Introduction to Unification Theory
 Speeding Up

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria

> kutsia@risc.jku.at

Improving the Recursive Descent Algorithm

- Improvement 1: Linear Space, Exponential Time
- Improvement 2. Linear Space, Quadratic Time
- Improvement 3. Almost Linear Algorithm

Example from the Previous Lecture

Example

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

Unifying s and t will create an mgu where each x_{i} and each y_{i} is bound to a term with $2^{i+1}-1$ symbols:

$$
\begin{aligned}
\left\{x_{1}\right. & \mapsto f\left(x_{0}, x_{0}\right), x_{2} \mapsto f\left(f\left(x_{0}, x_{0}\right), f\left(x_{0}, x_{0}\right)\right), \ldots \\
y_{0} & \left.\mapsto x_{0}, y_{1} \mapsto f\left(x_{0}, x_{0}\right), y_{2} \mapsto f\left(f\left(x_{0}, x_{0}\right), f\left(x_{0}, x_{0}\right)\right), \ldots\right\}
\end{aligned}
$$

- Problem: Duplicate occurrences of the same variable cause the explosion in the size of terms.
- Fix: Represent terms as graphs which share subterms.

Term Dags

Term Dag

A term dag is a directed acyclic graph such that

- its nodes are labeled with function symbols or variables,
- its outgoing edges from any node are ordered,
- outdegree of any node labeled with a symbol f is equal to the arity of f,
- nodes labeled with variables have outdegree 0 .

Term Dags

- Convention: Nodes and terms the term dags represent will not be distinguished.
- Example: "node" $f(a, x)$ is a node labeled with f and having two arcs to a and to x.

Term Dags

The only difference between various dags representing the same term is the amount of structure sharing between subterms.

Example
Three representations of the term $f(g(a, x), g(a, x))$:

Term Dags

- It is possible to build a dag with unique, shared variables for a given term in $O(n * \log (n))$ where n is the number of symbols in the term.
- Assumption for the algorithm we plan to consider:
- The input is a term dag representing the two terms to be unified, with unique, shared occurrences of all variables.

Term Dags

Representing substitutions involving only subterms of a term dag:

- Directly by a relation on the nodes of the dag, either
- stored explicitly as a list of pairs, or
- by storing a link ("substitution arcs") in the graph itself, and maintaining a list of variables (nodes) bound by the substitution.

Term Dags

Substitution application. Two alternatives:

1. Implicit: Identifies two nodes connected with a substitution arc, without actually moving any of the subterm links.
2. Explicit: Expresses the substitution by moving any arc (subterm or substitution) pointing to a variable to point to a binding.

Example

A term dag for the terms $f(x, g(a))$ and $f(g(y), g(y))$, with two applications of their mgu $\{x \mapsto g(a), y \mapsto a\}$.

Term Dags

- With implicit application, the binding for a variable can be determined by traversing the graph depth first, left to right.
- Explicit application represents a substitution in a direct way.

Recursive Descent Algorithm (RDA) on Term Dags

Assumptions:

- Dags consist of nodes.
- Any node in a given dag defines a unique subdag (consisting of the nodes which can be reached from this node), and thus a unique subterm.
- Two different types of nodes: variable nodes and function nodes.
- Information at function nodes:
- The name of the function symbol.
- The arity n of this symbol.
- The list (of length n) of successor nodes (corresponds to the argument list of the function)
- Both function and variable nodes may be equipped with one additional pointer (displayed as a dashed arrow in diagrams) to another node.

Auxiliary procedures for the RDA on Term Dags

- Find:

Takes a node of a dag as input, and follows the additional pointers until it reaches a node without such a pointer. This node is the output of Find.

Example

Auxiliary procedures for the RDA on Term Dags

- Find:

Takes a node of a dag as input, and follows the additional pointers until it reaches a node without such a pointer. This node is the output of Find.

Example

- $\operatorname{Find}(3)=(3)$

Auxiliary procedures for the RDA on Term Dags

- Find:

Takes a node of a dag as input, and follows the additional pointers until it reaches a node without such a pointer. This node is the output of Find.

Example

- $\operatorname{Find}(3)=(3)$
- $\operatorname{Find}(2)=$

Auxiliary procedures for the RDA on Term Dags

- Find:

Takes a node of a dag as input, and follows the additional pointers until it reaches a node without such a pointer. This node is the output of Find.

Example

- $\operatorname{Find}(3)=(3)$
- $\operatorname{Find}(2)=$

Auxiliary procedures for the RDA on Term Dags

- Find:

Takes a node of a dag as input, and follows the additional pointers until it reaches a node without such a pointer. This node is the output of Find.

Example

- $\operatorname{Find}(3)=(3)$
- $\operatorname{Find}(2)=$

Auxiliary procedures for the RDA on Term Dags

- Find:

Takes a node of a dag as input, and follows the additional pointers until it reaches a node without such a pointer. This node is the output of Find.

Example

- $\operatorname{Find}(3)=(3)$
- $\operatorname{Find}(2)=(3)$

Auxiliary procedures for the RDA on Term Dags

- Union:

Takes as input a pair of nodes u, v that do not have additional pointers and creates such a pointer from u to v.

Auxiliary procedures for the RDA on Term Dags

- Occur:

Takes as input a variable node u and another node v (both without additional pointers) and performs the occur check, i.e. it tests whether the variable is contained in the term corresponding to v. The test is performed on the virtual term expressed by the additional pointer structure, i.e. one applies Find to all nodes that are reached during the test.

Example

Auxiliary procedures for the RDA on Term Dags

- Occur:

Takes as input a variable node u and another node v (both without additional pointers) and performs the occur check, i.e. it tests whether the variable is contained in the term corresponding to v. The test is performed on the virtual term expressed by the additional pointer structure, i.e. one applies Find to all nodes that are reached during the test.

Example

- $\operatorname{Occur}(2,6)=$ False

Auxiliary procedures for the RDA on Term Dags

- Occur:

Takes as input a variable node u and another node v (both without additional pointers) and performs the occur check, i.e. it tests whether the variable is contained in the term corresponding to v. The test is performed on the virtual term expressed by the additional pointer structure, i.e. one applies Find to all nodes that are reached during the test.

Example

RDA on Term Dags

Input: A pair of nodes k_{1} and k_{2} in a dag
Output: True if the terms corresponding to k_{1} and k_{2} are unifiable. False Otherwise.
Side Effect: A pointer structure which allows to read off an mgu and the unified term.

Unifyl $\left(k_{1}, k_{2}\right)$
if $k_{1}=k_{2}$ then return True; /* Trivial */
else
if function-node $\left(k_{2}\right)$ then

$$
u:=k_{1} ; v:=k_{2}
$$

else

$$
u:=k_{2} ; v:=k_{1} ; \quad \quad / * \text { Orient } * /
$$

end
Procedure Unify1. Recursive descent algorithm on term dags.
(Continues on the next slide)

Recursive Descent Algorithm on Term Dags

if variable-node(u) then
if Occurs (u, v);
/* Occur-check */

then

return False
else

```
        Union(u,v) ;
    /* Variable elimination */
```

 return True
 end
Procedure Unify1. Recursive descent algorithm on term dags. Continued.
(Continues on the next slide)

Recursive Descent Algorithm on Term Dags

else if function-symbol $(u) \neq$ function-symbol (v) then
return False; /* Symbol clash */ else
$n:=\operatorname{arity}(f u n c t i o n-s y m b o l(u)) ;$
$\left(u_{1}, \ldots, u_{n}\right):=\operatorname{succ}-\operatorname{list}(u)$;
$\left(v_{1}, \ldots, v_{n}\right):=\operatorname{succ}-\operatorname{list}(v)$;
$i:=0 ;$ bool := True;
while $i \leq n$ and bool do
$i:=i+1$; bool $:=\operatorname{Unify} 1\left(\operatorname{Find}\left(u_{i}\right), \operatorname{Find}\left(v_{i}\right)\right) ;$
/* Decomposition */
end
return bool
Procedure Unify1. Recursive descent algorithm on term dags. Finished.

RDA on Term Dags. Example 1

- Unify $f(x, g(a), g(z))$ and $f(g(y), g(y), x)$.
- First, create dags.
- Numbers indicate nodes.

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

Unify1(Find(2), Find(8))

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

$$
\begin{aligned}
& \text { Unify1(Find(2), Find(8)) } \\
& \quad \operatorname{Find}(2)=(2)
\end{aligned}
$$

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

```
Unify1(Find(2), Find(8))
    Find(2) = (2)
    Find(8)=(8)
    Occur (2, 8) = False
    Union(2, 8)
Unifyl(Find(3), Find(9))
    Find(3)=(3)
```


RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

```
Unify1(Find(2), Find(8))
    Find(2) = (2)
    Find(8)=(8)
    Occur (2, 8) = False
    Union(2,8)
Unifyl(Find(3), Find(9))
    Find(3)=(3)
    Find(9) = (9)
```


RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

$$
\begin{aligned}
& \text { Unifyl(Find(2), Find(8)) } \\
& \text { Find(2) }=(2) \\
& \text { Find(8) }=(8) \\
& \text { Occur }(2,8)=\text { False } \\
& \text { Union }(2,8) \\
& \text { Unifyl(Find(3), Find(9)) } \\
& \text { Find(3) }=(3) \\
& \text { Find(9) }=(9) \\
& \text { Unifyl(Find(5), Find(10)) } \\
& \text { Find(5) }=5 \\
& \text { Find }(10)=10
\end{aligned}
$$

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

```
Unify1(Find(2), Find(8))
    Find \((2)=(2)\)
    Find (8) \(=(8)\)
    \(\operatorname{Occur}(2,8)=\) False
    Union(2, 8)
Unifyl(Find(3), Find(9))
    Find \((3)=(3)\)
    Find \((9)=(9)\)
    Unifyl(Find(5), Find(10))
        Find \((5)=5\)
        Find(10) \(=10\)
        orient \((10,5)\)
```


RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

```
Unify1(Find(2), Find(8))
    Find(2)=(2)
    Find(8)=(8)
    Occur (2, 8) = False
    Union(2, 8)
Unifyl(Find(3), Find(9))
    Find(3)=(3)
    Find(9) = (9)
    Unifyl(Find(5), Find(10))
        Find(5)=5
        Find(10) = 10
        orient(10,5)
        Occur(10,5) = False
```


RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

```
Unify1(Find(2), Find(8))
    Find(2)=(2)
    Find(8)=(8)
    Occur (2, 8) = False
    Union(2, 8)
Unifyl(Find(3), Find(9))
    Find(3) = (3)
    Find(9) = (9)
    Unifyl(Find(5), Find(10))
        Find(5)=5
        Find(10) = 10
        orient(10,5)
        Occur(10,5) = False
        Union(10,5)
```


RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

Unifyl(Find(4), Find(2))

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

$$
\begin{aligned}
& \text { Unify1(Find(4), Find(2)) } \\
& \text { Find(4) }=4
\end{aligned}
$$

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

$$
\begin{aligned}
& \text { Unify1(Find(4), Find(2)) } \\
& \text { Find }(4)=4 \\
& \operatorname{Find}(2)=8
\end{aligned}
$$

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

$$
\begin{aligned}
& \text { Unifyl(Find(4), Find(2)) } \\
& \text { Find }(4)=4 \\
& \text { Find }(2)=8 \\
& \text { Unifyl }(4,8)
\end{aligned}
$$

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

$$
\begin{aligned}
& \text { Unifyl(Find(4), Find(2)) } \\
& \text { Find }(4)=4 \\
& \text { Find }(2)=8 \\
& \text { Unifyl }(4,8)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Unify1(Find(6), Find(10)) } \\
& \text { Find }(6)=6 \\
& \operatorname{Find}(10)=5 \\
& \text { Occur }(6,5)=\text { False }
\end{aligned}
$$

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

$$
\begin{aligned}
& \text { Unifyl(Find(4), Find(2)) } \\
& \text { Find }(4)=4 \\
& \text { Find }(2)=8 \\
& \text { Unifyl }(4,8) \\
& \operatorname{Occur}(6,5)=\text { False } \\
& \text { Union(6,5) }
\end{aligned}
$$

RDA on Term Dags. Example 1

Algorithm run starts with Unify $1(1,7)$ and continues:

True

RDA on Term Dags. Example 1 (Cont.)

- From the final dag one can read off:
- The unified term $f(g(a), g(a), g(a))$.
- The mgu in triangular form $[x \mapsto g(y) ; y \mapsto a ; z \mapsto a]$.
- The algorithm does not create new nodes. Only one extra pointer for each variable node.
- Needs linear space.
- Time is still exponential. See the next example.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

$$
\begin{array}{rl}
x_{n} \rightarrow-> & f \\
(\downarrow) & f \downarrow-y_{n} \\
x_{n-1} \rightarrow f & f \\
\vdots & \vdots \\
x_{1} \rightarrow y_{n-1} \\
\vdots & f<-y_{1} \\
\vdots \downarrow & \vdots \downarrow \\
x_{0} & y_{0}
\end{array}
$$

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

$$
\begin{array}{cc}
x_{n} \rightarrow-> & f \\
\vdots \downarrow & f<-y_{n} \\
x_{n-1 \rightarrow} & \vdots \\
\vdots & f<-y_{n-1} \\
\left.x_{1} \rightarrow\right\rangle & f<-y_{1} \\
\vdots \downarrow & \vdots \downarrow \\
x_{0} \rightarrow y_{0}
\end{array}
$$

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

$$
\begin{array}{cc}
x_{n} \rightarrow-> & f \\
\vdots \downarrow & f<-y_{n} \\
x_{n-1 \rightarrow} & \vdots \\
\vdots & f<-y_{n-1} \\
\vdots & \vdots \\
x_{1} \rightarrow-y_{1} \\
\vdots & f \\
x_{0} \rightarrow y_{0} & \vdots \downarrow
\end{array}
$$

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

$$
\begin{array}{cc}
x_{n} \rightarrow-> & f \\
\vdots \downarrow & f<-y_{n} \\
x_{n-1 \rightarrow} & \vdots \\
\vdots & f<-y_{n-1} \\
\left.x_{1} \rightarrow\right\rangle & f<-y_{1} \\
\vdots \downarrow & \vdots \downarrow \\
x_{0} \rightarrow y_{0}
\end{array}
$$

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

$$
\begin{array}{cc}
x_{n} \rightarrow-> & f \\
\vdots \downarrow & f<-y_{n} \\
x_{n-1 \rightarrow} & \vdots \\
\vdots & f<-y_{n-1} \\
\vdots & \vdots \\
x_{1} \rightarrow-y_{1} \\
\vdots & f \\
x_{0} \rightarrow y_{0} & \vdots \downarrow
\end{array}
$$

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

$$
\begin{array}{cc}
x_{n} \rightarrow-> & f \\
\vdots \downarrow & f<-y_{n} \\
x_{n-1 \rightarrow} & \vdots \\
\vdots & f<-y_{n-1} \\
\left.x_{1} \rightarrow\right\rangle & f<-y_{1} \\
\vdots \downarrow & \vdots \downarrow \\
x_{0} \rightarrow y_{0}
\end{array}
$$

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

$$
\begin{array}{cc}
x_{n} \rightarrow-> & f<-y_{n} \\
\vdots \downarrow & \lfloor\downarrow \\
x_{n-1 \rightarrow} \rightarrow f & f<-y_{n-1} \\
\vdots & \vdots \\
x_{1} \rightarrow r & f<-y_{1} \\
\vdots \downarrow & \vdots \downarrow \\
x_{0} \rightarrow y_{0}
\end{array}
$$

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

$$
\begin{array}{cc}
x_{n} \rightarrow-> & f \\
\vdots \downarrow & f<-y_{n} \\
x_{n-1 \rightarrow} & \vdots \\
\vdots & f<-y_{n-1} \\
\vdots & \vdots \\
x_{1} \rightarrow-y_{1} \\
\vdots & f \\
x_{0} \rightarrow y_{0} & \vdots \downarrow
\end{array}
$$

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

$$
\begin{array}{cc}
x_{n} \rightarrow-> & f \\
\vdots \downarrow & f<-y_{n} \\
x_{n-1 \rightarrow} & \vdots \\
\vdots & f<-y_{n-1} \\
\left.x_{1} \rightarrow\right\rangle & f<-y_{1} \\
\vdots \downarrow & \vdots \downarrow \\
x_{0} \rightarrow y_{0}
\end{array}
$$

Exponential number of recursive calls.

RDA on Term Dags. Example 2

Consider again the problem:

$$
\begin{aligned}
s & =h\left(x_{1}, x_{2}, \ldots, x_{n}, f\left(y_{0}, y_{0}\right), f\left(y_{1}, y_{1}\right), \ldots, f\left(y_{n-1}, y_{n-1}\right), y_{n}\right) \\
t & =h\left(f\left(x_{0}, x_{0}\right), f\left(x_{1}, x_{1}\right), \ldots, f\left(x_{n-1}, x_{n-1}\right), y_{1}, y_{2}, \ldots, y_{n}, x_{n}\right)
\end{aligned}
$$

A dag representation of the term bound to x_{n} and y_{n} :

Exponential number of recursive calls.

Correctness of RDA for Term Dags

- Proof is similar as for the RDA. These two algorithms differ only by the data structure they operate on.

Complexity of RDA for Term Dags

- Linear space: terms are not duplicated anymore.
- Exponential time: Calls Unify1 recursively exponentially often.

Complexity of RDA for Term Dags

- Linear space: terms are not duplicated anymore.
- Exponential time: Calls Unify1 recursively exponentially often.
- Fortunately, with an easy trick one can make the running time quadratic.

Complexity of RDA for Term Dags

- Linear space: terms are not duplicated anymore.
- Exponential time: Calls Unify1 recursively exponentially often.
- Fortunately, with an easy trick one can make the running time quadratic.
- Idea: Keep from revisiting already-solved problems in the graph.

Complexity of RDA for Term Dags

- Linear space: terms are not duplicated anymore.
- Exponential time: Calls Unify1 recursively exponentially often.
- Fortunately, with an easy trick one can make the running time quadratic.
- Idea: Keep from revisiting already-solved problems in the graph.
- The algorithm of Corbin and Bidoit:

雷 J. Corbin and M. Bidoit.
A rehabilitation of Robinson's unification algorithm.
In R. Mason, editor, Information Processing 83, pages
909-914. Elsevier Science, 1983.

Quadratic Algorithm on Term Dags

Input: A pair of nodes k_{1} and k_{2} in a dag
Output: True if the terms corresponding to k_{1} and k_{2} are unifiable. False Otherwise.
Side Effect: A pointer structure which allows to read off an mgu and the unified term.

Unify2 $\left(k_{1}, k_{2}\right)$
if $k_{1}=k_{2}$ then return True; /* Trivial */
else
if function-node $\left(k_{2}\right)$ then

$$
u:=k_{1} ; v:=k_{2}
$$

else

$$
u:=k_{2} ; v:=k_{1} ; \quad / * \text { Orient } * /
$$

end
Procedure Unify2. Quadratic Algorithm.
(No difference from Unify1 so far. Continues on the next slide)

Quadratic Algorithm

if variable-node(u) then
if Occurs (u, v);
then return False
else
Union (u, v); return True
end
Procedure Unify2. Quadratic Algorithm. Continued. (No difference from Unify1 so far. Continues on the next slide)

Quadratic Algorithm

else if function-symbol $(u) \neq$ function-symbol (v) then
return False; /* Symbol clash */ else
$n:=\operatorname{arity}($ function-symbol(u));
$\left(u_{1}, \ldots, u_{n}\right):=\operatorname{succ}-\operatorname{list}(u)$;
$\left(v_{1}, \ldots, v_{n}\right):=\operatorname{succ}-\operatorname{list}(v)$;
$i:=0 ;$ bool := True;
Union(u,v);
while $i \leq n$ and bool do
$i:=i+1$; bool $:=\operatorname{Unify} 2\left(\operatorname{Find}\left(u_{i}\right), \operatorname{Find}\left(v_{i}\right)\right) ;$
/* Decomposition */
end
return bool
Procedure Unify2. Quadratic Algorithm. Finished. (The only difference from Unify1 is Union(u,v).)

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{aligned}
& x_{n}--f \quad f<--y_{n} \\
& \text { () (D } \\
& x_{n-1} \rightarrow f \quad f<-y_{n-1} \\
& x_{1}--f \quad f<-y_{1} \\
& \begin{array}{ll}
(2) & (\downarrow) \\
x_{0} & y_{0}
\end{array}
\end{aligned}
$$

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{array}{cc}
x_{n}-\rightarrow & f--\rightarrow f<-y_{n} \\
(\downarrow) & \vdots \\
x_{n-1} \rightarrow f & f \\
\vdots & \vdots \\
x_{1} \rightarrow y_{n-1} \\
f & f<-y_{1} \\
\vdots \downarrow & \vdots \downarrow \\
x_{0} & y_{0}
\end{array}
$$

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{array}{cc}
x_{n}-\rightarrow & f--\rightarrow f<-y_{n} \\
\vdots \downarrow & \downarrow \downarrow \\
x_{n-1} \rightarrow f & f \\
\vdots & \vdots \\
x_{1} \rightarrow y_{n-1} \\
f & f<-y_{1} \\
\vdots \downarrow & \vdots \downarrow \\
x_{0} & y_{0}
\end{array}
$$

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{aligned}
& x_{n}-->f--f \text { - } y_{n} \\
& \text { () () } \\
& x_{n-1} \rightarrow f \rightarrow-f *-y_{n-1} \\
& x_{1}--f \quad f<-y_{1} \\
& \begin{array}{ll}
\downarrow) & \vdots \\
x_{0} & y_{0}
\end{array}
\end{aligned}
$$

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{aligned}
& x_{n} \rightarrow->f \rightarrow f<-y_{n} \\
& \text { (2 」) } \\
& x_{n-1} \rightarrow f \rightarrow \rightarrow f<-y_{n-1} \\
& x_{1}--f \quad f<-y_{1} \\
& \begin{array}{ll}
(\downarrow) & \vdots \\
x_{0} & y_{0}
\end{array}
\end{aligned}
$$

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{aligned}
& x_{n}->f \rightarrow f<--y_{n} \\
& \text { () () } \\
& x_{n-1} \rightarrow f \rightarrow f \leftrightarrow-y_{n-1} \\
& x_{1}-->f--f<-y_{1} \\
& \begin{array}{cc}
() & () \\
x_{0} & y_{0}
\end{array}
\end{aligned}
$$

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{aligned}
& x_{n}->f \rightarrow f<--y_{n} \\
& \text { () () } \\
& x_{n-1} \rightarrow f \rightarrow-f *-y_{n-1} \\
& x_{1}-->f--f<-y_{1} \\
& \begin{array}{cc}
\downarrow し & \downarrow \downarrow \\
x_{0} & y_{0}
\end{array}
\end{aligned}
$$

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{aligned}
& x_{n}->f \rightarrow f<--y_{n} \\
& \text { () () } \\
& x_{n-1} \rightarrow f \rightarrow-f *-y_{n-1} \\
& x_{1}-->f--f<-y_{1}
\end{aligned}
$$

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{aligned}
& x_{n}->f \rightarrow f<--y_{n} \\
& \text { () () } \\
& x_{n-1} \rightarrow f \rightarrow-f *-y_{n-1} \\
& x_{1}-->f--f<-y_{1} \\
& \underset{\substack{\text { (} \\
x_{0} \rightarrow y_{0}}}{\substack{\text { (} \\
\text { (}}}
\end{aligned}
$$

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{aligned}
& x_{n}-->f--f \text { - } y_{n} \\
& \text { () () } \\
& x_{n-1} \rightarrow f \rightarrow-f *-y_{n-1} \\
& x_{1}-->f--f<-y_{1} \\
& \underset{\substack{\text { (} \\
x_{0} \rightarrow y_{0}}}{ }
\end{aligned}
$$

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{aligned}
& x_{n}->f \rightarrow f<--y_{n} \\
& \text { () } 12 \\
& x_{n-1} \rightarrow f \rightarrow-f *-y_{n-1} \\
& x_{1}-->f--f<-y_{1}
\end{aligned}
$$

Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

$$
\begin{aligned}
& x_{n}->f \rightarrow f<--y_{n} \\
& \text { () () } \\
& x_{n-1} \rightarrow f \rightarrow-f *-y_{n-1} \\
& x_{1}-->f--f<-y_{1}
\end{aligned}
$$

Properties of the Quadratic Algorithm

- Correctness can be shown in the similar way as for the RDA.
- The algorithm is quadratic in the number of symbols in original terms:
- Each call of Unify2 either returns immediately, or makes one more node unreachable for the Find operation.
- Therefore, there can be only linearly many calls of Unify2.
- Quadratic complexity comes from the fact that Occur and Find operations are linear.

Almost Linear Algorithm

How to eliminate two sources of nonlinearity of Unify 2 ?

- Occur: Just omit the occur check during the execution of the algorithm.
- Consequence: The data structure may contain cycles.
- Since the occur-check failures are not detected immediately, at the end an extra check has to be performed to find out whether the generated structure is cyclic or not.
- Detecting cycles in a directed graph can be done by linear search.
- Find: Use more efficient union-find algorithm from

R R. Tarjan.
Efficiency of a good but not linear set union algorithm.
J. ACM, 22(2):215-225, 1975.

Auxiliary Procedures for the Almost Linear Algorithm

- Collapsing-find:
- Like Find it takes a node k of a dag as input, and follows the additional pointers until the node $\operatorname{Find}(k)$ is reached.
- In addition, Collapsing-find relocates the pointer of all the nodes reached during this process to $\operatorname{Find}(k)$.

Example

Auxiliary Procedures for the Almost Linear Algorithm

- Collapsing-find:
- Like Find it takes a node k of a dag as input, and follows the additional pointers until the node $\operatorname{Find}(k)$ is reached.
- In addition, Collapsing-find relocates the pointer of all the nodes reached during this process to $\operatorname{Find}(k)$.

Example

- $\mathrm{CF}(3)=(3)$

Auxiliary Procedures for the Almost Linear Algorithm

- Collapsing-find:
- Like Find it takes a node k of a dag as input, and follows the additional pointers until the node $\operatorname{Find}(k)$ is reached.
- In addition, Collapsing-find relocates the pointer of all the nodes reached during this process to $\operatorname{Find}(k)$.

Example

- $C F(3)=(3)$
- $C F(2)=$

Auxiliary Procedures for the Almost Linear Algorithm

- Collapsing-find:
- Like Find it takes a node k of a dag as input, and follows the additional pointers until the node $\operatorname{Find}(k)$ is reached.
- In addition, Collapsing-find relocates the pointer of all the nodes reached during this process to $\operatorname{Find}(k)$.

Example

- $C F(3)=(3)$
- $C F(2)=$

Auxiliary Procedures for the Almost Linear Algorithm

- Collapsing-find:
- Like Find it takes a node k of a dag as input, and follows the additional pointers until the node $\operatorname{Find}(k)$ is reached.
- In addition, Collapsing-find relocates the pointer of all the nodes reached during this process to $\operatorname{Find}(k)$.

Example

- $C F(3)=(3)$
- $C F(2)=$

Auxiliary Procedures for the Almost Linear Algorithm

- Collapsing-find:
- Like Find it takes a node k of a dag as input, and follows the additional pointers until the node $\operatorname{Find}(k)$ is reached.
- In addition, Collapsing-find relocates the pointer of all the nodes reached during this process to $\operatorname{Find}(k)$.

Example

- $C F(3)=(3)$
- $C F(2)=(3)$

Auxiliary Procedures for the Almost Linear Algorithm

- Collapsing-find:
- Like Find it takes a node k of a dag as input, and follows the additional pointers until the node $\operatorname{Find}(k)$ is reached.
- In addition, Collapsing-find relocates the pointer of all the nodes reached during this process to $\operatorname{Find}(k)$.

Example

- $C F(3)=(3)$
- $C F(2)=(3)$

Auxiliary Procedures for the Almost Linear Algorithm

- Union-with-weight:
- Takes as input a pair of nodes u, v that do not have additional pointers.
- If the set $\{k \mid \operatorname{Find}(k)=u\}$ larger than the set $\{k \mid \operatorname{Find}(k)=v\}$ then it creates an additional pointer from v to u.
- Otherwise, it creates an additional pointer from u to v.

Weighted union does not apply when we have a variable node and a function node.

Almost Linear Algorithm

One more auxiliary procedure:

- Not-cyclic:
- Takes a node k as input, and tests the graph which can be reached from k for cycles.
- The test is performed on the virtual graph expressed by the additional pointer structure, i.e. one first applies Collapsing-find to all nodes that are reached during the test.

Almost Linear Algorithm

Input: A pair of nodes k_{1} and k_{2} in a directed graph.
Output: True if k_{1} and k_{2} correspond unifiable terms. False Otherwise.
Side Effect: A pointer structure which allows to read off an mgu and the unified term.

Unify3 $\left(k_{1}, k_{2}\right)$
if Cyclic-unify $\left(k_{1}, k_{2}\right)$ and $\operatorname{Not-cyclic}\left(k_{1}\right)$ then return True
else
return False
end
Procedure Unify3. Almost Linear Algorithm.
(Continues on the next slide)

Almost Linear Algorithm

Cyclic-unify $\left(k_{1}, k_{2}\right)$
if $k_{1}=k_{2}$ then return True; else
if function-node $\left(k_{2}\right)$ then

$$
u:=k_{1} ; v:=k_{2}
$$

else

$$
u:=k_{2} ; v:=k_{1}
$$

end
Procedure Cyclic-unify.
(Continues on the next slide)

Almost Linear Algorithm

if variable-node(u) then
if variable-node(v) then

$$
\text { Union-with-weight }(u, v)
$$

else
Union (u, v); /* No occur-check. Variable elimination */ return True
end
Procedure Cyclic-unify.
(Continues on the next slide)

Almost Linear Algorithm

else if function-symbol $(u) \neq$ function-symbol (v) then
return False; /* Symbol clash */
else
$n:=\operatorname{arity}(f u n c t i o n-s y m b o l(u)) ;$
$\left(u_{1}, \ldots, u_{n}\right):=\operatorname{succ}-$ list (u);
$\left(v_{1}, \ldots, v_{n}\right):=\operatorname{succ}-\operatorname{list}(v)$;
$i:=0 ;$ bool := True;
Union-with-weight (u,v);
while $i \leq n$ and bool do
$i:=\bar{i}+1$;

$$
\text { bool := Cyclic-unify(Collapsing-find }\left(u_{i}\right)
$$

$$
\text { Collapsing-find } \left.\left(v_{i}\right)\right) ; \text { /* Decomposition */ }
$$

end
return bool Procedure Cyclic-unify. Finished.

Almost Linear Algorithm

The algorithm is very similar to the one described in Gerard Huet's thesis:
圊 G. Huet.
Résolution d'Équations dans des Langages d'ordre $1,2, \ldots, \omega$.
Thèse d'État, Université de Paris VII, 1976.

Complexity

- The algorithm is almost linear in the number of symbols in original terms:

Complexity

- The algorithm is almost linear in the number of symbols in original terms:
- Each call of Cyclic-unify either returns immediately, or makes one more node unreachable for the Collapsing-find operation.

Complexity

- The algorithm is almost linear in the number of symbols in original terms:
- Each call of Cyclic-unify either returns immediately, or makes one more node unreachable for the Collapsing-find operation.
- Therefore, there can be only linearly many calls of Cyclic-unify.

Complexity

- The algorithm is almost linear in the number of symbols in original terms:
- Each call of Cyclic-unify either returns immediately, or makes one more node unreachable for the Collapsing-find operation.
- Therefore, there can be only linearly many calls of Cyclic-unify.
- A sequence of n Collapsing-find and Union-with-weight operations can be done in $O(n * \alpha(n))$ time, where α is an extremely slowly growing function (functional inverse of Ackerman's function) never exceeding 5 for practical input.

Complexity

- The algorithm is almost linear in the number of symbols in original terms:
- Each call of Cyclic-unify either returns immediately, or makes one more node unreachable for the Collapsing-find operation.
- Therefore, there can be only linearly many calls of Cyclic-unify.
- A sequence of n Collapsing-find and Union-with-weight operations can be done in $O(n * \alpha(n))$ time, where α is an extremely slowly growing function (functional inverse of Ackerman's function) never exceeding 5 for practical input.
- The use of nonoptimal Union can increase the time complexity at most by a summand $O(m)$ where m is the number of different variable nodes.

Complexity

- The algorithm is almost linear in the number of symbols in original terms:
- Each call of Cyclic-unify either returns immediately, or makes one more node unreachable for the Collapsing-find operation.
- Therefore, there can be only linearly many calls of Cyclic-unify.
- A sequence of n Collapsing-find and Union-with-weight operations can be done in $O(n * \alpha(n))$ time, where α is an extremely slowly growing function (functional inverse of Ackerman's function) never exceeding 5 for practical input.
- The use of nonoptimal Union can increase the time complexity at most by a summand $O(m)$ where m is the number of different variable nodes.
- Therefore, complexity of Cyclic-unify is $O(n * \alpha(n))$.

Complexity

- The algorithm is almost linear in the number of symbols in original terms:
- Each call of Cyclic-unify either returns immediately, or makes one more node unreachable for the Collapsing-find operation.
- Therefore, there can be only linearly many calls of Cyclic-unify.
- A sequence of n Collapsing-find and Union-with-weight operations can be done in $O(n * \alpha(n))$ time, where α is an extremely slowly growing function (functional inverse of Ackerman's function) never exceeding 5 for practical input.
- The use of nonoptimal Union can increase the time complexity at most by a summand $O(m)$ where m is the number of different variable nodes.
- Therefore, complexity of Cyclic-unify is $O(n * \alpha(n))$.
- Complexity of Not-cyclic is linear.

Complexity

- The algorithm is almost linear in the number of symbols in original terms:
- Each call of Cyclic-unify either returns immediately, or makes one more node unreachable for the Collapsing-find operation.
- Therefore, there can be only linearly many calls of Cyclic-unify.
- A sequence of n Collapsing-find and Union-with-weight operations can be done in $O(n * \alpha(n))$ time, where α is an extremely slowly growing function (functional inverse of Ackerman's function) never exceeding 5 for practical input.
- The use of nonoptimal Union can increase the time complexity at most by a summand $O(m)$ where m is the number of different variable nodes.
- Therefore, complexity of Cyclic-unify is $O(n * \alpha(n))$.
- Complexity of Not-cyclic is linear.
- Hence, complexity of Unify 3 is $O(n * \alpha(n))$.

Summary

- Recursive Descent Algorithm for unification is exponential in time and space.
- Using term dags reduces space complexity to linear.
- Making the union pointer between function nodes before unifying their arguments reduces time complexity to quadratic.
- Using collapsing-find and union-with-weight further reduces time complexity to almost linear.

