Rational parametrization of algebraic curves
(An appetizer)

Veronika Pillwein
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» K is an algebraically closed field, Q@ C K
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Notation

K is an algebraically closed field, @ C K
K (t) denotes the field of rational functions over K

K(xy,...,z,] denotes the ring of polynomials in the
indeterminates x1,...,x,

A™(K)={(a1,...,a,) | ax € K} = A™ the n-dimensional
affine space over K

C = {(a,b) € A% | f(a,b) = 0} is the affine algebraic curve
with defining polynomial f € K|z, y];

C is irreducible, iff it has an irreducible defining polynomial



Examples

= (2 + 4y + y*)? — 16(z* + ¢?)
:2x4—3$2y+y2—2y3+y4



Examples

(a: + 4y +92)? — 16(22 + o)
= 22* — 32%y + 2 — 2% + 92

Question: Is this a good representation for an algebraic curve?
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(ac + 4y +92)? — 16(22 + o)
= 22* — 32%y + 2 — 2% + 92

Answer: Depends on what we want to do!
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Question: Is P = (—1,1) a point on the curve C; defined by f;?
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fi(z,y) = 2% 4 2% — 3 fi(—=1,1) = -1
folz,y) =y? — 2> + 2 fo(=1,1) =1
fa(z,y) = (@ + 4y +9°) - 16(z" +y°)  f3(-1,1)=0
fa(z,y) = 22* — 32%y + % — 20° + *

Question: Is P = (—1,1) a point on the curve C; defined by f;?
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fi(z,y) = 2® + 2% — ¢? fi(—=1,1) = -1
folw,y) =" =2 +a fo(-1,1) =1
fa(w,y) = (2% + 4y + y*)* = 16(a” + ¢) fa(=1,1) =0
fa(z,y) = 22* — 32%y + % — 20° + *

Question: Is P = (—1,1) a point on the curve C; defined by f;?



Question:

Examples

=23 2% — fi(—=1,1) = -1
=yt -t fo(=1,1) =1
= (¢ + 4y +y*)* —16(2” + ) f3(=1,1) =0
= 22" — 3%y + " — 20" + ¢ fa(=1,1 )=—1
Is P = (—1,1) a point on the curve C; defined by f;?
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(ac + 4y +92)? — 16(22 + o)
= 22* — 32%y + 2 — 2% + 92

Question: Can we generate arbitrary many real points on C;?
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Parametrization

Instead of the implicit representation f(x,y) = 0, we seek for a
parametrization

t— (r1(t),r2(t)) such that f(ri(t),r2(t)) =0, Vit
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Rational Parametrization

Instead of the implicit representation f(x,y) = 0, we seek for a
parametrization

t > (ri(t),r2(t)) such that f(ri(t),r2(t)) =0, Vit

> ri,re € K(t)
» for almost all tg € K, (r1(to),r2(to)) is a point on C

» for almost all (zg,yo) on C there is a ty € K sucht that
(20, 90) = (r1(t0),2(t0))

Questions:
» When can we rationally parametrize a given curve?

» How do we do it?
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Properties

Definition. Let C be a curve, f € K|[z,y] its defining polynomial,
and P = (a,b) € A%. P is a point on C if f(a,b) = 0.

P is a simple point on C, if

f(a,b) =0 and <g£(a,b)7§0 or %(a,b)#@).

If P is a simple point, then the tangent to C at P is given by

@)=+ S @y -y =0
A point on C that is not simple is called multiple or singular point.

A curve having only simple points is called a non-singular curve.
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Definition. Let C be a curve, f € K[z,y] its defining polynomial,
and P = (a,b) € A? a point on C. P is a point of multiplicity m,
iff

. . . oitif
» all partial derivatives 50y
> at least one of the partial derivatives of order m does not

vanish

(a,b) vanish for i + j <m

The multiplicity of P on C is denoted by mp(C) or just mp.



Properties

Definition. Let C be a curve, f € K[z,y] its defining polynomial,
and P = (a,b) € A? a point on C. P is a point of multiplicity m,
iff

it

> all partial derivatives 5 Za > (a b) vanish for i+ j <m

> at least one of the partial derivatives of order m does not
vanish

The multiplicity of P on C is denoted by mp(C) or just mp.

Example. Let C be defined by the polynomial fi(z,y) =23+x2—1>2.
Then P = (0,0) is a double point on C:

of of
Oz oy

0% f

£(0,0) =0, (0,0) =0, (0,0) =0, By +-5(0,0) =



Tangents at multiple points

Let 1 <m = mp(C) be the multiplicity of P = (a,b) on C. The
linear factors of

Zm: <m> M(a, b)(z —a)'(y — )™

o\ ozt oy™m—*

are the tangents to C at P. An m-fold point is called ordinary, iff
all the tangents are different.



Tangents at multiple points

Let 1 <m = mp(C) be the multiplicity of P = (a,b) on C. The
linear factors of

Zm: <m> aamf-(a, b)(z —a)'(y — )™

7 xi m—i
=0 ay

are the tangents to C at P. An m-fold point is called ordinary, iff
all the tangents are different.

Example. Let C be defined by the polynomial fi(z,y)=23+2%—y>

and P = (0,0). Then

2
> (2> 827]0(0, 0)z'y* " = 2(x —y)(z +y)

' i99,2—1
—\u oz dy



Loop with tangents




More on multiplicities

Let C be defined by f € K[z,y], deg f = d. There is an upper
bound for the number of singularities:

Jd=1)(d-2)>) " tmp(mp —1).
PeC
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P = (0,0) and no other singularities:

Jd=1)(d—2)=132-1=1 and > fmp(mp—1)=42-1=1.
PeC



More on multiplicities

Let C be defined by f € K[x,y], deg f = d. There is an upper
bound for the number of singularities:

Fd=1)(d=2)> > Imp(mp —1).
PeC

Example. C defined by f3(z,y) = (2 + 4y +3?)? — 16(2% +y?) has
the double point P = (0,0) and no other singularities:

3(d=1)(d—2)=13-2=3 and > fmp(mp—1)=42-1=1.
PeC
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degree d iff all its terms are of total degree d.
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Homogeneous polynomials

» A polynomial f € K[x1,...,x,] is called homogeneous of
degree d iff all its terms are of total degree d.

» If f € Klxy,...,z,] is homogeneous and defines the curve C,
then for any P = (a1,...,a,) € C and any A € K also
(Aa1,...,A\ay) €C.

» Given f € K|[z,y] of degree d, we define its homogenization
as f*(x,y,2) = 2%f(x/2,y/2), ie., if

flx,y) = folz,y) + fi(z,y) + -+ fa(z,y), with deg f; =1,

then

f*(x7y7 Z) = deo(.l', y) =+ Zd_lfl(x7y) +oeee fd(xay)



Homogeneous polynomials

» A polynomial f € K[x1,...,x,] is called homogeneous of
degree d iff all its terms are of total degree d.

» If f € Klxy,...,z,] is homogeneous and defines the curve C,
then for any P = (a1,...,a,) € C and any A € K also
(Aa1,...,A\ay) €C.

» Given f € K|[z,y] of degree d, we define its homogenization
as f*(x,y,2) = 2%f(x/2,y/2), ie., if

flx,y) = folz,y) + fi(z,y) + -+ fa(z,y), with deg f; =1,
then
f*(x7y7 Z) = deO(xvy) =+ Zd_lfl(x7y) + e fd(xay)

» If f* € K[z,vy,z] is a homogeneous polynomial, then its
dehomogenization is defined as f(z,y) = f*(x,y,1).



Projective space

Definition. The n-dimensional projective space over K is defined as

PYK)={(c1::cag1) | (c1::cnp1) €EK"N{(0,...,0)}},
where
(c1:- teng1) ={(Ae1 -+t Aepg1) | A € K\{0}}.
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Projective space

Definition. The n-dimensional projective space over K is defined as

PYK)={(c1::cag1) | (c1::cnp1) €EK"N{(0,...,0)}},

where
(c1:- teng1) ={(Ae1 -+t Aepg1) | A € K\{0}}.

» A point P = (a,b) € A? corresponds to a line in A? through
(a,b,1) and (0,0,0) written as (a : b: 1).

» The lines in A® through (a,b,0) and (0,0,0) correspond to
the points at infinity in P2 in direction (a, b, 1).

Let f* € K|z, y, z] be a homogenous polynomial, then the
projective plane algebraic curve C* in P? with defining polynomial
f*is

Cx ={(c1:co:c3) €P?| f*(c1,c2,c3) =0}



Bezout’s theorem

Let f*,¢9* € K|x,y, z] be relatively prime, homogeneous
polynomials and let C*, D* be the corresponding projective curves.
Then C* and D* have exactly deg(f*) - deg(g*) projective points in
common counting multiplicities.
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Bezout’s theorem

Let f*,¢9* € K|x,y, z] be relatively prime, homogeneous
polynomials and let C*, D* be the corresponding projective curves.
Then C* and D* have exactly deg(f*) - deg(g*) projective points in
common counting multiplicities.

Example. Intersection of two parallel lines:

filz,y) =z +y—2, fo(z,y) =z +y+ 1.

Pass to the homogenization of f;, fo and determine the
intersection in P2

fi(z,y,2) =x +y— 22, f(x,y,2) =0 +y+ 2

In P2 we find the point at infinity (1: —1:0).



Genus of a curve

Let C* be an irreducible curve of degree d in IP? having only
ordinary points. Then

genus(C*) = % ((d —1)d-2) - Y mp(me - 1)) .
PeC*

The genus of an irreducible affine curve is the genus of the
associated projective curve.
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Genus of a curve

Let C* be an irreducible curve of degree d in IP? having only
ordinary points. Then

genus(C*) = % ((d —1)d-2) - Y mp(me - 1)) .

Pec*

The genus of an irreducible affine curve is the genus of the
associated projective curve.

Example. C* defined by f;(z,y) = 23 + 222 — y?2 has the double
point P = (0:0: 1) and no other singularities:

$(d-1)(d-2)=32-1=1 and Z%mp(mP—l):%2-1:1.
pPeC



Genus of a curve

Let C* be an irreducible curve of degree d in IP? having only
ordinary points. Then

genus(C*) = % ((d —1)d-2) - Y mp(me - 1)) .

Pec*

The genus of an irreducible affine curve is the genus of the
associated projective curve.

Example. C defined by f3(z,y) = (2 + 4y +3?)? — 16(2% +y?) has
the double point P = (0,0) and no other singularities:

(d—-1)(d—2)=33-2=3 and Z tmp(mp—1)=12-1=1.
peC



Genus of a curve

Let C* be an irreducible curve of degree d in IP? having only
ordinary points. Then

genus(C*) = % ((d —1)d-2) - Y mp(me - 1)) .

Pec*

The genus of an irreducible affine curve is the genus of the
associated projective curve.

Example. C* defined by f3(z,y) = (22 +4yz +y2)% — 16(2? +y?)22
has the double points Py = (0:0:1) and Po3 = (1:+i:0):

3(d-1)(d-2)=1432=3 and > Imp(mp—1)=3321=3.
peC



Genus of a curve

Let C* be an irreducible curve of degree d in IP? having only
ordinary points. Then

genus(C*) = % ((d —1)d-2) - Y mp(me - 1)) .
PeC*

The genus of an irreducible affine curve is the genus of the
associated projective curve.

Theorem. An algebraic curve C (having only ordinary singularities)
is rationally parametrizable if and only if genus(C) = 0.
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> Let C; be the curve defined by fi(z,y) = z3 4+ 22 — 3%
» We know genus(C;) =0 and P = (0,0) is a double point.

» Then the curves defined by the parametrized lines
gi(x,y) = y — tx are intersecting f1(x,y) in exactly one point.
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Let C; be the curve defined by fi(z,y) = 23 + 2% — 12.
We know genus(C1) = 0 and P = (0,0) is a double point.

Then the curves defined by the parametrized lines
gi(x,y) = y — tx are intersecting f1(x,y) in exactly one point.

To compute the intersection points we use resultants.
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We know genus(C1) = 0 and P = (0,0) is a double point.

Then the curves defined by the parametrized lines
gi(x,y) = y — tx are intersecting f1(x,y) in exactly one point.

To compute the intersection points we use resultants.

resy (fi(x,y), 9:(w,y) = —y* (* —t =)
resy(f1(2,9), gt(7,y)) =2* (= >+ +1).
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Simple case

Let C; be the curve defined by fi(z,y) = 23 + 2% — 12.
We know genus(C1) = 0 and P = (0,0) is a double point.

Then the curves defined by the parametrized lines
gi(x,y) = y — tx are intersecting f1(x,y) in exactly one point.

To compute the intersection points we use resultants.

resy (fi(x,y), 9:(w,y) = =y (£ —t =)
resy(f1(2,9), gt(7,y)) = 2° (= >+ +1).
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Simple case

Let C; be the curve defined by fi(z,y) = 23 + 2% — 12.
We know genus(C1) = 0 and P = (0,0) is a double point.

Then the curves defined by the parametrized lines
gi(x,y) = y — tx are intersecting f1(x,y) in exactly one point.

To compute the intersection points we use resultants.

resy (f1(z,y), g:(x,y)) = —y* (t* =t — y)
resy (fi(z,v), g (z,y)) = 22 ( — P4+ 1) .



Simple case

Let C; be the curve defined by fi(z,y) = 23 + 2% — 12.
We know genus(C1) = 0 and P = (0,0) is a double point.

Then the curves defined by the parametrized lines
gi(x,y) = y — tx are intersecting f1(x,y) in exactly one point.

v

v

v

v

To compute the intersection points we use resultants.

resy (f1(z,y), g:(x,y)) = —y* (t* =t — y)
resy (fi(z,v), g (z,y)) = 22 ( — P4+ 1) .

This yields the parametrization

zt) =t -1, y(t)=1t>—t.



Simple case

05

-05

-05

05



Simple case

05

-05

-05

05



Simple case

05

-05

-05

05



Simple case

05

-05

-05

05



Simple case

05

-05

-05

05



Simple case

05

-05

3



Simple case

05

-05

05



Simple case

05

-05

-05

05



Simple case

05

-05

-05

05



Simple case

05

-05

-05

05



Simple case

05

-05

-05

05



Simple case

05

-05

-05

05



Slightly more complicated

> Let Cs3 be the curve defined by

f3(z,y) = (2% + 4y + y?)? — 16(2 + 7).
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> Let Cs3 be the curve defined by
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> Let Cs3 be the curve defined by
fa(,y) = (@ + 4y +¢*)* = 16(z” + ¢°).
» The homogenization
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f3(@,y,2) = (2 + dyz + y*)? — 16(2? + y?)2

» We know genus(C3) =0and P, = (0:0:1),
P 3= (1:+i:0) are the three double points.
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Let Cs be the curve defined by
f3(a,y) = (2 + 4y +¢°)° = 16(% +¢°).
The homogenization
fi(@,y,2) = (2% + dyz + %) = 16(2® + 3%)2”

We know genus(C3) =0and P, =(0:0:1),

P 3= (1:+i:0) are the three double points.

f5 and a polynomial a* of degree 2 have exactly 8 intersection
points counting multiplicities. Let A* denote the projective
curve corresponding to a*.



Slightly more complicated

Let Cs be the curve defined by
f3(a,y) = (@ +dy +4°)° = 16(2” +4%).
The homogenization
fi(@,y,2) = (2% + dyz + %) = 16(2® + 3%)2”
We know genus(C3) =0and P, =(0:0:1),

P 3= (1:+i:0) are the three double points.

f5 and a polynomial a* of degree 2 have exactly 8 intersection
points counting multiplicities. Let A* denote the projective
curve corresponding to a*.

In general: deg(f*) = d and a polynomial a* of degree d — 2

have exactly d(d — 2) intersection points counting
multiplicities.
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Slightly more complicated

Generic ansatz for

a*(x,y,z) = aox? + a1zy + aszz + asy® + asyz + asz>.

Take every m-fold singularity of f* as an (m — 1)-fold
singularity of a*.
Need 1 extra simple point on C3g as base point for a*.

In general: Need d — 3 extra simple points on C3 as base
points for a*.

Use these points to determine the coefficients ay.

Every intersection point (counting multiplicities) of C* and A*
is fixed, except for onel!



Example

Let

a*(z,y,z) = aoz? + a1zy + asxz + asy® + asyz + asz>.

with simple points Py = (0:0:1), Po3 = (1:=4i:0) and
additional simple point @ = (0: —8: 1). Then

*(001):0
a*(1,i,0) =
a*(1,=1,0) =

1) =

.
N
N
a* (0, -8, —

as =0

apg +ia; —az =0
apg —ia; —az =0
64a3 — 8ayg + a5 =0



Example

Let
a*(z,y,z) = aoz? + a1zy + asxz + asy® + asyz + asz>.
with simple points Py = (0:0:1), Po3 = (1:=4i:0) and
additional simple point @ = (0: —8: 1). Then
a*(0,0,1)=0 — a5=0
a*(1,i,0) =0 —
a*(1,-1,0) =0 — ap—ia;—a3=0
a*(0,-8,1)=0 — 64as—8ag+a5=0

apg +ia; —az =0

This system has the solution

1 1
ap = ga4, a1 =0, az=gas, a5=0.



Example

Let
a*(z,y,z) = aoz? + a1zy + asxz + asy® + asyz + asz>.
with simple points Py = (0:0:1), Po3 = (1:=4i:0) and
additional simple point @ = (0: —8: 1). Then
a*(0,0,1)=0 — a5=0
a*(1,i,0) =0 —
a*(1,-1,0) =0 — ap—ia;—a3=0
a*(0,-8,1)=0 — 64as—8ag+a5=0

apg +ia; —az =0

This system has the solution

1 1
ap = ga4, a1 =0, az=gas, a5=0.

as =1 and as = t.



Example

We have
fa(a,y) = (2% + 4y + y*)* = 16(2* + y°)
and the affine adjoint curves

ar(z,y) = %ta;Z + %ty2 +ty + x.



Example

We have
fa(z,y) = (2 + 4y + )% — 16(2? + v?)
and the affine adjoint curves
ar(z,y) = %th + %ty2 +ty + x.
The non-constant factors of res, (f(x,y),ai(z,y)) are

2, y+8, try+ 8t 4 82y — 32¢% + 16y,
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We have
fa(z,y) = (2 + 4y + )% — 16(2? + v?)
and the affine adjoint curves
ar(z,y) = %ta;Z + %ty2 +ty + x.
The non-constant factors of res, (f(x,y),ai(z,y)) are
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Example

We have
fa(@,y) = (2% + 4y + y*)* — 16(2® + ¢)
and the affine adjoint curves
ar(z,y) = %th + %ty2 +ty + x.
The non-constant factors of res, (f(x,y),ai(z,y)) are
2, y+8, thy+8t* 4 8t%y — 32t2 + 16y,
The non-constant factors of resy,(f(z,y), a;(z,y)) are

23, trr + 3263 4+ 8tz + 162



Example

We have
fa(@,y) = (2% + 4y + y*)* — 16(2® + ¢)
and the affine adjoint curves
ar(z,y) = %ta;Z + %ty2 +ty + x.
The non-constant factors of res, (f(x,y),ai(z,y)) are
2, y+8, thy+8t* 4 8t%y — 32t2 + 16y,
The non-constant factors of resy,(f(z,y), a;(z,y)) are

23, t*r + 3263 + 8tz + 162



Parametrization

3 2
<x<t>,y<t>>=< B2 8 (¢ ‘“)).

t2+4 t2+4

@)
\J




Parametrization
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Parametrization
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Some open questions

What is a resultant and how to compute it?
What is the intersection multiplicity and how to compute it?
How do | determine simple simple points on the curve?

How does the choice of simple points affect the
parametrization?

What about real parametrization?

How do curves enter in cryptography?



