
Introduction to Unification Theory
Speeding Up

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria
kutsia@risc.jku.at



Improving the Recursive Descent Algorithm

I Improvement 1: Linear Space, Exponential Time
I Improvement 2. Linear Space, Quadratic Time
I Improvement 3. Almost Linear Algorithm



Example from the Previous Lecture

Example

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

Unifying s and t will create an mgu where each xi and each yi is
bound to a term with 2i+1 − 1 symbols:

{x1 7→ f (x0, x0), x2 7→ f (f (x0, x0), f (x0, x0)), . . . ,

y0 7→ x0, y1 7→ f (x0, x0), y2 7→ f (f (x0, x0), f (x0, x0)), . . .}

I Problem: Duplicate occurrences of the same variable
cause the explosion in the size of terms.

I Fix: Represent terms as graphs which share subterms.



Term Dags

Term Dag
A term dag is a directed acyclic graph such that

I its nodes are labeled with function symbols or variables,
I its outgoing edges from any node are ordered,
I outdegree of any node labeled with a symbol f is equal to

the arity of f ,
I nodes labeled with variables have outdegree 0.



Term Dags

I Convention: Nodes and terms the term dags represent will
not be distinguished.

I Example: “node” f (a, x) is a node labeled with f and having
two arcs to a and to x.



Term Dags

The only difference between various dags representing the
same term is the amount of structure sharing between
subterms.

Example
Three representations of the term f (g(a, x), g(a, x)):

f

g

a x

g

a x

f

g

a x

g

a

f

g

a x



Term Dags

I It is possible to build a dag with unique, shared variables
for a given term in O(n ∗ log(n)) where n is the number of
symbols in the term.

I Assumption for the algorithm we plan to consider:
I The input is a term dag representing the two terms to be

unified, with unique, shared occurrences of all variables.



Term Dags

Representing substitutions involving only subterms of a term
dag:

I Directly by a relation on the nodes of the dag, either
I stored explicitly as a list of pairs, or
I by storing a link (“substitution arcs”) in the graph itself, and

maintaining a list of variables (nodes) bound by the
substitution.



Term Dags
Substitution application. Two alternatives:

1. Implicit: Identifies two nodes connected with a substitution
arc, without actually moving any of the subterm links.

2. Explicit: Expresses the substitution by moving any arc
(subterm or substitution) pointing to a variable to point to a
binding.

Example
A term dag for the terms f (x, g(a)) and f (g(y), g(y)), with two
applications of their mgu {x 7→ g(a), y 7→ a}.

f

x g

a

f

g g

y Implicit

f

x g

a

f

g g

y Explicit



Term Dags

I With implicit application, the binding for a variable can be
determined by traversing the graph depth first, left to right.

I Explicit application represents a substitution in a direct way.



Recursive Descent Algorithm (RDA) on Term Dags

Assumptions:
I Dags consist of nodes.
I Any node in a given dag defines a unique subdag

(consisting of the nodes which can be reached from this
node), and thus a unique subterm.

I Two different types of nodes: variable nodes and function
nodes.

I Information at function nodes:
I The name of the function symbol.
I The arity n of this symbol.
I The list (of length n) of successor nodes (corresponds to

the argument list of the function)
I Both function and variable nodes may be equipped with

one additional pointer (displayed as a dashed arrow in
diagrams) to another node.



Auxiliary procedures for the RDA on Term Dags

I Find:
Takes a node of a dag as input, and follows the additional
pointers until it reaches a node without such a pointer. This
node is the output of Find.

Example

I Find(3)=(3)
I Find(2)= (3)

f(1)

x(2)x(2) a(3)a(3)

f(4)

y(5)



Auxiliary procedures for the RDA on Term Dags

I Union:
Takes as input a pair of nodes u, v that do not have
additional pointers and creates such a pointer from u to v.



Auxiliary procedures for the RDA on Term Dags

I Occur:
Takes as input a variable node u and another node v (both
without additional pointers) and performs the occur check,
i.e. it tests whether the variable is contained in the term
corresponding to v. The test is performed on the virtual
term expressed by the additional pointer structure, i.e. one
applies Find to all nodes that are reached during the test.

Example

I Occur(2,6)=False
I Occur(2,7)=True

f(1)

x(2)x(2) g(3)

a(4)a(4)

f(5)

g(6)g(6) g(7)g(7)

y(8)y(8)



RDA on Term Dags

Input: A pair of nodes k1 and k2 in a dag
Output: True if the terms corresponding to k1 and k2 are

unifiable. False Otherwise.
Side Effect: A pointer structure which allows to read off an

mgu and the unified term.

Unify1 (k1, k2)
if k1 = k2 then return True; /* Trivial */
else

if function-node(k2) then
u := k1; v := k2

else
u := k2; v := k1; /* Orient */

end

Procedure Unify1. Recursive descent algorithm on term dags.
(Continues on the next slide)



Recursive Descent Algorithm on Term Dags

if variable-node(u) then
if Occurs (u, v) ; /* Occur-check */
then

return False
else

Union(u, v) ; /* Variable elimination */
return True

end

Procedure Unify1. Recursive descent algorithm on term dags.
Continued.

(Continues on the next slide)



Recursive Descent Algorithm on Term Dags

else if function-symbol(u) 6= function-symbol(v)
then

return False; /* Symbol clash */
else

n := arity(function-symbol(u));
(u1, . . . , un) := succ-list(u);
(v1, . . . , vn) := succ-list(v);
i := 0; bool := True;

while i ≤ n and bool do
i := i + 1; bool := Unify1(Find(ui),Find(vi));
/* Decomposition */

end
return bool

Procedure Unify1. Recursive descent algorithm on term dags.
Finished.



RDA on Term Dags. Example 1

I Unify f (x, g(a), g(z)) and f (g(y), g(y), x).
I First, create dags.
I Numbers indicate nodes.

f(1)

g(3)x(2) g(4)

a(5) z(6)

f(7)

g(8) g(9)

y(10)



RDA on Term Dags. Example 1

Algorithm run starts with Unify1(1, 7) and continues:

Unify1(Find(2), Find(8))
Find(2) = (2)
Find(8) = (8)
Occur(2, 8) = False
Union(2, 8)

f(1)

g(3)x(2) g(4)

a(5) z(6)

f(7)

g(8) g(9)

y(10)



RDA on Term Dags. Example 1 (Cont.)

Algorithm run starts with Unify1(1, 7) and continues:

Unify1(Find(3),Find(9))
Find(3) = (3)
Find(9) = (9)
Unify1(Find(5),Find(10))
Find(5) = 5
Find(10) = 10
orient(10, 5)
Occur(10, 5) = False
Union(10, 5)

f(1)

g(3)x(2) g(4)

a(5) z(6)

f(7)

g(8) g(9)

y(10)



RDA on Term Dags. Example 1 (Cont.)

Algorithm run starts with Unify1(1, 7) and continues:

Unify1(Find(4),Find(2))
Find(4) = 4
Find(2) = 8

Unify1(4, 8)
Unify1(Find(6),Find(10))
Find(6) = 6
Find(10) = 5
Occur(6, 5) = False
Union(6, 5)

True

f(1)

g(3)x(2) g(4)

a(5) z(6)

f(7)

g(8) g(9)

y(10)



RDA on Term Dags. Example 1 (Cont.)

f(1)

g(3)x(2) g(4)

a(5) z(6)

f(7)

g(8) g(9)

y(10)

I From the final dag one can read off:
I The unified term f (g(a), g(a), g(a)).
I The mgu in triangular form [x 7→ g(y); y 7→ a; z 7→ a].

I The algorithm does not create new nodes. Only one extra
pointer for each variable node.

I Needs linear space.
I Time is still exponential. See the next example.



RDA on Term Dags. Example 2

Consider again the problem:

s = h(x1, x2, . . . , xn, f (y0, y0), f (y1, y1), . . . , f (yn−1, yn−1), yn)

t = h(f (x0, x0), f (x1, x1), . . . , f (xn−1, xn−1), y1, y2, . . . , yn, xn)

A dag representation of the term bound to xn and yn:

f

f

f

x0

f

f

f

y0

xnxn

xn−1

x1

ynyn

yn−1

y1

Exponential number of recursive calls.



Correctness of RDA for Term Dags

I Proof is similar as for the RDA. These two algorithms differ
only by the data structure they operate on.



Complexity of RDA for Term Dags

I Linear space: terms are not duplicated anymore.
I Exponential time: Calls Unify1 recursively exponentially

often.
I Fortunately, with an easy trick one can make the running

time quadratic.
I Idea: Keep from revisiting already-solved problems in the

graph.
I The algorithm of Corbin and Bidoit:

J. Corbin and M. Bidoit.
A rehabilitation of Robinson’s unification algorithm.
In R. Mason, editor, Information Processing 83, pages
909–914. Elsevier Science, 1983.



Quadratic Algorithm on Term Dags

Input: A pair of nodes k1 and k2 in a dag
Output: True if the terms corresponding to k1 and k2 are

unifiable. False Otherwise.
Side Effect: A pointer structure which allows to read off an

mgu and the unified term.

Unify2 (k1, k2)
if k1 = k2 then return True; /* Trivial */
else

if function-node(k2) then
u := k1; v := k2

else
u := k2; v := k1; /* Orient */

end

Procedure Unify2. Quadratic Algorithm.
(No difference from Unify1 so far. Continues on the next slide)



Quadratic Algorithm

if variable-node(u) then
if Occurs (u, v) ; /* Occur-check */
then

return False
else

Union(u, v) ; /* Variable elimination */
return True

end

Procedure Unify2. Quadratic Algorithm. Continued.
(No difference from Unify1 so far. Continues on the next slide)



Quadratic Algorithm

else if function-symbol(u) 6= function-symbol(v)
then

return False; /* Symbol clash */
else

n := arity(function-symbol(u));
(u1, . . . , un) := succ-list(u);
(v1, . . . , vn) := succ-list(v);
i := 0; bool := True;

Union(u,v);
while i ≤ n and bool do

i := i + 1; bool := Unify2(Find(ui),Find(vi));
/* Decomposition */

end
return bool

Procedure Unify2. Quadratic Algorithm. Finished.
(The only difference from Unify1 is Union(u,v).)



Quadratic Algorithm. Example

The same example that revealed exponential behavior of RDA:

f

f

f

x0

f

f

f

y0

xnxn

xn−1

x1

ynyn

yn−1

y1



Properties of the Quadratic Algorithm

I Correctness can be shown in the similar way as for the
RDA.

I The algorithm is quadratic in the number of symbols in
original terms:

I Each call of Unify2 either returns immediately, or makes
one more node unreachable for the Find operation.

I Therefore, there can be only linearly many calls of Unify2.
I Quadratic complexity comes from the fact that Occur and
Find operations are linear.



Almost Linear Algorithm

How to eliminate two sources of nonlinearity of Unify2?
I Occur: Just omit the occur check during the execution of

the algorithm.
I Consequence: The data structure may contain cycles.
I Since the occur-check failures are not detected

immediately, at the end an extra check has to be performed
to find out whether the generated structure is cyclic or not.

I Detecting cycles in a directed graph can be done by linear
search.

I Find: Use more efficient union-find algorithm from

R. Tarjan.
Efficiency of a good but not linear set union algorithm.
J. ACM, 22(2):215–225, 1975.



Auxiliary Procedures for the Almost Linear Algorithm

I Collapsing-find:
I Like Find it takes a node k of a dag as input, and follows

the additional pointers until the node Find(k) is reached.
I In addition, Collapsing-find relocates the pointer of all

the nodes reached during this process to Find(k).

Example

I CF(3)=(3)
I CF(2)= (3)

f(1)

x(2)x(2) a(3)a(3)

f(4)

y(5)



Auxiliary Procedures for the Almost Linear Algorithm

I Union-with-weight:
I Takes as input a pair of nodes u, v that do not have

additional pointers.
I If the set {k | Find(k) = u} larger than the set
{k | Find(k) = v} then it creates an additional pointer from
v to u.

I Otherwise, it creates an additional pointer from u to v.

Weighted union does not apply when we have a variable node
and a function node.



Almost Linear Algorithm

One more auxiliary procedure:
I Not-cyclic:

I Takes a node k as input, and tests the graph which can be
reached from k for cycles.

I The test is performed on the virtual graph expressed by the
additional pointer structure, i.e. one first applies
Collapsing-find to all nodes that are reached during
the test.



Almost Linear Algorithm

Input: A pair of nodes k1 and k2 in a directed graph.
Output: True if k1 and k2 correspond unifiable terms. False

Otherwise.
Side Effect: A pointer structure which allows to read off an

mgu and the unified term.

Unify3 (k1, k2)
if Cyclic-unify(k1, k2) and Not-cyclic(k1) then

return True
else

return False
end

Procedure Unify3. Almost Linear Algorithm.
(Continues on the next slide)



Almost Linear Algorithm

Cyclic-unify (k1, k2)
if k1 = k2 then return True; /* Trivial */
else

if function-node(k2) then
u := k1; v := k2

else
u := k2; v := k1; /* Orient */

end

Procedure Cyclic-unify.
(Continues on the next slide)



Almost Linear Algorithm

if variable-node(u) then
if variable-node(v) then

Union-with-weight(u, v)
else

Union(u, v); /* No occur-check. Variable elimination */
return True

end

Procedure Cyclic-unify.
(Continues on the next slide)



Almost Linear Algorithm

else if function-symbol(u) 6= function-symbol(v)
then

return False; /* Symbol clash */
else

n := arity(function-symbol(u));
(u1, . . . , un) := succ-list(u);
(v1, . . . , vn) := succ-list(v);
i := 0; bool := True;

Union-with-weight (u,v);
while i ≤ n and bool do

i := i + 1;
bool := Cyclic-unify(Collapsing-find(ui)

Collapsing-find(vi)); /* Decomposition */

end
return bool

Procedure Cyclic-unify. Finished.



Almost Linear Algorithm

The algorithm is very similar to the one described in Gerard
Huet’s thesis:

G. Huet.
Résolution d’Équations dans des Langages d’ordre
1, 2, . . . , ω.
Thèse d’État, Université de Paris VII, 1976.



Complexity

I The algorithm is almost linear in the number of symbols in
original terms:

I Each call of Cyclic-unify either returns immediately, or
makes one more node unreachable for the
Collapsing-find operation.

I Therefore, there can be only linearly many calls of
Cyclic-unify.

I A sequence of n Collapsing-find and
Union-with-weight operations can be done in
O(n ∗ α(n)) time, where α is an extremely slowly growing
function (functional inverse of Ackerman’s function) never
exceeding 5 for practical input.

I The use of nonoptimal Union can increase the time
complexity at most by a summand O(m) where m is the
number of different variable nodes.

I Therefore, complexity of Cyclic-unify is O(n ∗ α(n)).
I Complexity of Not-cyclic is linear.
I Hence, complexity of Unify3 is O(n ∗ α(n)).



Summary

I Recursive Descent Algorithm for unification is exponential
in time and space.

I Using term dags reduces space complexity to linear.
I Making the union pointer between function nodes before

unifying their arguments reduces time complexity to
quadratic.

I Using collapsing-find and union-with-weight further
reduces time complexity to almost linear.


	Recursive Descent Algorithm is Expensive
	Improvement 1: Linear Space, Exponential Time
	Improvement 2. Linear Space, Quadratic Time
	Improvement 3. Almost Linear Algorithm

