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This can be done with Gaussian elimination.
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But this is very slow. . .

Observation:

This seems to be exponential.

Ex: expected runtime for solving a 300× 300 system: 1033 years.
(If you are 100 000 times faster, you still have to wait 1027 years.)
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Problem

Why is this? Gaussian elimination should run in polynomial time.

Indeed it does, but let’s have a closer look.

Time for arithmetic in Q depends on the bitsize of the input.

The bitsize doubles with addition or multiplication:

1245343545245
5902739457324 + 3457293579639

9372394567964 = 2004959644174458006084826
3457675201620639174723021

Therefore, we have

◮ exponential “bit complexity” despite of the

◮ polynomial “arithmetic complexity”.
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In short: Not Gaussian elimination is bad, but Q is bad.

For example, Gauss in a prime field Zp is fast.

Reason: Elements in Zp have a fixed size.

Idea: Do the computation in Zp and recover the result for Q from
the result for Zp.

Q

?

Q

Zp Zp

?
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Z −→ Zp

Recall: Zp := Z/pZ := Z/∼ where a ∼ b :⇔ p | a− b.

For example Z71 = {[0]∼, [1]∼, [2]∼, . . . , [70]∼} where, .e.g,

[18]∼ =
-1000 -500 0 500 1000

Zp is a ring and

mod : Z→ Zp x 7→ [x]∼

is a ring homomorphism. Therefore:

mod(solution(problem)) = solution(mod(problem))
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Z←− Zp

Suppose the solution to a problem is x ∈ Z.

-1000 -500 0 500 1000

Suppose we know [x]∼ ∈ Zp.

How to choose p such that x can be recovered from its
homomorphic image [x]∼ ∈ Zp?

Observation: If p >> 0, then x is the element of [x]∼ with least
absolute value.
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Two typical scenarios:

◮ There is an a priori bound M on the final result.

• Then choose p ≥ 2M .

◮ There is an efficient way to check whether a solution
candidate is correct.

• Then redo the computation with larger and larger choices
of p until the correct solution is found.
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Z←− Zp

In the second scenario, it can be exploited that

x ∈ [x]p ∩ [x]q = [x]lcm(p,q).

p � 23

q � 29

p q � 667

-1000 -500 0 500 1000

A representative for [x]lcm(p,q) can be computed from representatives
of [x]p and [x]q by the Chinese Remainder Algorithm.
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Z←− Zp

In the second scenario, it can be exploited that

x ∈ [x]p ∩ [x]q = [x]lcm(p,q).

Two features:

We don’t need to throw away the
results of trial computation for p
that turned out to be too small.

We don’t need to ever choose a
p > 232 for which arithmetic would
be considerably slower.

8 16 32 64 128 256
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Let u
v
∈ Q and choose p ∈ Z such that gcd(p, v) = 1.

Then there exist s, t ∈ Z with

1 = gcd(p, v) = sp + tv

So [1]∼ = [tv]∼ = [t]∼[v]∼ in Zp

We can therefore define [u
v
]∼ := [ut]∼

Examples:

◮ [13 ]∼ = [2]∼ in Z5

◮ [−124
11 ]∼ = [29771]∼ in Z65521

◮ etc.



Q −→ Zp

Let u
v
∈ Q and choose p ∈ Z such that gcd(p, v) = 1.

Then there exist s, t ∈ Z with

1 = gcd(p, v) = sp + tv

So [1]∼ = [tv]∼ = [t]∼[v]∼ in Zp

We can therefore define [u
v
]∼ := [ut]∼

With this extended definition we still have

mod(solution(problem)) = solution(mod(problem))

provided that p is coprime with all the denominators appearing in
the problem. (Almost all primes p will work.)
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Zp −→ Q

Suppose the solution to a problem is x = u
v
∈ Q. with u ∈ Z and

v ∈ N.

-100 -50 50 100
u
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v

Observation: If p >> 0, then x is the element of [x]∼ where u2 +v2

is minimal.
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• Then choose p ≥ 2M2.

◮ There is an efficient way to check whether a solution
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of p until the correct solution is found.
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But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [297711 ]∼
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But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u
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]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.
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But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u
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Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [58559 ]∼
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5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200
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But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u
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]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)
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Then in Z65521 we have:
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But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with
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Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [− 16
2115 ]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200
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Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [ 11
2641 ]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161
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Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [− 5
4756 ]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522



Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [ 1
12153 ]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239
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Example: Compute g, s, t with

g = gcd(65521, 29771)

= 65521s + 29771t.

Then in Z65521 we have:

[29771]∼ = [−124
11 ]∼

g t s

65521 0 1

29771 1 0

5979 −2 1

5855 9 −4

124 −11 5

27 526 −239

16 −2115 961

11 2641 −1200

5 −4756 2161

1 12153 −5522
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Zp −→ Q

But how to find for a given [x]∼ ∈ Zp the pair (u, v) such that
[x]∼ = [u

v
]∼ and u2 + v2 is minimal?

Answer: It appears as intermediate result in the E.E.A.

More precisely, it appears exactly in the middle line of the E.E.A.

Hence the name: Half-GCD-algorithm (method-oriented)

Alternative name: rational reconstruction (problem-oriented)
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Other domains can be handled analogously.



K(x) −→ K[x]/〈u〉

Other domains can be handled analogously.

In particular, if K is a field, then there are variants with

K(x) playing the role of Q

K[x] playing the role of Z

K[x]/〈u〉 playing the role of Zp
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K(x) −→ K[x]/〈u〉

Other domains can be handled analogously.

Recall: K[x]/〈u〉 := K[x]/∼ with a ∼ b :⇔ u | a− b.

K[x]/〈u〉 is a ring and

mod : K[x]→ K[x]/〈u〉 p 7→ [p]∼

is a ring homomorphism.

Special case: if u = x− c for some c ∈ K, then K[x]/〈u〉 ∼= K and
mod corresponds to evaluating of a polynomial at x = c.

The polynomials x− c play the role of short primes.
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construct [p]∼ in K[x]/〈(x− c1)(x− c2) · · · (x− cn)〉?
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K[x]/〈u〉 −→ K(x)

If we know [p]∼ in K[x]/〈x− ci〉 for several ci ∈ K, how to we
construct [p]∼ in K[x]/〈(x− c1)(x− c2) · · · (x− cn)〉?

In other words: Given y1, . . . , yn ∈ K, how to find p ∈ K[x] such
that p(ci) = yi for all i?

◮ Polynomial interpolation plays the role of Chinese
remaindering.

And since the Euclidean Algorithm also works for polynomials. . .

◮ . . . we can also do rational (function) reconstruction



Summary

Q(x)

mod mod
mod

Q(x)

Zp1p2···
(x)

rat.recon.

· · · × Zp(x)

eval eval
eval

× · · ·
︷ ︸︸ ︷

· · · × Zp(x) × · · ·

chin.rem.

Zp[x]/〈u〉

rat.recon.

· · · × Zp × · · ·
︷ ︸︸ ︷

· · · × Zp × · · ·

interpol


