Given: a matrix $A \in \mathbb{Q}^{n \times n}$ Find: all $x \in \mathbb{Q}^n$ such that $A \cdot x = 0$.

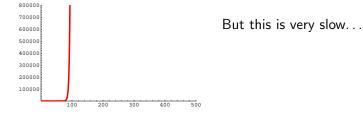
Given: a matrix $A \in \mathbb{Q}^{n \times n}$ *Find:* all $x \in \mathbb{Q}^n$ such that $A \cdot x = 0$.

This can be done with Gaussian elimination.

-

Given: a matrix $A \in \mathbb{Q}^{n \times n}$ Find: all $x \in \mathbb{Q}^n$ such that $A \cdot x = 0$.

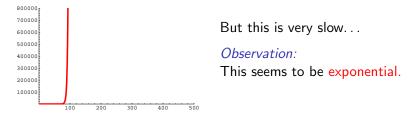
This can be done with Gaussian elimination.



×

```
Given: a matrix A \in \mathbb{Q}^{n \times n}
Find: all x \in \mathbb{Q}^n such that A \cdot x = 0.
```

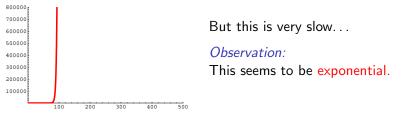
This can be done with Gaussian elimination.



·

```
Given: a matrix A \in \mathbb{Q}^{n \times n}
Find: all x \in \mathbb{Q}^n such that A \cdot x = 0.
```

This can be done with Gaussian elimination.

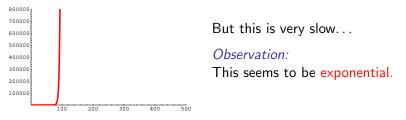


Ex: expected runtime for solving a 300×300 system: 10^{33} years.

.....

```
Given: a matrix A \in \mathbb{Q}^{n \times n}
Find: all x \in \mathbb{Q}^n such that A \cdot x = 0.
```

This can be done with Gaussian elimination.



Ex: expected runtime for solving a 300×300 system: 10^{33} years. (If you are 100 000 times faster, you still have to wait 10^{27} years.)

Why is this?

Why is this? Gaussian elimination should run in polynomial time.

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look.

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look. **•** Time for arithmetic in \mathbb{Q} depends on the *bitsize* of the input.

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look. Time for arithmetic in Q depends on the *bitsize* of the input. The bitsize doubles with addition or multiplication:

 $\tfrac{1245343545245}{5902739457324} + \tfrac{3457293579639}{9372394567964}$

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look. Time for arithmetic in Q depends on the *bitsize* of the input. The bitsize doubles with addition or multiplication:

 $\frac{1245343545245}{5902739457324} + \frac{3457293579639}{9372394567964} = \frac{2004959644174458006084826}{3457675201620639174723021}$

Why is this? Gaussian elimination should run in polynomial time. Indeed it does, but let's have a closer look. Time for arithmetic in Q depends on the *bitsize* of the input. The bitsize doubles with addition or multiplication:

 $\frac{1245343545245}{5902739457324} + \frac{3457293579639}{9372394567964} = \frac{2004959644174458006084826}{3457675201620639174723021}$

Therefore, we have

- exponential "bit complexity" despite of the
- ▶ polynomial *"arithmetic complexity"*.

In short: Not Gaussian elimination is bad, but ${\mathbb Q}$ is bad.

In short: Not Gaussian elimination is bad, but \mathbb{Q} is bad. For example, Gauss in a prime field \mathbb{Z}_p is fast.

In short: Not Gaussian elimination is bad, but \mathbb{Q} is bad. For example, Gauss in a prime field \mathbb{Z}_p is fast. **Reason:** Elements in \mathbb{Z}_p have a fixed size.

In short: Not Gaussian elimination is bad, but ${\mathbb Q}$ is bad.

For example, Gauss in a prime field \mathbb{Z}_p is fast.

Reason: Elements in \mathbb{Z}_p have a fixed size.

In short: Not Gaussian elimination is bad, but ${\mathbb Q}$ is bad.

For example, Gauss in a prime field \mathbb{Z}_p is fast. \blacksquare

Reason: Elements in \mathbb{Z}_p have a fixed size.

In short: Not Gaussian elimination is bad, but ${\mathbb Q}$ is bad.

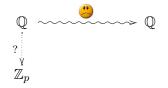
For example, Gauss in a prime field \mathbb{Z}_p is fast. \blacksquare

Reason: Elements in \mathbb{Z}_p have a fixed size.

In short: Not Gaussian elimination is bad, but ${\mathbb Q}$ is bad.

For example, Gauss in a prime field \mathbb{Z}_p is fast. \blacksquare

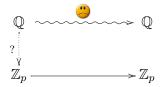
Reason: Elements in \mathbb{Z}_p have a fixed size.



In short: Not Gaussian elimination is bad, but ${\mathbb Q}$ is bad.

For example, Gauss in a prime field \mathbb{Z}_p is fast. \blacksquare

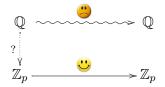
Reason: Elements in \mathbb{Z}_p have a fixed size.



In short: Not Gaussian elimination is bad, but ${\mathbb Q}$ is bad.

For example, Gauss in a prime field \mathbb{Z}_p is fast. \blacksquare

Reason: Elements in \mathbb{Z}_p have a fixed size.



In short: Not Gaussian elimination is bad, but ${\mathbb Q}$ is bad.

For example, Gauss in a prime field \mathbb{Z}_p is fast. \blacksquare

Reason: Elements in \mathbb{Z}_p have a fixed size.



 $\mathbb{Z} \longrightarrow \mathbb{Z}_p$

Recall:
$$\mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z} := \mathbb{Z}/_{\sim}$$
 where $a \sim b :\Leftrightarrow p \mid a - b$.

 $\mathbb{Z} \longrightarrow \mathbb{Z}_p$

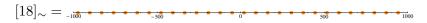
Recall:
$$\mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z} := \mathbb{Z}/_{\sim}$$
 where $a \sim b :\Leftrightarrow p \mid a - b$.
For example $\mathbb{Z}_{71} = \{[0]_{\sim}, [1]_{\sim}, [2]_{\sim}, \dots, [70]_{\sim}\}$

 $\mathbb{Z} \longrightarrow \mathbb{Z}_p$

Recall:
$$\mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z} := \mathbb{Z}/_{\sim}$$
 where $a \sim b :\Leftrightarrow p \mid a - b$.
For example $\mathbb{Z}_{71} = \{[0]_{\sim}, [1]_{\sim}, [2]_{\sim}, \dots, [70]_{\sim}\}$ where, .e.g,
 $[18]_{\sim} = \{\dots, -124, -53, 18, 89, 160, 231, \dots\} \subseteq \mathbb{Z}$

 $\mathbb{Z} \longrightarrow \mathbb{Z}_p$

Recall:
$$\mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z} := \mathbb{Z}/_{\sim}$$
 where $a \sim b :\Leftrightarrow p \mid a - b$.
For example $\mathbb{Z}_{71} = \{[0]_{\sim}, [1]_{\sim}, [2]_{\sim}, \dots, [70]_{\sim}\}$ where, .e.g,



 $\mathbb{Z} \longrightarrow \mathbb{Z}_p$

Recall:
$$\mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z} := \mathbb{Z}/_{\sim}$$
 where $a \sim b :\Leftrightarrow p \mid a - b$.
For example $\mathbb{Z}_{71} = \{[0]_{\sim}, [1]_{\sim}, [2]_{\sim}, \dots, [70]_{\sim}\}$ where, .e.g,
 $[18]_{\sim} = \frac{1}{100}$

is a ring homomorphism.

 $\mathbb{Z} \longrightarrow \mathbb{Z}_p$

Recall:
$$\mathbb{Z}_p := \mathbb{Z}/p\mathbb{Z} := \mathbb{Z}/_{\sim}$$
 where $a \sim b :\Leftrightarrow p \mid a - b$.
For example $\mathbb{Z}_{71} = \{[0]_{\sim}, [1]_{\sim}, [2]_{\sim}, \dots, [70]_{\sim}\}$ where, .e.g,
 $[18]_{\sim} = \frac{100}{-100}$ $g_p : x \mapsto [x]_{\sim}$

is a ring homomorphism. Therefore:

mod(solution(problem)) = solution(mod(problem))

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

Suppose we know $[x]_{\sim} \in \mathbb{Z}_p$.

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

Suppose we know $[x]_{\sim} \in \mathbb{Z}_p$.

How to choose p such that x can be recovered from its homomorphic image $[x]_{\sim} \in \mathbb{Z}_p$?

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

Suppose we know $[x]_{\sim} \in \mathbb{Z}_p$.

How to choose p such that x can be recovered from its homomorphic image $[x]_{\sim} \in \mathbb{Z}_p$?

Observation: If p >> 0, then x is the element of $[x]_{\sim}$ with least absolute value.

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

Two typical scenarios:

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

Two typical scenarios:

 \blacktriangleright There is an a priori bound M on the final result.

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

Two typical scenarios:

- \blacktriangleright There is an a priori bound M on the final result.
 - Then choose $p \ge 2M$.

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

- \blacktriangleright There is an a priori bound M on the final result.
 - Then choose $p \ge 2M$.
- There is an efficient way to check whether a solution candidate is correct.

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

- There is an a priori bound M on the final result.
 - Then choose $p \ge 2M$.
- There is an efficient way to check whether a solution candidate is correct.
 - Then redo the computation with larger and larger choices of *p* until the correct solution is found.

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

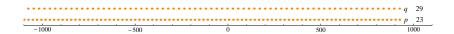
$$x \in [x]_p \cap [x]_q = [x]_{\operatorname{lcm}(p,q)}.$$

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

$$x \in [x]_p \cap [x]_q = [x]_{\operatorname{lcm}(p,q)}.$$

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

$$x \in [x]_p \cap [x]_q = [x]_{\operatorname{lcm}(p,q)}.$$

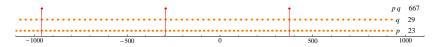


 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

$$x \in [x]_p \cap [x]_q = [x]_{\operatorname{lcm}(p,q)}.$$

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

$$x \in [x]_p \cap [x]_q = [x]_{\operatorname{lcm}(p,q)}.$$



A representative for $[x]_{lcm(p,q)}$ can be computed from representatives of $[x]_p$ and $[x]_q$ by the *Chinese Remainder Algorithm*.

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

$$x \in [x]_p \cap [x]_q = [x]_{\operatorname{lcm}(p,q)}.$$

Two features:

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

$$x \in [x]_p \cap [x]_q = [x]_{\operatorname{lcm}(p,q)}.$$

Two features:

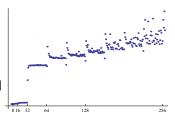
We don't need to throw away the results of trial computation for p that turned out to be too small.

 $\mathbb{Z} \longleftarrow \mathbb{Z}_p$

$$x \in [x]_p \cap [x]_q = [x]_{\operatorname{lcm}(p,q)}.$$

Two features:

- We don't need to throw away the results of trial computation for p that turned out to be too small.
- We don't need to ever choose a p > 2³² for which arithmetic would be considerably slower.



 $\mathbb{Q} \longrightarrow \mathbb{Z}_p$

Let $\frac{u}{v} \in \mathbb{Q}$ and choose $p \in \mathbb{Z}$ such that gcd(p, v) = 1.

Let $\frac{u}{v} \in \mathbb{Q}$ and choose $p \in \mathbb{Z}$ such that gcd(p, v) = 1. Then there exist $s, t \in \mathbb{Z}$ with

$$1 = \gcd(p, v) = sp + tv$$

Let $\frac{u}{v} \in \mathbb{Q}$ and choose $p \in \mathbb{Z}$ such that gcd(p, v) = 1. Then there exist $s, t \in \mathbb{Z}$ with

$$1 = \gcd(p, v) = sp + tv$$

So
$$[1]_{\sim} = [tv]_{\sim} = [t]_{\sim}[v]_{\sim}$$
 in \mathbb{Z}_p

Let $\frac{u}{v} \in \mathbb{Q}$ and choose $p \in \mathbb{Z}$ such that gcd(p, v) = 1. Then there exist $s, t \in \mathbb{Z}$ with

$$1 = \gcd(p, v) = sp + tv$$

So
$$[1]_{\sim} = [tv]_{\sim} = [t]_{\sim}[v]_{\sim}$$
 in \mathbb{Z}_p

We can therefore define $[\frac{u}{v}]_{\sim}:=[ut]_{\sim}$

Let $\frac{u}{v} \in \mathbb{Q}$ and choose $p \in \mathbb{Z}$ such that gcd(p, v) = 1. Then there exist $s, t \in \mathbb{Z}$ with

$$1 = \gcd(p, v) = sp + tv$$

So
$$[1]_{\sim} = [tv]_{\sim} = [t]_{\sim}[v]_{\sim}$$
 in \mathbb{Z}_p

We can therefore define $[\frac{u}{v}]_{\sim}:=[ut]_{\sim}$

Examples:

•
$$[\frac{1}{3}]_{\sim} = [2]_{\sim}$$
 in \mathbb{Z}_5
• $[-\frac{124}{11}]_{\sim} = [29771]_{\sim}$ in \mathbb{Z}_{65521}
• etc.

Let $\frac{u}{v} \in \mathbb{Q}$ and choose $p \in \mathbb{Z}$ such that gcd(p, v) = 1. Then there exist $s, t \in \mathbb{Z}$ with

$$1 = \gcd(p, v) = sp + tv$$

So
$$[1]_{\sim} = [tv]_{\sim} = [t]_{\sim}[v]_{\sim}$$
 in \mathbb{Z}_p

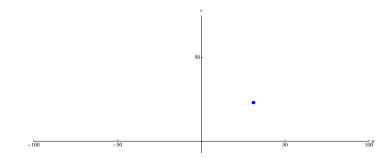
We can therefore define $[rac{u}{v}]_\sim:=[ut]_\sim$

With this extended definition we still have

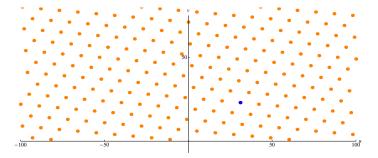
mod(solution(problem)) = solution(mod(problem))

provided that p is coprime with all the denominators appearing in the problem. (Almost all primes p will work.)

 $\mathbb{Z}_p \longrightarrow \mathbb{Q}$

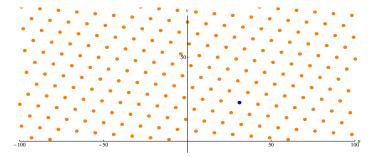


 $\mathbb{Z}_p \longrightarrow \mathbb{Q}$



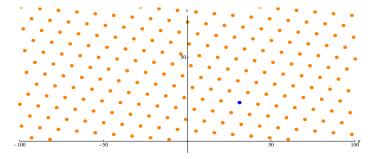
Suppose we know $[x]_{\sim} \in \mathbb{Z}_p$.

 $\mathbb{Z}_p \longrightarrow \mathbb{Q}$



How to choose p such that x can be recovered from its homomorphic image $[x]_\sim\in\mathbb{Z}_p?$

 $\mathbb{Z}_p \longrightarrow \mathbb{Q}$



Observation: If p >> 0, then x is the element of $[x]_{\sim}$ where $u^2 + v^2$ is minimal.

 \blacktriangleright There is an a priori bound M on the final result.

- \blacktriangleright There is an a priori bound M on the final result.
 - Then choose $p \ge 2M^2$.

- \blacktriangleright There is an a priori bound M on the final result.
 - Then choose $p \ge 2M^2$.
- There is an efficient way to check whether a solution candidate is correct.

- There is an a priori bound M on the final result.
 - Then choose $p \ge 2M^2$.
- There is an efficient way to check whether a solution candidate is correct.
 - Then redo the computation with larger and larger choices of *p* until the correct solution is found.

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

 $g = \gcd(65521, 29771) \\ = 65521s + 29771t.$

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

$$g$$
 t s

$$g = \gcd(65521, 29771) = 65521s + 29771t$$

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with $\frac{g \ t \ s}{65521 \ 0 \ 1}$ $g = \gcd(65521, 29771)$ = 65521s + 29771t.

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

Answer: It appears as intermediate result in the E.E.A.

<i>Example:</i> Compute g, s, t with	g	t	s
Example. Compute g, s, t with	65521	0	1
$g = \gcd(65521, 29771)$	29771	1	0

= 65521s + 29771t.

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute q, s, t with	g	t	s
Example. Compute g, s, t with	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.			

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
Example. Compute g, s, t with	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
<i>Example.</i> Compute g, s, t with	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute q, s, t with	g	t	s
Example. Compute g, s, t with	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
	27	526	-239

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

Answer: It appears as intermediate result in the E.E.A.

<i>Example:</i> Compute g, s, t with	g	t	s
Example. Compute g, s, t with	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
	27	526	-239

-2115

961

16

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute q, s, t with	g	t	s
Example . Compute g, s, ι with	65521	0	1
1/(([[0] 00001)	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
	27	526	-239
	16	-2115	961
	11	2641	-1200

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
Example. Compute g, s, t with	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
	27	526	-239
	16	-2115	961
	11	2641	-1200
	5	-4756	2161

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = \left[\frac{u}{v}\right]_{\sim}$ and $u^2 + v^2$ is minimal?

Answer: It appears as intermediate result in the E.E.A.

<i>Example:</i> Compute g, s, t with	g	t	s
Example. Compute g, s, t with	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
	27	526	-239
	16	-2115	961
	11	2641	-1200
	5	-4756	2161
	1	12153	-5522

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
Then in \mathbb{Z}_{65521} we have:	27	526	-239
Then in \mathbb{Z}_{65521} we have.	16	-2115	961
$[29771]_{\sim} = [\frac{29771}{1}]_{\sim}$	11	2641	-1200
	5	-4756	2161
	1	12153	-5522

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
Then in Zame, we have:	27	526	-239
Then in \mathbb{Z}_{65521} we have:	16	-2115	961
$[29771]_{\sim} = [-\frac{5979}{2}]_{\sim}$	11	2641	-1200
	5	-4756	2161
	1	12153	-5522

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
	65521	0	1
1/05501 00551)	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
Then in \mathbb{Z}_{65521} we have:	27	526	-239
Then in \mathbb{Z}_{65521} we have.	16	-2115	961
$[29771]_{\sim} = [\frac{5855}{9}]_{\sim}$	11	2641	-1200
	5	-4756	2161
	1	12153	-5522

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
Example. Compute g, s, t with	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
Then in 7 we have	27	526	-239
Then in \mathbb{Z}_{65521} we have:	16	-2115	961
	11	2641	-1200
$[29771]_{\sim} = [-\frac{124}{11}]_{\sim}$	5	-4756	2161
	1	12153	-5522

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
Then in Zame, we have:	27	526	-239
Then in \mathbb{Z}_{65521} we have:	16	-2115	961
$[29771]_{\sim} = [\frac{27}{526}]_{\sim}$	11	2641	-1200
	5	-4756	2161
	1	12153	-5522

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
Then in Zame, we have:	27	526	-239
Then in \mathbb{Z}_{65521} we have:	16	-2115	961
$[29771]_{\sim} = [-\frac{16}{2115}]_{\sim}$	11	2641	-1200
	5	-4756	2161
	1	12153	-5522

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
Then in \mathbb{Z}_{65521} we have:	27	526	-239
Then in \mathbb{Z}_{65521} we have.	16	-2115	961
$[29771]_{\sim} = [\frac{11}{2641}]_{\sim}$	11	2641	-1200
	5	-4756	2161
	1	12153	-5522

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
Then in Zames we have:	27	526	-239
Then in \mathbb{Z}_{65521} we have:	16	-2115	961
$[29771]_{\sim} = [-\frac{5}{4756}]_{\sim}$	11	2641	-1200
	5	-4756	2161
	1	12153	-5522

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
Example. Compute g, s, t with	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
Then in 7 we have	27	526	-239
Then in \mathbb{Z}_{65521} we have:	16	-2115	961
$[29771]_{\sim} = [\frac{1}{12153}]_{\sim}$	11	2641	-1200
	5	-4756	2161
	1	12153	-5522

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

<i>Example:</i> Compute g, s, t with	g	t	s
	65521	0	1
	29771	1	0
$g = \gcd(65521, 29771)$	5979	-2	1
= 65521s + 29771t.	5855	9	-4
	124	-11	5
Then in \mathbb{Z}_{65521} we have:	27	526	-239
	16	-2115	961
$[29771]_{\sim} = [-\frac{124}{11}]_{\sim}$	11	2641	-1200
	5	-4756	2161
	1	12153	-5522

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

Answer: It appears as intermediate result in the E.E.A.

More precisely, it appears exactly in the middle line of the E.E.A.

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

Answer: It appears as intermediate result in the E.E.A.

More precisely, it appears exactly in the middle line of the E.E.A.

Hence the name: *Half-GCD-algorithm* (method-oriented)

But how to find for a given $[x]_{\sim} \in \mathbb{Z}_p$ the pair (u, v) such that $[x]_{\sim} = [\frac{u}{v}]_{\sim}$ and $u^2 + v^2$ is minimal?

Answer: It appears as intermediate result in the E.E.A.

More precisely, it appears exactly in the middle line of the E.E.A.

Hence the name: *Half-GCD-algorithm* (method-oriented)

Alternative name: rational reconstruction (problem-oriented)

 $\mathbb{K}(x) \longrightarrow \mathbb{K}[x]/\langle u \rangle$

 $\mathbb{K}(x) \longrightarrow \mathbb{K}[x]/\langle u \rangle$

In particular, if $\ensuremath{\mathbb{K}}$ is a field, then there are variants with

$\mathbb{K}(x)$	playing the role of	\mathbb{Q}
$\mathbb{K}[x]$	playing the role of	\mathbb{Z}
$\mathbb{K}[x]/\langle u\rangle$	playing the role of	\mathbb{Z}_p

 $\mathbb{K}(x) \longrightarrow \mathbb{K}[x]/\langle u \rangle$

Recall: $\mathbb{K}[x]/\langle u \rangle := \mathbb{K}[x]/_{\sim}$ with $a \sim b :\Leftrightarrow u \mid a - b$.

 $\mathbb{K}(x) \longrightarrow \mathbb{K}[x]/\langle u \rangle$

 $\begin{array}{l} \textit{Recall: } \mathbb{K}[x]/\langle u\rangle := \mathbb{K}[x]/_{\sim} \textit{ with } a \sim b :\Leftrightarrow u \mid a-b.\\ \mathbb{K}[x]/\langle u\rangle \textit{ is a ring and} \end{array}$

$$\mathrm{mod} \colon \mathbb{K}[x] \to \mathbb{K}[x]/\langle u \rangle \qquad p \mapsto [p]_\sim$$

is a ring homomorphism.

 $\mathbb{K}(x) \longrightarrow \mathbb{K}[x]/\langle u \rangle$

 $\begin{array}{l} \textit{Recall: } \mathbb{K}[x]/\langle u\rangle := \mathbb{K}[x]/_{\sim} \textit{ with } a \sim b :\Leftrightarrow u \mid a-b.\\ \mathbb{K}[x]/\langle u\rangle \textit{ is a ring and} \end{array}$

$$\mathrm{mod} \colon \mathbb{K}[x] \to \mathbb{K}[x]/\langle u \rangle \qquad p \mapsto [p]_\sim$$

is a ring homomorphism.

Special case: if u = x - c for some $c \in \mathbb{K}$, then $\mathbb{K}[x]/\langle u \rangle \cong \mathbb{K}$ and mod corresponds to evaluating of a polynomial at x = c.

 $\mathbb{K}(x) \longrightarrow \mathbb{K}[x]/\langle u \rangle$

Recall: $\mathbb{K}[x]/\langle u \rangle := \mathbb{K}[x]/_{\sim}$ with $a \sim b :\Leftrightarrow u \mid a - b$. $\mathbb{K}[x]/\langle u \rangle$ is a ring and

$$\mathrm{mod} \colon \mathbb{K}[x] \to \mathbb{K}[x]/\langle u \rangle \qquad p \mapsto [p]_\sim$$

is a ring homomorphism.

Special case: if u = x - c for some $c \in \mathbb{K}$, then $\mathbb{K}[x]/\langle u \rangle \cong \mathbb{K}$ and mod corresponds to evaluating of a polynomial at x = c.

The polynomials x - c play the role of short primes.

If we know $[p]_{\sim}$ in $\mathbb{K}[x]/\langle x - c_i \rangle$ for several $c_i \in \mathbb{K}$, how to we construct $[p]_{\sim}$ in $\mathbb{K}[x]/\langle (x - c_1)(x - c_2)\cdots(x - c_n) \rangle$?

If we know $[p]_{\sim}$ in $\mathbb{K}[x]/\langle x - c_i \rangle$ for several $c_i \in \mathbb{K}$, how to we construct $[p]_{\sim}$ in $\mathbb{K}[x]/\langle (x - c_1)(x - c_2) \cdots (x - c_n) \rangle$?

In other words: Given $y_1, \ldots, y_n \in \mathbb{K}$, how to find $p \in \mathbb{K}[x]$ such that $p(c_i) = y_i$ for all i?

If we know $[p]_{\sim}$ in $\mathbb{K}[x]/\langle x - c_i \rangle$ for several $c_i \in \mathbb{K}$, how to we construct $[p]_{\sim}$ in $\mathbb{K}[x]/\langle (x - c_1)(x - c_2)\cdots(x - c_n) \rangle$?

In other words: Given $y_1, \ldots, y_n \in \mathbb{K}$, how to find $p \in \mathbb{K}[x]$ such that $p(c_i) = y_i$ for all i?

 Polynomial interpolation plays the role of Chinese remaindering.

If we know $[p]_{\sim}$ in $\mathbb{K}[x]/\langle x - c_i \rangle$ for several $c_i \in \mathbb{K}$, how to we construct $[p]_{\sim}$ in $\mathbb{K}[x]/\langle (x - c_1)(x - c_2)\cdots(x - c_n) \rangle$?

In other words: Given $y_1, \ldots, y_n \in \mathbb{K}$, how to find $p \in \mathbb{K}[x]$ such that $p(c_i) = y_i$ for all i?

 Polynomial interpolation plays the role of Chinese remaindering.

And since the Euclidean Algorithm also works for polynomials...

If we know $[p]_{\sim}$ in $\mathbb{K}[x]/\langle x - c_i \rangle$ for several $c_i \in \mathbb{K}$, how to we construct $[p]_{\sim}$ in $\mathbb{K}[x]/\langle (x - c_1)(x - c_2)\cdots(x - c_n) \rangle$?

In other words: Given $y_1, \ldots, y_n \in \mathbb{K}$, how to find $p \in \mathbb{K}[x]$ such that $p(c_i) = y_i$ for all i?

 Polynomial interpolation plays the role of Chinese remaindering.

And since the Euclidean Algorithm also works for polynomials...

• ... we can also do rational (function) reconstruction

Summary

