
Introduction to Unification Theory
Equational Unification

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria
kutsia@risc.jku.at



Overview

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results



Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results



Motivation

I Unifications algorithms are essential components for
deduction systems.

I Simple integration of axioms that describe the properties of
equality often leads to an unacceptable increase of search
space.

I Proposed solution: To build equational axioms into
inference, replacing syntactic unification with equational
unification.



Motivation

Example
Given: AI-theory {f (f (x , y), z) ≈ f (x , f (y , z)), f (x , x) ≈ x}.
Apply idempotence to the term

f (x0, f (x1, . . . , f (xn−1, f (xn, f (x0, . . . , f (xn−1, xn) . . .))) . . .)).

I Exponentially many ways of rearranging the parentheses
with the help of associativity: Very time consuming if the
prover has to search for the right one.

I A human mathematician would use words instead of
terms, i.e. would work modulo associativity, and apply
idempotence xx = x to the word x0 · · · xnx0 · · · xn by
unifying x with x0 · · · xn.

I To adopt this way of proceeding for a prover, we must
replace the syntactic unification algorithm in the resolution
step by associative unification.



Motivation

Example
Given: AI-theory {f (f (x , y), z) ≈ f (x , f (y , z)), f (x , x) ≈ x}.
Apply idempotence to the term

f (x0, f (x1, . . . , f (xn−1, f (xn, f (x0, . . . , f (xn−1, xn) . . .))) . . .)).

I Exponentially many ways of rearranging the parentheses
with the help of associativity: Very time consuming if the
prover has to search for the right one.

I A human mathematician would use words instead of
terms, i.e. would work modulo associativity, and apply
idempotence xx = x to the word x0 · · · xnx0 · · · xn by
unifying x with x0 · · · xn.

I To adopt this way of proceeding for a prover, we must
replace the syntactic unification algorithm in the resolution
step by associative unification.



Motivation

Example
Given: AI-theory {f (f (x , y), z) ≈ f (x , f (y , z)), f (x , x) ≈ x}.
Apply idempotence to the term

f (x0, f (x1, . . . , f (xn−1, f (xn, f (x0, . . . , f (xn−1, xn) . . .))) . . .)).

I Exponentially many ways of rearranging the parentheses
with the help of associativity: Very time consuming if the
prover has to search for the right one.

I A human mathematician would use words instead of
terms, i.e. would work modulo associativity, and apply
idempotence xx = x to the word x0 · · · xnx0 · · · xn by
unifying x with x0 · · · xn.

I To adopt this way of proceeding for a prover, we must
replace the syntactic unification algorithm in the resolution
step by associative unification.



Motivation

Example
Given: AI-theory {f (f (x , y), z) ≈ f (x , f (y , z)), f (x , x) ≈ x}.
Apply idempotence to the term

f (x0, f (x1, . . . , f (xn−1, f (xn, f (x0, . . . , f (xn−1, xn) . . .))) . . .)).

I Exponentially many ways of rearranging the parentheses
with the help of associativity: Very time consuming if the
prover has to search for the right one.

I A human mathematician would use words instead of
terms, i.e. would work modulo associativity, and apply
idempotence xx = x to the word x0 · · · xnx0 · · · xn by
unifying x with x0 · · · xn.

I To adopt this way of proceeding for a prover, we must
replace the syntactic unification algorithm in the resolution
step by associative unification.



Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results



Equational Theory

Equational Theory

I E : a set of equations over T (F ,V), called identities.
I Equational theory .

=E defined by E : The least congruence
relation on T (F ,V) closed under substitution and
containing E

i.e., .=E is the least binary relation on T (F ,V) with the
properties:

I E ⊆ .
=E .

I Reflexivity: s .
=E s for all s.

I Symmetry: If s .
=E t then t .

=E s for all s, t .
I Transitivity: If s .

=E t and t .
=E r then s .

=E r for all s, t , r .
I Congruence: If s1

.
=E t1, . . . , sn

.
=E tn then

f (s1, . . . , sn)
.

=E f (t1, . . . , tn) for all s, t ,n and n-ary f .
I Closure under substitution: If s .

=E t then sσ .
=E tσ for all

s, t , σ.



Equational Theory

Equational Theory

I E : a set of equations over T (F ,V), called identities.
I Equational theory .

=E defined by E : The least congruence
relation on T (F ,V) closed under substitution and
containing E
i.e., .=E is the least binary relation on T (F ,V) with the
properties:

I E ⊆ .
=E .

I Reflexivity: s .
=E s for all s.

I Symmetry: If s .
=E t then t .

=E s for all s, t .
I Transitivity: If s .

=E t and t .
=E r then s .

=E r for all s, t , r .
I Congruence: If s1

.
=E t1, . . . , sn

.
=E tn then

f (s1, . . . , sn)
.

=E f (t1, . . . , tn) for all s, t ,n and n-ary f .
I Closure under substitution: If s .

=E t then sσ .
=E tσ for all

s, t , σ.



Notation, Terminology

I Identities: s ≈ t .
I s .

=E t : The term s is equal modulo E to the term t .
I E will be called an equational theory as well (abuse of the

terminology).
I sig(E): The set of function symbols that occur in E .

Example

I C := {f (x , y) ≈ f (y , x)}: f is commutative.
sig(C) = f .

I f (f (a,b), c)
.

=C f (c, f (b,a)).
I AU := {f (f (x , y), z) ≈ f (x , f (y , z)), f (x ,e) ≈ x ,

f (e, x) ≈ x}: f is associative, e is unit.
sig(AU) = {f ,e}

I f (a, f (x , f (e,a)))
.

=AU f (f (a, x),a).



Notation, Terminology

E-Unification Problem, E-Unifier, E-Unifiability

I E : equational theory.
F : set of function symbols.
V: countable set of variables.

I E-Unification problem over F : a finite set of equations

Γ = {s1
.

=?
E t1, . . . , sn

.
=?

E tn},

where si , ti ∈ T (F ,V).
I E-Unifier of Γ: a substitution σ such that

s1σ
.

=E t1σ, . . . , snσ
.

=E tnσ.

I uE (Γ): the set of E-unifiers of Γ. Γ is E-unifiable iff
uE (Γ) 6= ∅.



E-Unification vs Syntactic Unification

I Syntactic unification: a special case of E-unif. with E = ∅.
I Any syntactic unifier of an E-unification problem Γ is also

an E-unifier of Γ.
I For E 6= ∅, uE (Γ) may contain a unifier that is not a

syntactic unifier.

Example

I Terms f (a, x) and f (b, y):
I Not syntactically unifiable.
I Unifiable module commutativity of f .

C-unifier: {x 7→ b, y 7→ a}
I Terms f (a, x) and f (y ,b):

I Have the most general syntactic unifier {x 7→ b, y 7→ a}.
I If f is associative, then uA({f (a, x)

.
=

?
A f (y ,b)}) contains

additional A-unifiers, e.g. {x 7→ f (z,b), y 7→ f (a, z)}.



E-Unification vs Syntactic Unification

I Syntactic unification: a special case of E-unif. with E = ∅.
I Any syntactic unifier of an E-unification problem Γ is also

an E-unifier of Γ.
I For E 6= ∅, uE (Γ) may contain a unifier that is not a

syntactic unifier.

Example

I Terms f (a, x) and f (b, y):
I Not syntactically unifiable.
I Unifiable module commutativity of f .

C-unifier: {x 7→ b, y 7→ a}

I Terms f (a, x) and f (y ,b):
I Have the most general syntactic unifier {x 7→ b, y 7→ a}.
I If f is associative, then uA({f (a, x)

.
=

?
A f (y ,b)}) contains

additional A-unifiers, e.g. {x 7→ f (z,b), y 7→ f (a, z)}.



E-Unification vs Syntactic Unification

I Syntactic unification: a special case of E-unif. with E = ∅.
I Any syntactic unifier of an E-unification problem Γ is also

an E-unifier of Γ.
I For E 6= ∅, uE (Γ) may contain a unifier that is not a

syntactic unifier.

Example

I Terms f (a, x) and f (b, y):
I Not syntactically unifiable.
I Unifiable module commutativity of f .

C-unifier: {x 7→ b, y 7→ a}
I Terms f (a, x) and f (y ,b):

I Have the most general syntactic unifier {x 7→ b, y 7→ a}.
I If f is associative, then uA({f (a, x)

.
=

?
A f (y ,b)}) contains

additional A-unifiers, e.g. {x 7→ f (z,b), y 7→ f (a, z)}.



Notions Adapted

Instantiation Quasi-Ordering (Modified)

I E : equational theory. X : set of variables.
I A substitution σ is more general modulo E on X than ϑ,

written σ ≤·XE ϑ, if there exists η such that xση .
=E xϑ for all

x ∈ X .
I ϑ is called an E-instance of σ modulo E on X .
I The relation ≤·XE is quasi-ordering, called instantiation

quasi-ordering.
I =· XE is the equivalence relation corresponding to ≤·XE .



No Single MGU

I When comparing unifiers of Γ, the set X is vars(Γ).
I Unifiable E-unification problems might not have an mgu.

Example

I f is commutative.
I Γ = {f (x , y)

.
=?

C f (a,b)} has two C-unifiers:

σ1 = {x 7→ a, y 7→ b}
σ2 = {x 7→ b, y 7→ a}.

I On vars(Γ) = {x , y}, any unifier is equal to either σ1 or σ2.

I σ1 and σ2 are not comparable wrt ≤·{x ,y}C .
I Hence, no mgu for Γ.



MCSU vs MGU

In E-unification, the role of mgu is taken on by a complete set
of E-unifiers.

Complete and Minimal Complete Sets of E-Unifiers

I Γ: E-unification problem over F .
I X = vars(Γ).
I C is a complete set of E-unifiers of Γ iff

1. C ⊆ uE (Γ): C’s elements are E-unifiers of Γ, and
2. For each ϑ ∈ uE (Γ) there exists σ ∈ C such that σ ≤·XE ϑ.

I C is a minimal complete set of E-unifiers (mcsuE ) of Γ if it
is a complete set of E-unifiers of Γ and

3. two distinct elements of C are not comparable wrt ≤·XE .
I σ is an mgu of Γ iff mcsuE (Γ) = {σ}.



MCSU’s

I mcsuE (Γ) = ∅ if Γ is not E-unifiable.
I Minimal complete sets of unifiers do not always exist.
I When they exist, they may be infinite.
I When they exist, they are unique up to =· XE .



Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results



Unification Type

Unification Type of a Problem, Theory.

I E : equational theory.
I Γ: E-unification problem over F .
I Γ has unification type

I unitary, if mcsu(Γ) has cardinality at most one,
I finitary, if mcsu(Γ) has finite cardinality,
I infinitary, if mcsu(Γ) has infinite cardinality,
I zero, if mcsu(Γ) does not exist.

I Abbreviation: type unitary - 1, finitary - ω, infinitary -∞,
zero - 0.

I Ordering: 1 < ω <∞ < 0.
I Unification type of E wrt F : the maximal type of an

E-unification problem over F .



Unification Type

The unification type of an E-equational problem over F
depends both

I on E , and
I on F .

Examples and more details will follow.



Unification Type

Example (Type Unitary)
Syntactic unification.

I The empty equational theory ∅: Syntactic unification.
I Unitary wrt any F because any unifiable syntactic

unification problem has an mgu.



Unification Type

Example (Type Finitary)
Commutative unification: {f (x , y) ≈ f (y , x)}

I {f (x , y)
.

=?
C f (a,b)} does not have an mgu. C-unification is

not unitary.
I Show that it is finitary for any F :

I Let Γ = {s1
.

=
?
C t1, . . . , sn

.
=

?
C tn} be a C-unification problem.

I Consider all possible syntactic unification problems
Γ′ = {s′

1
.

=
? t ′1, . . . , s

′
n
.

=
? t ′n}, where s′

i
.

=C si and t ′i
.

=C ti for
each 1 ≤ i ≤ n.

I There are only finitely many such Γ′s, because the
C-equivalence class for a given term t is finite.

I It can be shown that collection of all mgu’s of Γ′s is a
complete set of C-unifiers of Γ. This set if finite.

I If this set is not minimal (often the case), it can be
minimized by removing redundant C-unifiers.



Unification Type

Example (Type Finitary)
Commutative unification: {f (x , y) ≈ f (y , x)}

I {f (x , y)
.

=?
C f (a,b)} does not have an mgu. C-unification is

not unitary.
I Show that it is finitary for any F :

I Let Γ = {s1
.

=
?
C t1, . . . , sn

.
=

?
C tn} be a C-unification problem.

I Consider all possible syntactic unification problems
Γ′ = {s′

1
.

=
? t ′1, . . . , s

′
n
.

=
? t ′n}, where s′

i
.

=C si and t ′i
.

=C ti for
each 1 ≤ i ≤ n.

I There are only finitely many such Γ′s, because the
C-equivalence class for a given term t is finite.

I It can be shown that collection of all mgu’s of Γ′s is a
complete set of C-unifiers of Γ. This set if finite.

I If this set is not minimal (often the case), it can be
minimized by removing redundant C-unifiers.



Unification Type

Example (Type Finitary)
Commutative unification: {f (x , y) ≈ f (y , x)}

I {f (x , y)
.

=?
C f (a,b)} does not have an mgu. C-unification is

not unitary.
I Show that it is finitary for any F :

I Let Γ = {s1
.

=
?
C t1, . . . , sn

.
=

?
C tn} be a C-unification problem.

I Consider all possible syntactic unification problems
Γ′ = {s′

1
.

=
? t ′1, . . . , s

′
n
.

=
? t ′n}, where s′

i
.

=C si and t ′i
.

=C ti for
each 1 ≤ i ≤ n.

I There are only finitely many such Γ′s, because the
C-equivalence class for a given term t is finite.

I It can be shown that collection of all mgu’s of Γ′s is a
complete set of C-unifiers of Γ. This set if finite.

I If this set is not minimal (often the case), it can be
minimized by removing redundant C-unifiers.



Unification Type

Example (Type Finitary)
Commutative unification: {f (x , y) ≈ f (y , x)}

I {f (x , y)
.

=?
C f (a,b)} does not have an mgu. C-unification is

not unitary.
I Show that it is finitary for any F :

I Let Γ = {s1
.

=
?
C t1, . . . , sn

.
=

?
C tn} be a C-unification problem.

I Consider all possible syntactic unification problems
Γ′ = {s′

1
.

=
? t ′1, . . . , s

′
n
.

=
? t ′n}, where s′

i
.

=C si and t ′i
.

=C ti for
each 1 ≤ i ≤ n.

I There are only finitely many such Γ′s, because the
C-equivalence class for a given term t is finite.

I It can be shown that collection of all mgu’s of Γ′s is a
complete set of C-unifiers of Γ. This set if finite.

I If this set is not minimal (often the case), it can be
minimized by removing redundant C-unifiers.



Unification Type

Example (Type Finitary)
Commutative unification: {f (x , y) ≈ f (y , x)}

I {f (x , y)
.

=?
C f (a,b)} does not have an mgu. C-unification is

not unitary.
I Show that it is finitary for any F :

I Let Γ = {s1
.

=
?
C t1, . . . , sn

.
=

?
C tn} be a C-unification problem.

I Consider all possible syntactic unification problems
Γ′ = {s′

1
.

=
? t ′1, . . . , s

′
n
.

=
? t ′n}, where s′

i
.

=C si and t ′i
.

=C ti for
each 1 ≤ i ≤ n.

I There are only finitely many such Γ′s, because the
C-equivalence class for a given term t is finite.

I It can be shown that collection of all mgu’s of Γ′s is a
complete set of C-unifiers of Γ. This set if finite.

I If this set is not minimal (often the case), it can be
minimized by removing redundant C-unifiers.



Unification Type

Example (Type Finitary)
Commutative unification: {f (x , y) ≈ f (y , x)}

I {f (x , y)
.

=?
C f (a,b)} does not have an mgu. C-unification is

not unitary.
I Show that it is finitary for any F :

I Let Γ = {s1
.

=
?
C t1, . . . , sn

.
=

?
C tn} be a C-unification problem.

I Consider all possible syntactic unification problems
Γ′ = {s′

1
.

=
? t ′1, . . . , s

′
n
.

=
? t ′n}, where s′

i
.

=C si and t ′i
.

=C ti for
each 1 ≤ i ≤ n.

I There are only finitely many such Γ′s, because the
C-equivalence class for a given term t is finite.

I It can be shown that collection of all mgu’s of Γ′s is a
complete set of C-unifiers of Γ. This set if finite.

I If this set is not minimal (often the case), it can be
minimized by removing redundant C-unifiers.



Unification Type

Example (Type Infinitary)
Associative unification: {f (f (x , y), z) ≈ f (x , f (y , z))}.

I {f (x ,a)
.

=?
A f (a, x)} has an infinite mcsu:

{{x 7→ a}, {x 7→ f (a,a)}, {x 7→ f (a, f (a,a))}, . . .}
I Hence, A-unification can not be unitary or finitary.
I It is not of type zero because any A-unification problem has

an mcsu that can be enumerated by the procedure from

G. Plotkin.
Building in equational theories.
In B. Meltzer and D. Michie, editors, Machine
Intelligence, volume 7, pages 73–90. Edinburgh
University Press, 1972.

I A-unification is infinitary for any F .



Unification Type

Example (Type Zero)
Associative-Idempotent unification:
{f (f (x , y), z) ≈ f (x , f (y , z)), f (x , x) ≈ x}.

I {f (x , f (y , x))
.

=?
AI f (x , f (z, x))} does not have a minimal

complete set of unifiers, see

F. Baader.
Unification in idempotent semigroups is of type zero.
J. Automated Reasoning, 2(3):283–286, 1986.

I AI-unification is of type zero.



Unification Type. Signature Matters

Associative-commutative unification with unit:

ACU = {f (f (x , y), z) ≈ f (x , f (y , z)), f (x , y) ≈ f (y , x), f (x ,e) ≈ x}.

I Any ACU problem built using only f and variables has an
mgu (i.e. is unitary).

I There are ACU problems that contain function symbols
other than f and e, which are finitary, not unitary.
For instance, mcsu({f (x , y)

.
=?

ACU f (a,b)}) consists of four
unifiers (which ones?).

Kinds of E-unification.



Kinds of E-Unification

One may distinguish three kinds of E-unification problems,
depending on the function symbols that are allowed to occur in
them.

E-Unification Problems: Elementary, with Constants, General.

I E : an equational Theory.
Γ: an E-unification problem over F .

I Γ is an elementary E-unification problem iff F = sig(E).
I Γ is an E-unification problem with constants iff F \ sig(E)

consists of constants.
I Γ is a general E-unification problem iff F \ sig(E) may

contain arbitrary function symbols.



Unification Types of Theories wrt Kinds

I Unification type of E wrt elementary unification:
Maximal unification type of E wrt all F such that
F = sig(E).

I Unification type of E wrt unification with constants:
Maximal unification type of E wrt all F such that
F \ sig(E) is a set of constants.

I Unification type of E wrt general unification: Maximal
unification type of E wrt all F such that
F \ sig(E) is a set of arbitrary function symbols.



Unification Types of Theories wrt Kinds

The same equational theory can have different unification types
for different kinds. Examples:

I ACU (Abelian monoids): Unitary wrt elementary
unification, finitary wrt unification with constants and
general unification.

I AG (Abelian groups): Unitary wrt elementary unification
and unification with constants, finitary wrt general
unification.



Decision and Unification Procedures

I Decision procedure for an equational theory E (wrt F):
An algorithm that for each E-unification problem Γ (wrt F)
returns success if Γ is E-unifiable, and failure otherwise.

I E is decidable if it admits a decision procedure.
I (Minimal) E-unification algorithm (wrt F): An algorithm that

computes a (minimal) finite complete set of E-unifiers for
all E-unification problems over F .

I E-unification algorithm yields a decision procedure for E .
I (Minimal) E-unification procedure: A procedure that

enumerates a possible infinite (minimal) complete set of
E-unifiers.

I E-unification procedure does not yield a decision
procedure for E .



Decision and Unification Procedures

I Decision procedure for an equational theory E (wrt F):
An algorithm that for each E-unification problem Γ (wrt F)
returns success if Γ is E-unifiable, and failure otherwise.

I E is decidable if it admits a decision procedure.

I (Minimal) E-unification algorithm (wrt F): An algorithm that
computes a (minimal) finite complete set of E-unifiers for
all E-unification problems over F .

I E-unification algorithm yields a decision procedure for E .
I (Minimal) E-unification procedure: A procedure that

enumerates a possible infinite (minimal) complete set of
E-unifiers.

I E-unification procedure does not yield a decision
procedure for E .



Decision and Unification Procedures

I Decision procedure for an equational theory E (wrt F):
An algorithm that for each E-unification problem Γ (wrt F)
returns success if Γ is E-unifiable, and failure otherwise.

I E is decidable if it admits a decision procedure.
I (Minimal) E-unification algorithm (wrt F): An algorithm that

computes a (minimal) finite complete set of E-unifiers for
all E-unification problems over F .

I E-unification algorithm yields a decision procedure for E .
I (Minimal) E-unification procedure: A procedure that

enumerates a possible infinite (minimal) complete set of
E-unifiers.

I E-unification procedure does not yield a decision
procedure for E .



Decision and Unification Procedures

I Decision procedure for an equational theory E (wrt F):
An algorithm that for each E-unification problem Γ (wrt F)
returns success if Γ is E-unifiable, and failure otherwise.

I E is decidable if it admits a decision procedure.
I (Minimal) E-unification algorithm (wrt F): An algorithm that

computes a (minimal) finite complete set of E-unifiers for
all E-unification problems over F .

I E-unification algorithm yields a decision procedure for E .

I (Minimal) E-unification procedure: A procedure that
enumerates a possible infinite (minimal) complete set of
E-unifiers.

I E-unification procedure does not yield a decision
procedure for E .



Decision and Unification Procedures

I Decision procedure for an equational theory E (wrt F):
An algorithm that for each E-unification problem Γ (wrt F)
returns success if Γ is E-unifiable, and failure otherwise.

I E is decidable if it admits a decision procedure.
I (Minimal) E-unification algorithm (wrt F): An algorithm that

computes a (minimal) finite complete set of E-unifiers for
all E-unification problems over F .

I E-unification algorithm yields a decision procedure for E .
I (Minimal) E-unification procedure: A procedure that

enumerates a possible infinite (minimal) complete set of
E-unifiers.

I E-unification procedure does not yield a decision
procedure for E .



Decision and Unification Procedures

I Decision procedure for an equational theory E (wrt F):
An algorithm that for each E-unification problem Γ (wrt F)
returns success if Γ is E-unifiable, and failure otherwise.

I E is decidable if it admits a decision procedure.
I (Minimal) E-unification algorithm (wrt F): An algorithm that

computes a (minimal) finite complete set of E-unifiers for
all E-unification problems over F .

I E-unification algorithm yields a decision procedure for E .
I (Minimal) E-unification procedure: A procedure that

enumerates a possible infinite (minimal) complete set of
E-unifiers.

I E-unification procedure does not yield a decision
procedure for E .



Decidability wrt Kinds

Decidability of an equational theory might depend on the kinds
of E-unification.

I There exists an equational theory for which elementary
unification is decidable, but unification with constants is
undecidable:

H.-J. Bürckert.
Some relationships between unification, restricted
unification, and matching.
In J. Siekmann, editor, Proc. 8th Int. Conference on
Automated Deduction, volume 230 of LNCS. Springer,
1986.



Single Equation vs Systems of Equations

I In syntactic unification, solving systems of equations can
be reduced to solving a single equation.

I For equational unification, the same holds only for general
unification.

I For elementary unification and for unification with
constants it is not the case.



Single Equation vs Systems of Equations

There exists an equational theory E such that
I all elementary E-unification problems of cardinality 1

(single equations) have minimal complete sets of
E-unifiers, but

I E is of type zero wrt to elementary unification: There exists
an elementary E-unification problem of cardinality that
does not have a minimal complete set of unifiers.

H.-J. Bürckert, A. Herold, and M. Schmidt-Schauß.
On equational theories, unification, and decidability.
J. Symbolic Computation 8(3,4), 3–49. 1989.



Single Equation vs Systems of Equations

There exists an equational theory E such that
I unifiability of elementary E-unification problems of

cardinality 1 (single equations) is decidable, but
I for elementary problems of larger cardinality it is

undecidable.

P. Narendran and H. Otto.
Some results on equational unification.
In M. E. Stickel, editor, Proc. 10th Int. Conference on
Automated Deduction, volume 449 of LNAI. Springer, 1990.



Three Main Questions in Unification Theory

For a given E , unification theory is mainly concerned with
finding answers to the following three questions:
Decidability: Is it decidable whether an E-unification problem is

solvable? If yes, what is the complexity of this
decision problem?

Unification type: What is the unification type of the theory E?
Unification algorithm: How can we obtain an (efficient)

E-unification algorithm, or a (preferably minimal)
E-unification procedure?

The answers depend on whether we consider elementary
unification, unification with constants, or general unification.



Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results



Results for Specific Theories

General unification:

Theory Decidability Type Algorithm/Procedure
∅ Yes 1 Yes
A Yes ∞ Yes
C Yes ω Yes
I Yes ω Yes
AC Yes ω Yes
AI Yes 0 ?
CI Yes ω Yes
ACI Yes ω Yes
AU Yes ∞ Yes
AG Yes ω Yes
CRU No ? (∞ or 0) ?

CRU - Commutative ring with unit



Example. C-Unification

I C-unification algorithm UC can be obtained from the
inference system U by adding the C-Decomposition rule:

C-Decomposition: {f (s1, s2)
.

=?
C f (t1, t2)} ∪ P ′; S =⇒

{s1
.

=?
C t2, s2

.
=?

C t1} ∪ P ′; S,
if f is commutative.

I C-Decomposition and Decomposition transform the
same system in different ways.



Example. C-Unification

In order to C-unify s and t :
1. Create an initial system {s .

=?
C t}; ∅.

2. Apply successively rules from UC , building a complete tree
of derivations. C-Decomposition and Decomposition
rules have to be applied concurrently and form branching
points in the derivation tree.



Example. C-Unification
C-unify g(f (x , y), z) and g(f (f (a,b), f (b,a)), c), commutative f .

{g(f (x , y), z)
.

=
?
C g(f (f (a,b), f (b,a))), c)}; ∅

{f (x , y)
.

=
?
C f (f (a,b), f (b,a)), z .

=
?
C c}; ∅

{x .
=

?
C f (a,b), y .

=
?
C f (b,a), z .

=
?
C c}; ∅ {x .

=
?
C f (b,a), y .

=
?
C f (a,b), z .

=
?
C c}; ∅

{y .
=

?
C f (b,a), z .

=
?
C c}; {x .

= f (a,b)}

{z .
=

?
C c}; {x .

= f (a,b), y .
= f (b,a)}

∅; {x .
= f (a,b), y .

= f (b,a), z .
= c}

{y .
=

?
C f (a,b), z .

=
?
C c}; {x .

= f (b,a)}

{z .
=

?
C c}; {x .

= f (b,a), y .
= f (a,b)}

∅; {x .
= f (b,a), y .

= f (a,b), z .
= c}

{{x 7→ f (b,a), y 7→ f (a,b), z 7→ c}, {x 7→ f (a,b), y 7→ f (b,a), z 7→ c}}
Not minimal.



Example. C-Unification
C-unify g(f (x , y), z) and g(f (f (a,b), f (b,a)), c), commutative f .

{g(f (x , y), z)
.

=
?
C g(f (f (a,b), f (b,a))), c)}; ∅

{f (x , y)
.

=
?
C f (f (a,b), f (b,a)), z .

=
?
C c}; ∅

{x .
=

?
C f (a,b), y .

=
?
C f (b,a), z .

=
?
C c}; ∅ {x .

=
?
C f (b,a), y .

=
?
C f (a,b), z .

=
?
C c}; ∅

{y .
=

?
C f (b,a), z .

=
?
C c}; {x .

= f (a,b)}

{z .
=

?
C c}; {x .

= f (a,b), y .
= f (b,a)}

∅; {x .
= f (a,b), y .

= f (b,a), z .
= c}

{y .
=

?
C f (a,b), z .

=
?
C c}; {x .

= f (b,a)}

{z .
=

?
C c}; {x .

= f (b,a), y .
= f (a,b)}

∅; {x .
= f (b,a), y .

= f (a,b), z .
= c}

{{x 7→ f (b,a), y 7→ f (a,b), z 7→ c}, {x 7→ f (a,b), y 7→ f (b,a), z 7→ c}}
Not minimal.



Example. C-Unification
C-unify g(f (x , y), z) and g(f (f (a,b), f (b,a)), c), commutative f .

{g(f (x , y), z)
.

=
?
C g(f (f (a,b), f (b,a))), c)}; ∅

{f (x , y)
.

=
?
C f (f (a,b), f (b,a)), z .

=
?
C c}; ∅

{x .
=

?
C f (a,b), y .

=
?
C f (b,a), z .

=
?
C c}; ∅ {x .

=
?
C f (b,a), y .

=
?
C f (a,b), z .

=
?
C c}; ∅

{y .
=

?
C f (b,a), z .

=
?
C c}; {x .

= f (a,b)}

{z .
=

?
C c}; {x .

= f (a,b), y .
= f (b,a)}

∅; {x .
= f (a,b), y .

= f (b,a), z .
= c}

{y .
=

?
C f (a,b), z .

=
?
C c}; {x .

= f (b,a)}

{z .
=

?
C c}; {x .

= f (b,a), y .
= f (a,b)}

∅; {x .
= f (b,a), y .

= f (a,b), z .
= c}

{{x 7→ f (b,a), y 7→ f (a,b), z 7→ c}, {x 7→ f (a,b), y 7→ f (b,a), z 7→ c}}
Not minimal.



Example. C-Unification
C-unify g(f (x , y), z) and g(f (f (a,b), f (b,a)), c), commutative f .

{g(f (x , y), z)
.

=
?
C g(f (f (a,b), f (b,a))), c)}; ∅

{f (x , y)
.

=
?
C f (f (a,b), f (b,a)), z .

=
?
C c}; ∅

{x .
=

?
C f (a,b), y .

=
?
C f (b,a), z .

=
?
C c}; ∅ {x .

=
?
C f (b,a), y .

=
?
C f (a,b), z .

=
?
C c}; ∅

{y .
=

?
C f (b,a), z .

=
?
C c}; {x .

= f (a,b)}

{z .
=

?
C c}; {x .

= f (a,b), y .
= f (b,a)}

∅; {x .
= f (a,b), y .

= f (b,a), z .
= c}

{y .
=

?
C f (a,b), z .

=
?
C c}; {x .

= f (b,a)}

{z .
=

?
C c}; {x .

= f (b,a), y .
= f (a,b)}

∅; {x .
= f (b,a), y .

= f (a,b), z .
= c}

{{x 7→ f (b,a), y 7→ f (a,b), z 7→ c}, {x 7→ f (a,b), y 7→ f (b,a), z 7→ c}}
Not minimal.



Example. C-Unification
C-unify g(f (x , y), z) and g(f (f (a,b), f (b,a)), c), commutative f .

{g(f (x , y), z)
.

=
?
C g(f (f (a,b), f (b,a))), c)}; ∅

{f (x , y)
.

=
?
C f (f (a,b), f (b,a)), z .

=
?
C c}; ∅

{x .
=

?
C f (a,b), y .

=
?
C f (b,a), z .

=
?
C c}; ∅ {x .

=
?
C f (b,a), y .

=
?
C f (a,b), z .

=
?
C c}; ∅

{y .
=

?
C f (b,a), z .

=
?
C c}; {x .

= f (a,b)}

{z .
=

?
C c}; {x .

= f (a,b), y .
= f (b,a)}

∅; {x .
= f (a,b), y .

= f (b,a), z .
= c}

{y .
=

?
C f (a,b), z .

=
?
C c}; {x .

= f (b,a)}

{z .
=

?
C c}; {x .

= f (b,a), y .
= f (a,b)}

∅; {x .
= f (b,a), y .

= f (a,b), z .
= c}

{{x 7→ f (b,a), y 7→ f (a,b), z 7→ c}, {x 7→ f (a,b), y 7→ f (b,a), z 7→ c}}
Not minimal.



Example. C-Unification
C-unify g(f (x , y), z) and g(f (f (a,b), f (b,a)), c), commutative f .

{g(f (x , y), z)
.

=
?
C g(f (f (a,b), f (b,a))), c)}; ∅

{f (x , y)
.

=
?
C f (f (a,b), f (b,a)), z .

=
?
C c}; ∅

{x .
=

?
C f (a,b), y .

=
?
C f (b,a), z .

=
?
C c}; ∅ {x .

=
?
C f (b,a), y .

=
?
C f (a,b), z .

=
?
C c}; ∅

{y .
=

?
C f (b,a), z .

=
?
C c}; {x .

= f (a,b)}

{z .
=

?
C c}; {x .

= f (a,b), y .
= f (b,a)}

∅; {x .
= f (a,b), y .

= f (b,a), z .
= c}

{y .
=

?
C f (a,b), z .

=
?
C c}; {x .

= f (b,a)}

{z .
=

?
C c}; {x .

= f (b,a), y .
= f (a,b)}

∅; {x .
= f (b,a), y .

= f (a,b), z .
= c}

{{x 7→ f (b,a), y 7→ f (a,b), z 7→ c}, {x 7→ f (a,b), y 7→ f (b,a), z 7→ c}}
Not minimal.



Example. C-Unification
C-unify g(f (x , y), z) and g(f (f (a,b), f (b,a)), c), commutative f .

{g(f (x , y), z)
.

=
?
C g(f (f (a,b), f (b,a))), c)}; ∅

{f (x , y)
.

=
?
C f (f (a,b), f (b,a)), z .

=
?
C c}; ∅

{x .
=

?
C f (a,b), y .

=
?
C f (b,a), z .

=
?
C c}; ∅ {x .

=
?
C f (b,a), y .

=
?
C f (a,b), z .

=
?
C c}; ∅

{y .
=

?
C f (b,a), z .

=
?
C c}; {x .

= f (a,b)}

{z .
=

?
C c}; {x .

= f (a,b), y .
= f (b,a)}

∅; {x .
= f (a,b), y .

= f (b,a), z .
= c}

{y .
=

?
C f (a,b), z .

=
?
C c}; {x .

= f (b,a)}

{z .
=

?
C c}; {x .

= f (b,a), y .
= f (a,b)}

∅; {x .
= f (b,a), y .

= f (a,b), z .
= c}

{{x 7→ f (b,a), y 7→ f (a,b), z 7→ c}, {x 7→ f (a,b), y 7→ f (b,a), z 7→ c}}
Not minimal.



Example. C-Unification
C-unify g(f (x , y), z) and g(f (f (a,b), f (b,a)), c), commutative f .

{g(f (x , y), z)
.

=
?
C g(f (f (a,b), f (b,a))), c)}; ∅

{f (x , y)
.

=
?
C f (f (a,b), f (b,a)), z .

=
?
C c}; ∅

{x .
=

?
C f (a,b), y .

=
?
C f (b,a), z .

=
?
C c}; ∅ {x .

=
?
C f (b,a), y .

=
?
C f (a,b), z .

=
?
C c}; ∅

{y .
=

?
C f (b,a), z .

=
?
C c}; {x .

= f (a,b)}

{z .
=

?
C c}; {x .

= f (a,b), y .
= f (b,a)}

∅; {x .
= f (a,b), y .

= f (b,a), z .
= c}

{y .
=

?
C f (a,b), z .

=
?
C c}; {x .

= f (b,a)}

{z .
=

?
C c}; {x .

= f (b,a), y .
= f (a,b)}

∅; {x .
= f (b,a), y .

= f (a,b), z .
= c}

{{x 7→ f (b,a), y 7→ f (a,b), z 7→ c}, {x 7→ f (a,b), y 7→ f (b,a), z 7→ c}}
Not minimal.



Example. C-Unification
C-unify g(f (x , y), z) and g(f (f (a,b), f (b,a)), c), commutative f .

{g(f (x , y), z)
.

=
?
C g(f (f (a,b), f (b,a))), c)}; ∅

{f (x , y)
.

=
?
C f (f (a,b), f (b,a)), z .

=
?
C c}; ∅

{x .
=

?
C f (a,b), y .

=
?
C f (b,a), z .

=
?
C c}; ∅ {x .

=
?
C f (b,a), y .

=
?
C f (a,b), z .

=
?
C c}; ∅

{y .
=

?
C f (b,a), z .

=
?
C c}; {x .

= f (a,b)}

{z .
=

?
C c}; {x .

= f (a,b), y .
= f (b,a)}

∅; {x .
= f (a,b), y .

= f (b,a), z .
= c}

{y .
=

?
C f (a,b), z .

=
?
C c}; {x .

= f (b,a)}

{z .
=

?
C c}; {x .

= f (b,a), y .
= f (a,b)}

∅; {x .
= f (b,a), y .

= f (a,b), z .
= c}

{{x 7→ f (b,a), y 7→ f (a,b), z 7→ c}, {x 7→ f (a,b), y 7→ f (b,a), z 7→ c}}
Not minimal.



Example. C-Unification
C-unify g(f (x , y), z) and g(f (f (a,b), f (b,a)), c), commutative f .

{g(f (x , y), z)
.

=
?
C g(f (f (a,b), f (b,a))), c)}; ∅

{f (x , y)
.

=
?
C f (f (a,b), f (b,a)), z .

=
?
C c}; ∅

{x .
=

?
C f (a,b), y .

=
?
C f (b,a), z .

=
?
C c}; ∅ {x .

=
?
C f (b,a), y .

=
?
C f (a,b), z .

=
?
C c}; ∅

{y .
=

?
C f (b,a), z .

=
?
C c}; {x .

= f (a,b)}

{z .
=

?
C c}; {x .

= f (a,b), y .
= f (b,a)}

∅; {x .
= f (a,b), y .

= f (b,a), z .
= c}

{y .
=

?
C f (a,b), z .

=
?
C c}; {x .

= f (b,a)}

{z .
=

?
C c}; {x .

= f (b,a), y .
= f (a,b)}

∅; {x .
= f (b,a), y .

= f (a,b), z .
= c}

{{x 7→ f (b,a), y 7→ f (a,b), z 7→ c}, {x 7→ f (a,b), y 7→ f (b,a), z 7→ c}}
Not minimal.



Example. ACU-Unification

ACU = {f (f (x , y), z) ≈ f (x , f (y , z)), f (x , y) ≈ f (y , x), f (x ,e) ≈ x}

Elementary ACU-unification problem:

Γ = {f (x , f (x , y))
.

=?
ACU f (z, f (z, z))}

Solving idea:
1. Associate with the equation in Γ a homogeneous linear

Diophantine equation. The Diophantine equation states
that the number of new variables introduced by a unifier σ
in both sides of Γσ must be the same:

2x + y = 3z.

(Continues on the next slide.)



Example. ACU-Unification

Solving (Cont.):
2. Solve 2x + y = 3z over nonnegative integers. Three

minimal solutions:

x = 1, y = 1, z = 1
x = 0, y = 3, z = 1
x = 3, y = 0, z = 2

Any other solution of the equation can be obtained as a
nonnegative linear combination of these three solutions.

(Continues on the next slide.)



Example. ACU-Unification

Solving (Cont.):
3. Introduce new variables v1, v2, v3 for each solution of the

Diophantine equation:

x y z
v1 1 1 1
v2 0 3 1
v3 3 0 2

4. Each row corresponds to a unifier of Γ:

σ1 ={x 7→ v1, y 7→ v1, z 7→ v1}
σ2 ={x 7→ e, y 7→ f (v2, f (v2, v2)), z 7→ v2}
σ3 ={x 7→ f (v3, f (v3, v3)), y 7→ e, z 7→ f (v3, v3)}

However, none of them is an mgu.



Example. ACU-Unification
Solving (Cont.):

5. To obtain an mgu, we should combine all three solutions:

x y z
v1 1 1 1
v2 0 3 1
v3 3 0 2

Looking at columns: They state that the mgu we are
looking for should have

I in the binding for x one v1, zero v2, and three v3’s,
I in the binding for y one v1, three v2’s, and zero v3,
I in the binding for z one v1, one v2, and two v3’s

6. Hence, we can construct the mgu:

σ = {x 7→ f (v1, f (v3, f (v3, v3)), y 7→ f (v1, f (v2, f (v2, v2)),

z 7→ f (v1, f (v2, f (v3, v3)))}



Example. ACU-Unification

Exercise.
Verify that the unifiers σ1, σ2 and σ3 are instances of σ.



Example. E-Unification of Type 0

Example

I Equational theory: E = {f (e, x) ≈ x ,g(f (x , y)) ≈ g(y)}.
I E-unification problem: Γ = {g(x)

.
=?

E g(e)}.

I Complete (why?) set of solutions:

σ0 ={x 7→ e}
σ1 ={x 7→ f (x0,e)}
σ2 ={x 7→ f (x1, f (x0,e))}
. . .

σn ={x 7→ f (xn−1, xσn−1)}
. . .

I No mcsu. σi =· {x}E σi+1{xi 7→ e}. σi 6≤·
{x}
E σj for i > j .

Infinite descending chain: σ0 >·
{x}
E σ1 >·

{x}
E σ2 >·

{x}
E · · ·



Example. E-Unification of Type 0

Example

I Equational theory: E = {f (e, x) ≈ x ,g(f (x , y)) ≈ g(y)}.
I E-unification problem: Γ = {g(x)

.
=?

E g(e)}.
I Complete (why?) set of solutions:

σ0 ={x 7→ e}
σ1 ={x 7→ f (x0,e)}
σ2 ={x 7→ f (x1, f (x0,e))}
. . .

σn ={x 7→ f (xn−1, xσn−1)}
. . .

I No mcsu. σi =· {x}E σi+1{xi 7→ e}. σi 6≤·
{x}
E σj for i > j .

Infinite descending chain: σ0 >·
{x}
E σ1 >·

{x}
E σ2 >·

{x}
E · · ·



Example. E-Unification of Type 0

Example

I Equational theory: E = {f (e, x) ≈ x ,g(f (x , y)) ≈ g(y)}.
I E-unification problem: Γ = {g(x)

.
=?

E g(e)}.
I Complete (why?) set of solutions:

σ0 ={x 7→ e}
σ1 ={x 7→ f (x0,e)}
σ2 ={x 7→ f (x1, f (x0,e))}
. . .

σn ={x 7→ f (xn−1, xσn−1)}
. . .

I No mcsu. σi =· {x}E σi+1{xi 7→ e}. σi 6≤·
{x}
E σj for i > j .

Infinite descending chain: σ0 >·
{x}
E σ1 >·

{x}
E σ2 >·

{x}
E · · ·



Example. E-Unification of Type 0

Example (Cont.)
Why does σ0 >·

{x}
E σ1 >·

{x}
E σ2 >·

{x}
E · · · imply that there is no

mcsu?
I Let S = {σ0, σ1, . . .}.

I Let S′ be an arbitrary complete set of unifiers of Γ.
I Since S is complete, for any ϑ ∈ S′ there exists σi ∈ S

such that σi ≤·
{x}
E ϑ.

I Since σi+1 <·
{x}
E σi , we get σi+1 <·

{x}
E ϑ.

I On the other hand, since S′ is complete, there exists η ∈ S′

such that η ≤·{x}E σi+1.

I Hence, η <·{x}E ϑ which implies that S′ is not minimal.



Example. E-Unification of Type 0

Example (Cont.)
Why does σ0 >·

{x}
E σ1 >·

{x}
E σ2 >·

{x}
E · · · imply that there is no

mcsu?
I Let S = {σ0, σ1, . . .}.
I Let S′ be an arbitrary complete set of unifiers of Γ.

I Since S is complete, for any ϑ ∈ S′ there exists σi ∈ S
such that σi ≤·

{x}
E ϑ.

I Since σi+1 <·
{x}
E σi , we get σi+1 <·

{x}
E ϑ.

I On the other hand, since S′ is complete, there exists η ∈ S′

such that η ≤·{x}E σi+1.

I Hence, η <·{x}E ϑ which implies that S′ is not minimal.



Example. E-Unification of Type 0

Example (Cont.)
Why does σ0 >·

{x}
E σ1 >·

{x}
E σ2 >·

{x}
E · · · imply that there is no

mcsu?
I Let S = {σ0, σ1, . . .}.
I Let S′ be an arbitrary complete set of unifiers of Γ.
I Since S is complete, for any ϑ ∈ S′ there exists σi ∈ S

such that σi ≤·
{x}
E ϑ.

I Since σi+1 <·
{x}
E σi , we get σi+1 <·

{x}
E ϑ.

I On the other hand, since S′ is complete, there exists η ∈ S′

such that η ≤·{x}E σi+1.

I Hence, η <·{x}E ϑ which implies that S′ is not minimal.



Example. E-Unification of Type 0

Example (Cont.)
Why does σ0 >·

{x}
E σ1 >·

{x}
E σ2 >·

{x}
E · · · imply that there is no

mcsu?
I Let S = {σ0, σ1, . . .}.
I Let S′ be an arbitrary complete set of unifiers of Γ.
I Since S is complete, for any ϑ ∈ S′ there exists σi ∈ S

such that σi ≤·
{x}
E ϑ.

I Since σi+1 <·
{x}
E σi , we get σi+1 <·

{x}
E ϑ.

I On the other hand, since S′ is complete, there exists η ∈ S′

such that η ≤·{x}E σi+1.

I Hence, η <·{x}E ϑ which implies that S′ is not minimal.



Example. E-Unification of Type 0

Example (Cont.)
Why does σ0 >·

{x}
E σ1 >·

{x}
E σ2 >·

{x}
E · · · imply that there is no

mcsu?
I Let S = {σ0, σ1, . . .}.
I Let S′ be an arbitrary complete set of unifiers of Γ.
I Since S is complete, for any ϑ ∈ S′ there exists σi ∈ S

such that σi ≤·
{x}
E ϑ.

I Since σi+1 <·
{x}
E σi , we get σi+1 <·

{x}
E ϑ.

I On the other hand, since S′ is complete, there exists η ∈ S′

such that η ≤·{x}E σi+1.

I Hence, η <·{x}E ϑ which implies that S′ is not minimal.



Example. E-Unification of Type 0

Example (Cont.)
Why does σ0 >·

{x}
E σ1 >·

{x}
E σ2 >·

{x}
E · · · imply that there is no

mcsu?
I Let S = {σ0, σ1, . . .}.
I Let S′ be an arbitrary complete set of unifiers of Γ.
I Since S is complete, for any ϑ ∈ S′ there exists σi ∈ S

such that σi ≤·
{x}
E ϑ.

I Since σi+1 <·
{x}
E σi , we get σi+1 <·

{x}
E ϑ.

I On the other hand, since S′ is complete, there exists η ∈ S′

such that η ≤·{x}E σi+1.

I Hence, η <·{x}E ϑ which implies that S′ is not minimal.



Specific vs General Results

For each specific equational theory separately studying
I decidability,
I unification type,
I unification algorithm/procedure.

Can one study these problems for bigger classes of equational
theories?



Outline

Motivation

Equational Theories, Reformulations of Notions

Unification Type, Kinds of Unification

Results for Specific Theories

General Results



General Results

In general, unification modulo equational theories
I is undecidable,
I unification type of a given theory is undecidable,
I admits a complete unification procedure

(Gallier & Snyder, called an universal E-unification
procedure).



General Results

Universal E-unification procedure UE .

Rules:
I Trivial, Orient, Decomposition, Variable Elimination

from U , plus

I Lazy Paramodulation:

{e[u]} ∪ P ′; S =⇒ {l .=? u,e[r ]} ∪ P ′; S,

for a fresh variant of the identity l ≈ r from E ∪ E−1, where
I e[u] is an equation where the term u occurs,
I u is not a variable,
I if l is not a variable, then the top symbol of l and u are the

same.



General Results

Universal E-unification procedure. Control.

In order to solve a unification problem Γ modulo a given E :
I Create an initial system Γ; ∅.
I Apply successively rules from UE , building a complete tree

of derivations.
I No other inference rule may be applied to the equation

l .=? u that is generated by the Lazy Paramodulation rule
before it is subjected to a Decomposition step.



General Results

Universal E-unification procedure.

Example
E = {f (a,b) ≈ a,a ≈ b}.

Unification problem: {f (x , x)
.

=?
E x}.

Computing a unifier {x 7→ a} by the universal procedure:

{f (x , x)
.

=?
E x}; ∅ =⇒LP {f (a,b)

.
=?

E f (x , x),a .
=?

E x}; ∅

=⇒D {a
.

=?
E x ,b .

=?
E x ,a .

=?
E x}; ∅

=⇒O {x
.

=?
E a,b .

=?
E x ,a .

=?
E x}; ∅

=⇒S {b
.

=?
E a,a .

=?
E a}; {x .

= a}

=⇒LP {a
.

=?
E a,b .

=?
E b,a .

=?
E a}; {x .

= a}
=⇒+

T ∅; {x
.

= a}



General Results

Pros and cons of the universal procedure:
I Pros: Is sound and complete. Can be used for any E .
I Cons: Very inefficient. Usually does not yield a decision

procedure or a (minimal) E-unification algorithm even for
unitary or finitary theories with decidable unification.



General Results

More useful results can be obtained by imposing additional
restrictions on equational theories:

I Syntactic approaches: Restricting syntactic form of the
identities defining equational theories.

I Semantic approaches: Depend on properties of the free
algebras defined by the equational theory.


	Motivation
	Equational Theories, Reformulations of Notions
	Unification Type, Kinds of Unification
	Results for Specific Theories
	General Results

