
Problem

Given: a matrix A ∈ Qn×n

Find: all x ∈ Qn such that A · x = 0.

Problem

Given: a matrix A ∈ Qn×n

Find: all x ∈ Qn such that A · x = 0.

This can be done with Gaussian elimination.

Problem

Given: a matrix A ∈ Qn×n

Find: all x ∈ Qn such that A · x = 0.

This can be done with Gaussian elimination.

100 200 300 400 500

100000

200000

300000

400000

500000

600000

700000

800000

But this is very slow. . .

Problem

Given: a matrix A ∈ Qn×n

Find: all x ∈ Qn such that A · x = 0.

This can be done with Gaussian elimination.

100 200 300 400 500

100000

200000

300000

400000

500000

600000

700000

800000

But this is very slow. . .

Observation:

This seems to be exponential.

Problem

Given: a matrix A ∈ Qn×n

Find: all x ∈ Qn such that A · x = 0.

This can be done with Gaussian elimination.

100 200 300 400 500

100000

200000

300000

400000

500000

600000

700000

800000

But this is very slow. . .

Observation:

This seems to be exponential.

Ex: expected runtime for solving a 300× 300 system: 1033 years.

Problem

Given: a matrix A ∈ Qn×n

Find: all x ∈ Qn such that A · x = 0.

This can be done with Gaussian elimination.

100 200 300 400 500

100000

200000

300000

400000

500000

600000

700000

800000

But this is very slow. . .

Observation:

This seems to be exponential.

Ex: expected runtime for solving a 300× 300 system: 1033 years.
(If you are 100 000 times faster, you still have to wait 1027 years.)

Problem

Why is this?

Problem

Why is this? Gaussian elimination should run in polynomial time.

Problem

Why is this? Gaussian elimination should run in polynomial time.

Indeed it does, but let’s have a closer look.

Problem

Why is this? Gaussian elimination should run in polynomial time.

Indeed it does, but let’s have a closer look.

Time for arithmetic in Q depends on the bitsize of the input.

Problem

Why is this? Gaussian elimination should run in polynomial time.

Indeed it does, but let’s have a closer look.

Time for arithmetic in Q depends on the bitsize of the input.

The bitsize doubles with addition or multiplication:

1245343545245
5902739457324 + 3457293579639

9372394567964

Problem

Why is this? Gaussian elimination should run in polynomial time.

Indeed it does, but let’s have a closer look.

Time for arithmetic in Q depends on the bitsize of the input.

The bitsize doubles with addition or multiplication:

1245343545245
5902739457324 + 3457293579639

9372394567964 = 2004959644174458006084826
3457675201620639174723021

Problem

Why is this? Gaussian elimination should run in polynomial time.

Indeed it does, but let’s have a closer look.

Time for arithmetic in Q depends on the bitsize of the input.

The bitsize doubles with addition or multiplication:

1245343545245
5902739457324 + 3457293579639

9372394567964 = 2004959644174458006084826
3457675201620639174723021

Therefore, we have

◮ exponential “bit complexity” despite of the

◮ polynomial “arithmetic complexity”.

Problem

In short: Not Gaussian elimination is bad, but Q is bad.

Problem

In short: Not Gaussian elimination is bad, but Q is bad.

For example, Gauss in a prime field Zp is fast.

Problem

In short: Not Gaussian elimination is bad, but Q is bad.

For example, Gauss in a prime field Zp is fast.

Reason: Elements in Zp have a fixed size.

Problem

In short: Not Gaussian elimination is bad, but Q is bad.

For example, Gauss in a prime field Zp is fast.

Reason: Elements in Zp have a fixed size.

Idea: Do the computation in Zp and recover the result for Q from
the result for Zp.

Problem

In short: Not Gaussian elimination is bad, but Q is bad.

For example, Gauss in a prime field Zp is fast.

Reason: Elements in Zp have a fixed size.

Idea: Do the computation in Zp and recover the result for Q from
the result for Zp.

Q Q

Problem

In short: Not Gaussian elimination is bad, but Q is bad.

For example, Gauss in a prime field Zp is fast.

Reason: Elements in Zp have a fixed size.

Idea: Do the computation in Zp and recover the result for Q from
the result for Zp.

Q Q

Problem

In short: Not Gaussian elimination is bad, but Q is bad.

For example, Gauss in a prime field Zp is fast.

Reason: Elements in Zp have a fixed size.

Idea: Do the computation in Zp and recover the result for Q from
the result for Zp.

Q

?

Q

Zp

Problem

In short: Not Gaussian elimination is bad, but Q is bad.

For example, Gauss in a prime field Zp is fast.

Reason: Elements in Zp have a fixed size.

Idea: Do the computation in Zp and recover the result for Q from
the result for Zp.

Q

?

Q

Zp Zp

Problem

In short: Not Gaussian elimination is bad, but Q is bad.

For example, Gauss in a prime field Zp is fast.

Reason: Elements in Zp have a fixed size.

Idea: Do the computation in Zp and recover the result for Q from
the result for Zp.

Q

?

Q

Zp Zp

Problem

In short: Not Gaussian elimination is bad, but Q is bad.

For example, Gauss in a prime field Zp is fast.

Reason: Elements in Zp have a fixed size.

Idea: Do the computation in Zp and recover the result for Q from
the result for Zp.

Q

?

Q

Zp Zp

?

Z −→ Zp

Recall: Zp := Z/pZ := Z/∼ where a ∼ b :⇔ p | a− b.

Z −→ Zp

Recall: Zp := Z/pZ := Z/∼ where a ∼ b :⇔ p | a− b.

For example Z71 = {[0]∼, [1]∼, [2]∼, . . . , [70]∼}

Z −→ Zp

Recall: Zp := Z/pZ := Z/∼ where a ∼ b :⇔ p | a− b.

For example Z71 = {[0]∼, [1]∼, [2]∼, . . . , [70]∼} where, .e.g,

[18]∼ = {. . . ,−124,−53, 18, 89, 160, 231, . . . } ⊆ Z

Z −→ Zp

Recall: Zp := Z/pZ := Z/∼ where a ∼ b :⇔ p | a− b.

For example Z71 = {[0]∼, [1]∼, [2]∼, . . . , [70]∼} where, .e.g,

[18]∼ =
-1000 -500 0 500 1000

Z −→ Zp

Recall: Zp := Z/pZ := Z/∼ where a ∼ b :⇔ p | a− b.

For example Z71 = {[0]∼, [1]∼, [2]∼, . . . , [70]∼} where, .e.g,

[18]∼ =
-1000 -500 0 500 1000

Zp is a ring and

mod : Z→ Zp x 7→ [x]∼

is a ring homomorphism.

Z −→ Zp

Recall: Zp := Z/pZ := Z/∼ where a ∼ b :⇔ p | a− b.

For example Z71 = {[0]∼, [1]∼, [2]∼, . . . , [70]∼} where, .e.g,

[18]∼ =
-1000 -500 0 500 1000

Zp is a ring and

mod : Z→ Zp x 7→ [x]∼

is a ring homomorphism. Therefore:

mod(solution(problem)) = solution(mod(problem))

Z←− Zp

Suppose the solution to a problem is x ∈ Z.

-1000 -500 0 500 1000

Z←− Zp

Suppose the solution to a problem is x ∈ Z.

-1000 -500 0 500 1000

Suppose we know [x]∼ ∈ Zp.

Z←− Zp

Suppose the solution to a problem is x ∈ Z.

-1000 -500 0 500 1000

Suppose we know [x]∼ ∈ Zp.

How to choose p such that x can be recovered from its
homomorphic image [x]∼ ∈ Zp?

Z←− Zp

Suppose the solution to a problem is x ∈ Z.

-1000 -500 0 500 1000

Suppose we know [x]∼ ∈ Zp.

How to choose p such that x can be recovered from its
homomorphic image [x]∼ ∈ Zp?

Observation: If p >> 0, then x is the element of [x]∼ with least
absolute value.

Z←− Zp

Two typical scenarios:

Z←− Zp

Two typical scenarios:

◮ There is an a priori bound M on the final result.

Z←− Zp

Two typical scenarios:

◮ There is an a priori bound M on the final result.

• Then choose p ≥ 2M .

Z←− Zp

Two typical scenarios:

◮ There is an a priori bound M on the final result.

• Then choose p ≥ 2M .

◮ There is an efficient way to check whether a solution
candidate is correct.

Z←− Zp

Two typical scenarios:

◮ There is an a priori bound M on the final result.

• Then choose p ≥ 2M .

◮ There is an efficient way to check whether a solution
candidate is correct.

• Then redo the computation with larger and larger choices
of p until the correct solution is found.

Z←− Zp

In the second scenario, it can be exploited that

x ∈ [x]p ∩ [x]q = [x]lcm(p,q).

Z←− Zp

In the second scenario, it can be exploited that

x ∈ [x]p ∩ [x]q = [x]lcm(p,q).

p � 23
-1000 -500 0 500 1000

Z←− Zp

In the second scenario, it can be exploited that

x ∈ [x]p ∩ [x]q = [x]lcm(p,q).

p � 23

q � 29

-1000 -500 0 500 1000

Z←− Zp

In the second scenario, it can be exploited that

x ∈ [x]p ∩ [x]q = [x]lcm(p,q).

p � 23

q � 29

p q � 667

-1000 -500 0 500 1000

Z←− Zp

In the second scenario, it can be exploited that

x ∈ [x]p ∩ [x]q = [x]lcm(p,q).

p � 23

q � 29

p q � 667

-1000 -500 0 500 1000

A representative for [x]lcm(p,q) can be computed from representatives
of [x]p and [x]q by the Chinese Remainder Algorithm.

Z←− Zp

In the second scenario, it can be exploited that

x ∈ [x]p ∩ [x]q = [x]lcm(p,q).

Two features:

Z←− Zp

In the second scenario, it can be exploited that

x ∈ [x]p ∩ [x]q = [x]lcm(p,q).

Two features:

We don’t need to throw away the
results of trial computation for p
that turned out to be too small.

Z←− Zp

In the second scenario, it can be exploited that

x ∈ [x]p ∩ [x]q = [x]lcm(p,q).

Two features:

We don’t need to throw away the
results of trial computation for p
that turned out to be too small.

We don’t need to ever choose a
p > 232 for which arithmetic would
be considerably slower.

8 16 32 64 128 256

Q −→ Zp

Let u
v
∈ Q and choose p ∈ Z such that gcd(p, v) = 1.

Q −→ Zp

Let u
v
∈ Q and choose p ∈ Z such that gcd(p, v) = 1.

Then there exist s, t ∈ Z with

1 = gcd(p, v) = sp + tv

Q −→ Zp

Let u
v
∈ Q and choose p ∈ Z such that gcd(p, v) = 1.

Then there exist s, t ∈ Z with

1 = gcd(p, v) = sp + tv

So [1]∼ = [tv]∼ = [t]∼[v]∼ in Zp

Q −→ Zp

Let u
v
∈ Q and choose p ∈ Z such that gcd(p, v) = 1.

Then there exist s, t ∈ Z with

1 = gcd(p, v) = sp + tv

So [1]∼ = [tv]∼ = [t]∼[v]∼ in Zp

We can therefore define [u
v
]∼ := [ut]∼

Q −→ Zp

Let u
v
∈ Q and choose p ∈ Z such that gcd(p, v) = 1.

Then there exist s, t ∈ Z with

1 = gcd(p, v) = sp + tv

So [1]∼ = [tv]∼ = [t]∼[v]∼ in Zp

We can therefore define [u
v
]∼ := [ut]∼

Examples:

◮ [13]∼ = [2]∼ in Z5

◮ [−124
11]∼ = [29771]∼ in Z65521

◮ etc.

Q −→ Zp

Let u
v
∈ Q and choose p ∈ Z such that gcd(p, v) = 1.

Then there exist s, t ∈ Z with

1 = gcd(p, v) = sp + tv

So [1]∼ = [tv]∼ = [t]∼[v]∼ in Zp

We can therefore define [u
v
]∼ := [ut]∼

With this extended definition we still have

mod(solution(problem)) = solution(mod(problem))

provided that p is coprime with all the denominators appearing in
the problem. (Almost all primes p will work.)

Zp −→ Q

Suppose the solution to a problem is x = u
v
∈ Q. with u ∈ Z and

v ∈ N.

-100 -50 50 100
u

50

v

Zp −→ Q

Suppose the solution to a problem is x = u
v
∈ Q. with u ∈ Z and

v ∈ N.

-100 -50 50 100
u

50

v

Suppose we know [x]∼ ∈ Zp.

Zp −→ Q

Suppose the solution to a problem is x = u
v
∈ Q. with u ∈ Z and

v ∈ N.

-100 -50 50 100
u

50

v

How to choose p such that x can be recovered from its homomorphic
image [x]∼ ∈ Zp?

Zp −→ Q

Suppose the solution to a problem is x = u
v
∈ Q. with u ∈ Z and

v ∈ N.

-100 -50 50 100
u

50

v

Observation: If p >> 0, then x is the element of [x]∼ where u2 +v2

is minimal.

Zp −→ Q

Two typical scenarios:

Zp −→ Q

Two typical scenarios:

◮ There is an a priori bound M on the final result.

Zp −→ Q

Two typical scenarios:

◮ There is an a priori bound M on the final result.

• Then choose p ≥ 2M2.

Zp −→ Q

Two typical scenarios:

◮ There is an a priori bound M on the final result.

• Then choose p ≥ 2M2.

◮ There is an efficient way to check whether a solution
candidate is correct.

Zp −→ Q

Two typical scenarios:

◮ There is an a priori bound M on the final result.

• Then choose p ≥ 2M2.

◮ There is an efficient way to check whether a solution
candidate is correct.

• Then redo the computation with larger and larger choices
of p until the correct solution is found.

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

g t s

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

g t s

65521 0 1

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

g t s

65521 0 1

29771 1 0

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

g t s

65521 0 1

29771 1 0

5979 −2 1

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [297711]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [−5979
2]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [58559]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [−124
11]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [27
526]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [− 16
2115]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [11
2641]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [− 5
4756]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [1
12153]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [−124
11]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

More precisely, it appears exactly in the middle line of the E.E.A.

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

More precisely, it appears exactly in the middle line of the E.E.A.

Hence the name: Half-GCD-algorithm (method-oriented)

Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

More precisely, it appears exactly in the middle line of the E.E.A.

Hence the name: Half-GCD-algorithm (method-oriented)

Alternative name: rational reconstruction (problem-oriented)

K(x) −→ K[x]/〈u〉

Other domains can be handled analogously.

K(x) −→ K[x]/〈u〉

Other domains can be handled analogously.

In particular, if K is a field, then there are variants with

K(x) playing the role of Q

K[x] playing the role of Z

K[x]/〈u〉 playing the role of Zp

K(x) −→ K[x]/〈u〉

Other domains can be handled analogously.

Recall: K[x]/〈u〉 := K[x]/∼ with a ∼ b :⇔ u | a− b.

K(x) −→ K[x]/〈u〉

Other domains can be handled analogously.

Recall: K[x]/〈u〉 := K[x]/∼ with a ∼ b :⇔ u | a− b.

K[x]/〈u〉 is a ring and

mod : K[x]→ K[x]/〈u〉 p 7→ [p]∼

is a ring homomorphism.

K(x) −→ K[x]/〈u〉

Other domains can be handled analogously.

Recall: K[x]/〈u〉 := K[x]/∼ with a ∼ b :⇔ u | a− b.

K[x]/〈u〉 is a ring and

mod : K[x]→ K[x]/〈u〉 p 7→ [p]∼

is a ring homomorphism.

Special case: if u = x− c for some c ∈ K, then K[x]/〈u〉 ∼= K and
mod corresponds to evaluating of a polynomial at x = c.

K(x) −→ K[x]/〈u〉

Other domains can be handled analogously.

Recall: K[x]/〈u〉 := K[x]/∼ with a ∼ b :⇔ u | a− b.

K[x]/〈u〉 is a ring and

mod : K[x]→ K[x]/〈u〉 p 7→ [p]∼

is a ring homomorphism.

Special case: if u = x− c for some c ∈ K, then K[x]/〈u〉 ∼= K and
mod corresponds to evaluating of a polynomial at x = c.

The polynomials x− c play the role of short primes.

K[x]/〈u〉 −→ K(x)

If we know [p]∼ in K[x]/〈x− ci〉 for several ci ∈ K, how to we
construct [p]∼ in K[x]/〈(x− c1)(x− c2) · · · (x− cn)〉?

K[x]/〈u〉 −→ K(x)

If we know [p]∼ in K[x]/〈x− ci〉 for several ci ∈ K, how to we
construct [p]∼ in K[x]/〈(x− c1)(x− c2) · · · (x− cn)〉?

In other words: Given y1, . . . , yn ∈ K, how to find p ∈ K[x] such
that p(ci) = yi for all i?

K[x]/〈u〉 −→ K(x)

If we know [p]∼ in K[x]/〈x− ci〉 for several ci ∈ K, how to we
construct [p]∼ in K[x]/〈(x− c1)(x− c2) · · · (x− cn)〉?

In other words: Given y1, . . . , yn ∈ K, how to find p ∈ K[x] such
that p(ci) = yi for all i?

◮ Polynomial interpolation plays the role of Chinese
remaindering.

K[x]/〈u〉 −→ K(x)

If we know [p]∼ in K[x]/〈x− ci〉 for several ci ∈ K, how to we
construct [p]∼ in K[x]/〈(x− c1)(x− c2) · · · (x− cn)〉?

In other words: Given y1, . . . , yn ∈ K, how to find p ∈ K[x] such
that p(ci) = yi for all i?

◮ Polynomial interpolation plays the role of Chinese
remaindering.

And since the Euclidean Algorithm also works for polynomials. . .

K[x]/〈u〉 −→ K(x)

If we know [p]∼ in K[x]/〈x− ci〉 for several ci ∈ K, how to we
construct [p]∼ in K[x]/〈(x− c1)(x− c2) · · · (x− cn)〉?

In other words: Given y1, . . . , yn ∈ K, how to find p ∈ K[x] such
that p(ci) = yi for all i?

◮ Polynomial interpolation plays the role of Chinese
remaindering.

And since the Euclidean Algorithm also works for polynomials. . .

◮ . . . we can also do rational (function) reconstruction

Summary

Q(x)

mod mod
mod

Q(x)

Zp1p2···
(x)

rat.recon.

· · · × Zp(x)

eval eval
eval

× · · ·
︷ ︸︸ ︷

· · · × Zp(x) × · · ·

chin.rem.

Zp[x]/〈u〉

rat.recon.

· · · × Zp × · · ·
︷ ︸︸ ︷

· · · × Zp × · · ·

interpol

