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Matching Problem

I Given: terms t and s.
I Find: a substitution σ such that tσ = s (syntactic

matching).
I Matching equation: t ≤·? s.
I σ is called a matcher.



Matching Problem

Example

I Matching problem: f (x , y) ≤·? f (g(z), x).
Matcher: σ = {x 7→ g(z), y 7→ x}.

I Matching problem: f (x , x) ≤·? f (x ,a).
No matcher.

I Matching problem: f (g(x), x , y) ≤·? f (g(g(a)),g(a),b).
Matcher: {x 7→ g(a), y 7→ b}.

I Matching problem: f (x) ≤·? f (g(x)).
Matcher: {x 7→ g(x)}.
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Relating Matching and Unification

I Matching can be reduced to unification.
I Simply replace in a matching problem t ≤·? s each variable

in s with a new constant.
I f (x , y) ≤·? f (g(z), x) becomes the unification problem

f (x , y)
.

=? f (g(cz), cx ).
I cz , cx : new constants.
I The unifier: {x 7→ g(cz), y 7→ cx}.
I The matcher: {x 7→ g(z), y 7→ z}.
I When t is ground, matching and unification coincide.



Relating Matching and Unification

I Both matching and unification can be implemented in
linear time.

I Linear implementation of matching is straightforward.
I Linear implementation of unification requires sophisticated

data structures.
I Whenever efficiency is an issue, matching should be

implemented separately from unification.
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Tree Pattern Matching

I Matching is needed in rewriting, functional programming,
querying, etc.

I Often the following problem is required to be solved:
I Given a ground term s (subject) and a term p (pattern)
I Find all subterms in s to which p matches.

I Notation: p �? s.
I In this lecture: An algorithm to solve this problem.
I Terms are represented as trees.



Matching

Working example:

f (f (a,X ),Y )�? f (f (a,b), f (f (a,b),a)).



Tree Pattern Matching
Matching the pattern tree to the subject tree.
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Tree Pattern Matching
Matching the pattern tree to the subject tree.
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Tree Pattern Matching
Matching the pattern tree to the subject tree.
Pattern tree 1. Second match: g
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Tree Pattern Matching
Matching the pattern tree to the subject tree.
Pattern tree 2. Single match:
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Tree Pattern Matching

I Pattern tree 1 in the example is linear: Every variable
occurs only once.

I Pattern tree 2 is nonlinear: X occurs twice.
I Two steps for nonlinear tree matching:

1. Ignore multiplicity of variables (assume the pattern in linear)
and do linear tree pattern matching.

2. Verify that the substitutions computed for multiple
occurrences of a variable are identical: check consistency.



Terms

I V: Set of variables.
I F : Set of function symbols of fixed arity.
I F ∩ V = ∅.
I Constants: 0-ary function symbols.
I Terms:

I A variable or a constant is a term.
I If f ∈ F , f is n-ary, n > 0, and t1, . . . , tn are terms, then

f (t1, . . . , tn) is a term.



Term Trees, Nodes, Node Labels, Edges, Edge labels
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Labeled Path

I Labeled path lp(n1,nq) in a term tree from the node n1 to
the node nq:
A string formed by alternatively concatenating the node
and edge labels from n1 to nq.



Labeled Path

Example
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Euler Chains and Strings

I Euler chain for a term tree: a string of node labels obtained
as follows:
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Euler Chains and Strings

I Properties of Euler chains a string of node labels obtained
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Euler Chains and Strings
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Euler Chains and Strings

I Properties of Euler chains a string of node labels obtained
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Euler Chains and Strings

I Euler strings: Replace nodes in Euler chains with node
labels.
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Tree Pattern Matching: Idea

I Instead of using the tree structure, the algorithm operates
on Euler chains and Euler strings.

I To declare a match of the pattern tree at a subtree of the
subject tree, the algorithm

I verifies whether their Euler strings are identical after
replacing the variables in the pattern by Euler strings of
appropriate terms.

I To justify this approach, Euler strings have to be related to
the tree structures.

Theorem
Two term trees are equivalent (i.e. they represent the same
term) iff their corresponding Euler strings are identical.
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Tree Pattern Matching: Idea

I Instead of using the tree structure, the algorithm operates
on Euler chains and Euler strings.

I To declare a match of the pattern tree at a subtree of the
subject tree, the algorithm

I verifies whether their Euler strings are identical after
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Theorem
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Nonlinear Tree Pattern Matching: Ideas

Putting the ideas together:
1. Ignore multiplicity of variables (assume the pattern is

linear) and do linear tree pattern matching.
2. Verify that the substitutions computed for multiple

occurrences of a variable are identical: check consistency.
3. Instead of trees, operate on their Euler strings.



Notation

I s: Subject tree.
I p: Pattern tree.
I Cs and Es: Euler chain and Euler string for the subject tree.
I Cp and Ep: Euler chain and Euler string for the pattern tree.
I n: Size of s.
I m: Size of p.
I k : Number of variables in p.
I K : The set of all root-to-variable-leaf pathes in p.



Step 1. Linear Tree Pattern Matching

I Let v1, . . . , vk be the variables in p.
I v1, . . . , vk appear only once in Ep, because

I only leaves are labeled with variables,
I each leaf appears exactly once in the Euler string, and
I each variable occurs exactly once in p (linearity).



Step 1. Linear Tree Pattern Matching

We start with a simple algorithm.
I Es is stored in an array.

I Split Ep into k + 1 strings, denoted σ1, . . . , σk+1, by
removing variables.

I ffafXffYf splits into σ1 = ffaf , σ2 = ff , and σ3 = f .
I Construct Boolean tables M1, . . . ,Mk , each having |Es|

entries:

Mi [j] =

{
1 if there is a match for σi in Es starting at pos. j
0 otherwise.
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Step 1. Linear Tree Pattern Matching

Example

I Ep = ffafXffYf, σ1 = ffaf, σ2 = ff, σ3 = f,
Es = ffafbffffafaffaff.

I M1 = 10000001000010000 (ffafbffffafaffaff).

I M2 = 10000111000010010 (ffafbffffafaffaff).

I M3 = 11010111100011011 (ffafbffffafaffaff).



Step 1. Linear Tree Pattern Matching

p = f(f(a,X),Y) s = f(f(a,b),f(f(a,a),a))
Cp = 124252131 Cs = 12425213686963731
Ep = ffafXffYf Es = ffafbffffafaffaff
σ1 = ffaf M1 = 10000001000010000
σ2 = ff M2 = 10000111000010010
σ3 = f M3 = 11010111100011011

I We start from M1 = 10000001000010000.

I The set of nodes where p matches s is a subset of the set of
nodes with nonzero entries in M1.

I Take a nonzero entry position i in M1 that corresponds to the first
occurrence of a node in the Euler chain, i = 1.
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I The replacement for X must be a string in Es that starts at
position i + |σ1| = 5

I Moreover, this position must correspond to the first occurrence
of a node in the Euler chain, because

I variables can be substituted by subtrees only,
I a subtree starts with the first occurrence of a node in the

Euler chain.

If this is not the case, take another nonzero entry position in M1.
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I Replacement for X is a substring of Es between the first and last
occurrences of the node at position i + |σ1|.

I Let j be the position of the last occurrence from the previous
item. Then M2[j + 1] should be 1: σ2 should match Es at this
position.

I And proceed in the same way...
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I The next attempt

gives X→ a,Y→ a.

I One more try...

fail.

I The last 1 in Cs is not the first occurrence of 1.
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Complexity of Linear Tree Pattern Matching

I The simple algorithm computes k + 1 Boolean tables.
I Each table has |Es| = n size.
I In total, construction of the tables takes O(nk) time.
I Room for improvement: Do not compute them explicitly.



Suffix Number, Suffix Index

Ψ: finite set of strings.
I Suffix number of a string λ in Ψ: The number of strings in

Ψ which are suffixes of λ.
I Suffix index of Ψ (denoted Ψ∗): The maximum among all

suffix numbers of strings in Ψ.
I If |Ψ| = 0 then Ψ∗ = 1.

Example

I Ψ = {ffffX , ffffb, fffb, ffb, fb}. |Ψ| = 5.
I Suffix number of ffffX in Ψ is 1.
I Suffix number of fffb in Ψ is 3.
I Suffix number of ffffb in Ψ is 4.
I Suffix index of Ψ is 4.



Complexity of Linear Tree Pattern Matching

How many replacements at most are possible (independent of
the algorithm)?

I Assume p matches s at some node.
I If X at node i in p matches a subtree at node w in s then

I w is called a legal replacement for X ,
I path1 ◦ lp(rp, i ′) = lp(rs,w). (i ′: i labeled with (lab(w)).)

I If another variable Y at node j in p matches w (in another
match) then

I path2 ◦ lp(rp, j ′) = lp(rs,w).
I Therefore, lp(rp, j ′) is a suffix of lp(rp, i ′), or vice versa.
I Hence, the subtree at w can be substituted at most K ∗

times over all matches and the number of all legal
replacements that can be computed over all matches is
O(nK ∗).
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Complexity of Linear Tree Pattern Matching
Bound on the number of replacements computed by the simple
algorithm:

I Assume e1, . . . ,ew are Euler strings of subtrees in s rooted
at nodes i1, . . . , iw .
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Complexity of Linear Tree Pattern Matching
Bound on the number of replacements computed by the simple
algorithm:

I In case of failed match attempt, we would have computed
at most one illegal replacement.

I Hence, the total number of illegal replacements computed
over match attempts at all nodes can be O(n) at most.

I Therefore, the upper bound of the replacements computed
by the algorithm is O(nK ∗).

That’s fine, but how to keep the time-bound of the algorithm pro-
portional to the number of replacements?
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I Do not spend more than O(1) between replacements,
without computing the tables explicitly.

I Do a replacement in O(1).
I Doing a replacement in O(1) is easy:

I Store an Euler string in an array along with a pointer from
the first occurrence of a node to its last occurrence.

I Check whether the replacement begins at the first
occurrence of a node.

I If yes, skip to its last occurrence.
I Not spending more than O(1) between replacements,

without computing the tables, needs more preprocessing.
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Keep the time-bound of the algorithm proportional to the
number of replacements:

I What happens in the steps preceding the replacement for
vi+1, after computing a replacement for vi?

I Determine whether pattern string σi+1 matches Es at the
position following the replacement for vi .

I Had we computed the tables, this can be done in O(1), but
how to achieve the same without the tables?
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Keep the time-bound of the algorithm proportional to the
number of replacements:

I Problem: Given a position in Es and a string σi ,
1 ≤ i ≤ k + 1, decide in O(1) whether σi matches Es in
that position.

I Idea:
I Preprocess the pattern strings to produce an automaton

that recognizes every instance of these k + 1 strings.
I Use the automaton to recognize these strings in Es.
I With every position in an array containing Es, store the state

of the automaton on reading the symbol in that position.
I In order to decide whether a pattern string σi matches the

substring of Es at position j , look at the state of the
automaton in position j + |σi | − 1.

I Lookup from the array in O(1) time.

How to preprocess the pattern strings?
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Modifying the Linear Tree Pattern Matching

Pattern string preprocessing:
I The k + 1 pattern strings σ1, . . . , σk+1 are preprocessed to

produce an automation that recognizes every instance of
these strings.

I Method: Aho-Corasick (AC) algorithm.
I The AC algorithm constructs the desired automaton in time

proportional to the sum of the lengths of all pattern strings.



Modifying the Linear Tree Pattern Matching

What does a Aho-Corasick automaton for a set of pattern
strings σ1, . . . , σk+1 do?

I Takes the subject string Es as input.
I Outputs the locations in Es at which the σ’s appear as

substrings, together with the corresponding σ’s.
I For example, a Aho-Corasick automaton for the strings

he, she, his, hers returns on the input string ushers the
locations 4 (match for she and he) and 6 (match for hers).



Modifying the Linear Tree Pattern Matching

Aho-Corasick automaton
I consists of a set of states, represented by numbers,
I processes the subject string by successively reading

symbols in it, making state transitions and occasionally
emitting output,

I is controlled by three functions:
1. a goto function g,
2. a failure function f ,
3. a output function output .



Modifying the Linear Tree Pattern Matching

Construction of the Aho-Corasick automation:
I Determine the states and the goto function.
I Compute the failure function.
I Computation of the output function begins on the first step

and is completed on the second.



Modifying the Linear Tree Pattern Matching

Example
Construction of the Aho-Corasick automation for the pattern strings
he, she, his, hers.

The goto function g : states × letters → states ∪ {fail} :

0

1 2
h e

output(2) = {he}
output(5) = {she

,}he}

output(7) = {his}
output(9) = {hers}

3 4 5
s h e

6 7
i s

8 9
r s¬h, s

f (1) = f (3) = 0
f (2) = 0
f (6) = 0
f (4) = 1

f (8) = 0
f (7) = 3
f (5) = 2
f (9) = 3
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Modifying the Linear Tree Pattern Matching

Example
AC automation for the pattern strings hha, h, ba.

0 1 2 3

4 5

¬h,b h h a

b a

output ′(1) = {h}
output ′(3) = {hha}
output ′(5) = {ba}

output ′(2) = {h} f (1) = 0
f (4) = 0
f (2) = 1

f (5) = 0
f (3) = 0

1,3,5 : primary accepting states.
2 : secondary accepting state (h is a suffix of hh).



Modifying the Linear Tree Pattern Matching

I For each secondary accepting state there is a unique
primary accepting state with exactly the same output set.

I Modify construction of AC automaton by maintaining
pointers from secondary accepting states to the
corresponding accepting states.



Modifying the Linear Tree Pattern Matching

I Construction of Aho-Corasick automaton takes O(m) time.
I The output set is represented as a linked list, which is

inappropriate for our purpose.
I Given an arbitrary string, we want to determine in constant

time whether it is in the output set.

I Idea: Copy the output set into an array.
I Question: How many elements do we have to copy?
I Answer: As many as in the output sets of all primary

accepting states, which is O(m) (because any string in a
primary accepting state is a suffix of the longest string in
this state.)
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Modifying the Linear Tree Pattern Matching

Linear Tree Pattern Matching:
1. Construct Aho-Corasick automaton for the pattern strings.
2. Visit each primary accepting state and copy its output set

into a boolean array.
3. Scan the Es with this automaton.
4. During this process, with each entry in Es store the state of

automaton upon reading the function symbol in that entry.
5. If this state is a secondary accepting state, instead of it

store the corresponding primary accepting state.
6. To determine whether there is a match for a pattern string

σ at the position i requires verifying the state associated
with the i + |σ| − 1’th entry in Es:

I This should be a primary accepting state and
I Its output set should contain σ.



Consistency Checking

For nonlinear patterns the computed replacements have to be
checked for consistency.

I Idea: Assign integer codes (from 1 to n) to the nodes in the
subject tree.

I Two nodes get the same encoding iff the subtrees rooted
at them are identical.

I Such an encoding can be computed in O(n).



Consistency Checking

Computing the encoding:
I Bottom up: First, sort the leaves with respect to their labels

and take the ranks as the integers for encoding. Duplicates
are assigned the same rank.

I Suppose the encoding for all nodes up to the height i is
computed.

I Computing the encoding of the nodes at height i + 1:
I Assign to each node v at the level i + 1 a vector
〈f , j1, . . . , jn〉.

I f is the label of v and ji is the encoding of its i ’s child.
I The vectors assigned to all nodes at i + 1 are radix sorted.
I If the rank of v is α and the largest encoding among the

nodes at level i is β, then the encoding for v is α + β.



Consistency Checking

Checking consistency:
I Consistency of replacements is checked as they are

computed.
I For each variable in the pattern, the encoding for the

replacement of its first occurrence is computed and is
entered into a table.

I For the next occurrence of the same variable, compare
encoding of its replacement to the one in the table.

I If the check succeeds, proceed further. Otherwise report a
failure and start matching procedure at another position in
Es.

I These steps do not increase the complexity of the
algorithm.



The Last Word

Nonlinear tree pattern matching can be done in O(nK ∗) time.



Example

f (f (a,X ),X )

f

f

a X

X

Pattern tree p

f (f (a,b), f (f (a,a),a))

f

f

a b

f

f

a a

a

Subject tree s



Example (Cont.)

I Ep = ffafXffXf

I AC automation for the pattern strings ffaf, ff, f.

0 1 2 3 4¬f f f a f

output(1) = {f}
output(2) = {ff,f}
output(4) = {ffaf,f}
failure(1) = failure(3) = 0
failure(2) = failure(4) = 1

ffaf ff f
O1 F F T
O2 F T T
O4 T F T



Example (Cont.)
σ1 = ffaf, σ2 = ff, σ3 = f

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
-------------------------------------------

Cs 1 2 4 2 5 2 1 3 6 8 6 9 6 3 7 3 1
Es f f a f b f f f f a f a f f a f f
IsFirst T T T F T F F T T T F T F F T F F
lastptr 17 6 3 - 5 - - 16 13 8 - 9 - - 15 - -
IsLast F F T F T T F F F T F T T F T T T
state 1 2 3 4 0 1 2 2 2 3 4 0 2 2 3 4 2

I In the first row, the numbers from 1 to 17 - array indices.

I Cs and Es - the Euler chain and the Euler string for s.

I For an index i,

I IsFirst [i] = T iff Cs[i] occurs first time in Cs.
I if IsFirst [i] = T then lastptr [i] = j where j is the index of

the last occurrence of the number Cs[i] in Cs.
I IsLast [i] = T iff Cs[i] occurs last time in Cs.
I state[i] is the state of the automaton after reading Es[i].
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