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Introduction

» The most important special case of the E-unification
problem, when the equational theory can be represented
by a ground convergent set of rewrite rules.

» Narrowing: The process that is used to solve such
E-unification problems.



Introduction

» Let E be a set of identities, and R a convergent term
rewriting equivalent to E.

» o is an E-unifier of s and t, then so and to have the same
R-normal forms.

» |dea: Construct the unifier and the corresponding
reduction chains simultaneously.



Example

» E={0+x=x},R={0+x — x}.
» Solve E-unification problem {y + z =% 0}.
» Proceed as follows:
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Example

» E={0+x=x},R={0+x — x}.
» Solve E-unification problem {y + z =% 0}.
» Proceed as follows:
1. Look for an instance of y + z to which the rewrite rule
applies. Such instance is computed by syntactically unifying
¥+ zand 0 + x, yielding the mgu ¢ = {y — 0,z — x}.
2. (y +2)¢p = 0+ x, rewriting it with 0 + x — x gives x and
we obtain a new problem {x =f 0}.
3. {x iz- 0} has the syntactic mgu ¢ = {x — 0}.
4. By this process we have simultaneously constructed the
E-unifier o = ¢ = {y — 0,z — 0, x — 0} and the rewrite
chain(y +z)c =0+0 — 0= 00.



Preliminaries

v

A rewrite rule: a directed equation / — r, where

vars(r) C vars(/).

A term rewriting system (TRS): a set of rewrite rules.
s[t]|p: A term obtained from s by replacing its subterm at
position p with the term ¢.

The rewrite relation R associated witha TRS R: s — g tif
there exists a variant / — r of a rewrite rule in R, a
position p in s, and a substitution ¢ such that s|, = /o and
S|p is called a redex.



Preliminaries

» —»p: The transitive-reflexive closure of —g.

» sreducestotin R: s —»pgt.

» If E is the set of equations corresponding to R, i.e.,
E ={l=r ||l — r € R}, then =g coincides with the
reflexive-symmetric-transitive closure of R.

» Two terms t;, I, are joinable (wrt R), denoted by # |g b, if
there exists aterm ssuchthatty »g sand t, —p5 s.

» Aterm sis a normal form (wrt R) if there is no term t with
S —pl



Preliminaries

» R is terminating if there are no infinite reduction sequences
h—pb—gty —pg .

» R is confluent if for all terms s, t;, & with s — g ; and
s—»gbwehavety g b.

» Ris convergent if it is confluent and terminating.



Preliminaries

» A constraint system: either L (representing failure) or a
triple P; C; S.

» P: A multiset of equations, representing the schema of the
problem.

» C: A set of equations, representing constraints on
variables in P.

» S: A set of equations, representing bindings in the solution.

» C plays the role similar to P earlier, the rules from &/ will be
applied to C; S as before.

» 1 is said to be a solution (or E-unifier) of a system P; C; S
if it E-unifies each equation in P, and unifies each of the
equations in C and S; the system L has no E-unifiers.



Assumptions

» The rewrite system R is ground convergent with respect to
a reduction ordering .

» R is represented as a numbered sequence of rules
{/1 — r1,...,ln — rn}

» The index of a rule is its number in this sequence.



Preliminaries

Restricted form of substitution:

Definition

Given a rewrite system R, a substitution ¢ is R-reduced (or just
reduced if R is unimportant) if for every x € dom(v), x is in
R-normal form.

Example
R = {f(f(x,y),z) — f(x,f(y,2)), f(x, x) — x}.

vy ={x — f(f(u,v),w),y — f(a,f(a a))} : not R-reduced.
Yo = {x— f(u,f(v,w)),y — a} : R-reduced.

For any ¥ and terminating set of rules R one can find an
R-equivalent reduced substitution ¥'.
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The Calculus B for Basic Narrowing

The rule set S:

Trivial: P;{s='sluC;S= P,C;8S.
Decomposition: P; {f(si,...,sn) = f(t;,....t)}UC; S =
P;{si="t,....sn ="t} UC’S,
where n > 0.
Orient: P, {t='x}uC;S= P:{x="t}uC;S
if t is not a variable.
Basic Variable P;{x ='t}uC;S—
Elimination:  P;C'{x—t};S{x— t} U{x ~t},
if x ¢ vars(t).



The Calculus B for Basic Narrowing

Two extra rules:

Constrain: {e} UP’;C; S =con P';{€0s}UC’;S.
Lazy Paramodulation: {e[t]} UP’;C; S =p
{e[r]} UP'; {log =" tos} UC; S,

for a fresh variant of | — r from R, where
» e[t] is an equation where the term t occurs,
» tis not a variable,
» the top symbol of / and t are the same.



Soundness of the Calculus B

Theorem
Let R be a ground convergent set of rewrite rules. If
P;0;0 =3 0;0; S, then o is an R-unifier of P.

Proof.
Exercise.



Completeness of the Calculus B

Theorem

Let R be a ground convergent set of rewrite rules. If9 is an
R-reduced solution of P; (); ), then there exists a sequence
P:0; 0 =3 0; 0; S such that og </2*(F) g,

Proof.

» We may assume that P4 is ground and that ¢ is
R-reduced, since the relation - does not distinguish
between R-equivalent substitutions.

» Thus, we will prove a stronger result, that when ¥ is
R-reduced, then g <'as(P) .

O



Completeness of the Calculus B

Theorem
Let R be a ground convergent set of rewrite rules. If9 is an
R-reduced solution of P; (); ), then there exists a sequence

P:0; 0 =3 0; 0; S such that og </2*(F) g,

Proof.

The complexity (M, ny, no, n3) for P; C; S and its solution 9:
M = The multiset of all terms occurring in P¥;
ny = The number of distinct variables in C;
n, = The number of symbols in C;

ns = The number of equations t == x € C where t is
not a variable.
Associate to it the well-founded ordering: The multiset

extension of < for the first component, and the ordering on
natural numbers on the remaining components. O o™\



Completeness of the Calculus B

Theorem
Let R be a ground convergent set of rewrite rules. If9 is an
R-reduced solution of P; (); ), then there exists a sequence

P;0;0 =% 0;0; S such that o's g,‘f’s(P) 0.

Proof.
Show by induction on this measure that if ¥ is a solution of
P; C; S’ with S’ in a solved form, then there exists a sequence

P;.C; S =*0:0;: S

such that og <% 9, where X = vars(P, C, S').

O

The base case 0; 0); S is trivial.



Completeness of the Calculus B

Theorem

Let R be a ground convergent set of rewrite rules. If9 is an
R-reduced solution of P; (); ), then there exists a sequence
P:0; 0 =3 0; 0; S such that og </2*(F) g,

Proof.
For the induction step there are several overlapping cases:
1. fC={s="t} U, then sy = t and we use S to
generate a transformation step to a smaller system
containing the same set of variables, and with the same
solution. By the induction hypothesis, we have

P,C,;S —=s P, C";S" =*0;0;S

such that o <% o for X = vars(P, C, S').



Completeness of the Calculus B

Theorem

Let R be a ground convergent set of rewrite rules. If9 is an
R-reduced solution of P; (); ), then there exists a sequence
P:0; 0 =3 0; 0; S such that og </2*(F) g,

Proof.

2. IfP={s =7 t} U P and sv = t¢, then we may apply
Constrain to obtain a smaller system (reducing the
component M) with the same solution and the same set of
variables, and we conclude as in the previous case.



Completeness of the Calculus B

Theorem

Let R be a ground convergent set of rewrite rules. If9 is an
R-reduced solution of P; (); ), then there exists a sequence
P:0; 0 =3 0; 0; S such that og </2*(F) g,

Proof.

3. » Assume P={s =7 t} U P’ and there is an innermost redex
in, say sv.
» If more than one instance of a rule from R reduces this
redex, we choose the rule with the smallest index in the set
R.
» Since ¥ is R-reduced, the redex must occur inside the
non-variable positions of s.

O



Completeness of the Calculus B

Theorem

Let R be a ground convergent set of rewrite rules. If ¥ is an
R-reduced solution of P; 0); (), then there exists a sequence
P;0; ) =3 0; 0; S such that og <7 .

Proof.
3. » Hence, we have the transformation:
{s[s] ="t} UPC:S =p
(sl ="ty U P {los =" sos}UC; S
» The new system smaller with respect to its new solution

9 = 9p. ¥ is still R-reduced.
» By the induction hypothesis,

.7

(sl ="t} UP;{log =" s'og} UC; S = 0;0; S such
that o <t ¢ with X = vars(/, r, P, C, S'), and since

x¥ = xv' for every x € vars(P, C, S'), the induction is .
7\
complete. N



Example
» R={0+x — x,8(xX)+y — s(x+y)}
» Goal: {z+ z =’ s(s(0))}
» Successful derivation:
{z+2z =7 s(s(0)}0;0 —p
Y{z+z="s(x) +y}0 —0
(s(0)}i{z =" s(x).2 =" y}:0 —nve
{s(x+y)= S(S(O))} {s(x )— yi{z=s(x)} —o
{s(x+y) =" s(s(0)}: {y =" s(x)}; {z ~ s(x)} —sve
{s(x +y) =" 5(5(0)}:0: {z ~ s(x),y ~ s(x)} —1p

{s(x') =" s(s(0))}: {x + s(x) =" 0+ x'};
{z =~ s(x),y ~ s(x)} —p

{qx+néfaam

)
{s(x+y) ’ 5(s(0)



Example
» R={0+x — x,s(x

)+y — s(x+y)}
» Goal: {z+ z =’ s(s(0)
(

}

)
» Successful derivation (cont.):

{s(x') =" s(s(0))}: {x =" 0,8(x) =" X'} {z ~ s(x),y ~ s(x)} —sve
)= s(s(0))}: {s(0 )i X'} {z~ 5(0),y = 5(0),x ~ 0} —o
) =" s(s(0)}i {x = 5(0)}: {z ~ 5(0), y ~ 5(0), x ~ 0} —ave
{s(x) =’ ( (0))}:0:{z = 5(0), y ~ s(0),x = 0,x" ~ s(0)} —¢
0; {s(s(0)) =" s(s(0))}; {z ~ 5(0), y ~ §(0), x ~ 0,x' ~ §(0)} —>1
0;0;{z ~ s(0),y ~ s(0),x ~ 0,x" ~ s(0)}.



Counterexample for Nonterminating R
If R is not terminating, B may not find solutions.
Counterexample by A. Middeldorp and E. Hamoen, 1994
» R={f(x) — g(x,x),a— b,g(a,b) — ¢, g(b,b) — f(a)}
» Goal: {f(a) =’ ¢}

» The goal is unifiable (f(a) =g c), but B can not verify it:

{f(a) =’ ch0;0 —ip

{g(x,x) =" c}i {f(x) =" H(@)};0 —0p
{gx,x) =" chi{x =" a)};0 —pve

{g(x,x) =" ¢} 0; {x ~ a} —c

0;{g(a,a) =7 ch{x~a} — L



Counterexample for Nonterminating R
If R is not terminating, B may not find solutions.
Counterexample by A. Middeldorp and E. Hamoen, 1994
» R={f(x) — g(x,x),a— b,g(a,b) — ¢, g(b,b) — f(a)}
» Goal: {f(a) =’ ¢}

» Second unsuccessful derivation:

{f(a) =" ¢};0;0 —p

{g(x.x) =" ¢} {f(x) =" f(a)};0 —p
{g(x.x) =" ¢} {x =" a)};0 —pue

{g(x,x) =" ¢};0; {x ~ a} —p

{c='c}i{g(aa) = g(ab)}; {x~a} —n
{ci? c};{ai? b,ai? al; {x~a}— L



Counterexample for Nonterminating R
If R is not terminating, B may not find solutions.
Counterexample by A. Middeldorp and E. Hamoen, 1994
» R={f(x) — g(x,x),a— b,g(a,b) — ¢, g(b,b) — f(a)}
» Goal: {f(a) =’ ¢}

» Third unsuccessful derivation:

{f(a) =" c};0;0 —1p

{g(x.x) =" ¢} {f(x) = f(a)}:0 —p
{g(x.x) =" ¢k {x =" a)};0 —pue

{g(x,x) =" ¢} 0; {x ~ a} —p

{f(a) =’ c}; {g(a,a) =" g(b,b)}; {x ~ a} —p
{fla) =" c}:{a="b}:{x~a} — L



Counterexample for Nonterminating R
If R is not terminating, B may not find solutions.
Counterexample by A. Middeldorp and E. Hamoen, 1994
» R={f(x) — g(x,x),a— b,g(a,b) — ¢, g(b,b) — f(a)}
» Goal: {f(a) =’ ¢}

» Fourth unsuccessful derivation:

{f(a) =" c};0;0 —p
{f(b) =" c};{a="a}; 0 —1 {f(b) =" c};0;0 —s1p
{g(x,x) =" c}; {f(x) =" £(b))}: 0 —p
{9(x,x) =7 chi {x E b}; 0 —sve
{g(x,x) =" c}0; {x = b} —c
0: {g(b,b) =’ c}; {x ~ b} —»



Counterexample for Nonterminating R
If R is not terminating, B may not find solutions.
Counterexample by A. Middeldorp and E. Hamoen, 1994
» R={f(x) — g(x,x),a— b,g(a,b) — ¢, g(b,b) — f(a)}
» Goal: {f(a) =’ ¢}

» An infinite derivation:

{f(a) =" c};0;0 —p
{f(b) =" c};{a="a}; 0 —1 {f(b) =" c};0;0 —s1p
{g(x,x) =" ¢} {f(x) =" f(b))}:0 —p

{9(x,x) =7 chi {x =7 b}; 0 —sve
{g(x.x) = c}:0: {x = b} —p
{f(a) =" c}: {g(b, b) = g(b,b)}; {x ~ b} —1

{f(a) -’ c}; 0 {x~b} — ...



Strategies and refinements

» Variety of strategies and refinements can be developed for
the basic narrowing calculus without destroying
completeness.

» For instance, composite rules, simplification, redex
orderings and variable abstraction.

» For more details, see, e.g.,

[§ F Baader and W. Snyder.
Unification theory.
In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, volume |, chapter 8, pages
445-532. Elsevier Science, 2001.



	Introduction
	Basic Narrowing

