, a1 = 0, a3 =

1
8a4, a5 = 0.

a2 = 1 and a4 = t.
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Example

We have

f3(x, y) = (x2 + 4y + y2)2 − 16(x2 + y2)

and the affine adjoint curves

at(x, y) =
1
8 tx

2 + 1
8 ty

2 + ty + x.

The non-constant factors of resx(f(x, y), at(x, y)) are

y2, y + 8, t4y + 8t4 + 8t2y − 32t2 + 16y,

The non-constant factors of resy(f(x, y), at(x, y)) are

x3, , t4x+ 32t3 + 8t2x+ 16x
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Parametrization
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(t2 + 4)2
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8
(
t4 − 4t2
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Some open questions

I What is a resultant and how to compute it?

I What is the intersection multiplicity and how to compute it?

I How do I determine simple simple points on the curve?

I How does the choice of simple points affect the
parametrization?

I What about real parametrization?

I How do curves enter in cryptography?


