Introduction to Unification Theory Narrowing

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria kutsia@risc.uni-linz.ac.at

Overview

Introduction

Basic Narrowing

Outline

Introduction

Basic Narrowing

Introduction

- The most important special case of the *E*-unification problem, when the equational theory can be represented by a ground convergent set of rewrite rules.
- Narrowing: The process that is used to solve such *E*-unification problems.

Introduction

- ► Let *E* be a set of identities, and *R* a convergent term rewriting equivalent to *E*.
- σ is an *E*-unifier of *s* and *t*, then *s*σ and *t*σ have the same *R*-normal forms.
- Idea: Construct the unifier and the corresponding reduction chains simultaneously.

- $E = \{0 + x = x\}, R = \{0 + x \longrightarrow x\}.$
- Solve *E*-unification problem $\{y + z \doteq_E^? 0\}$.
- Proceed as follows:

- $\blacktriangleright E = \{0 + x = x\}, R = \{0 + x \longrightarrow x\}.$
- Solve *E*-unification problem $\{y + z \doteq_E^? 0\}$.
- Proceed as follows:
 - 1. Look for an instance of y + z to which the rewrite rule applies. Such instance is computed by syntactically unifying y + z and 0 + x, yielding the mgu $\varphi = \{y \mapsto 0, z \mapsto x\}$.

・ コ ト ・ 雪 ト ・ ヨ ト ・ ヨ ト

- $\blacktriangleright E = \{0 + x = x\}, R = \{0 + x \longrightarrow x\}.$
- Solve *E*-unification problem $\{y + z \doteq_E^? 0\}$.
- Proceed as follows:
 - 1. Look for an instance of y + z to which the rewrite rule applies. Such instance is computed by syntactically unifying y + z and 0 + x, yielding the mgu $\varphi = \{y \mapsto 0, z \mapsto x\}$.
 - 2. $(y+z)\varphi = 0 + x$, rewriting it with $0 + x \longrightarrow x$ gives x and we obtain a new problem $\{x \doteq_{E}^{?} 0\}$.

・ ロ ト ・ 雪 ト ・ 目 ト

- $\blacktriangleright E = \{0 + x = x\}, R = \{0 + x \longrightarrow x\}.$
- Solve *E*-unification problem $\{y + z \doteq_E^? 0\}$.
- Proceed as follows:
 - 1. Look for an instance of y + z to which the rewrite rule applies. Such instance is computed by syntactically unifying y + z and 0 + x, yielding the mgu $\varphi = \{y \mapsto 0, z \mapsto x\}$.
 - 2. $(y+z)\varphi = 0 + x$, rewriting it with $0 + x \longrightarrow x$ gives x and we obtain a new problem $\{x \doteq_{E}^{?} 0\}$.

・ ロ ト ・ 雪 ト ・ 目 ト

3. $\{x \doteq_{E}^{?} 0\}$ has the syntactic mgu $\vartheta = \{x \mapsto 0\}$.

- $\blacktriangleright E = \{0 + x = x\}, R = \{0 + x \longrightarrow x\}.$
- Solve *E*-unification problem $\{y + z \doteq_E^? 0\}$.
- Proceed as follows:
 - 1. Look for an instance of y + z to which the rewrite rule applies. Such instance is computed by syntactically unifying y + z and 0 + x, yielding the mgu $\varphi = \{y \mapsto 0, z \mapsto x\}$.
 - 2. $(y+z)\varphi = 0 + x$, rewriting it with $0 + x \longrightarrow x$ gives x and we obtain a new problem $\{x \doteq_{E}^{?} 0\}$.
 - 3. $\{x \doteq_E^? 0\}$ has the syntactic mgu $\vartheta = \{x \mapsto 0\}$.
 - 4. By this process we have simultaneously constructed the *E*-unifier $\sigma = \varphi \vartheta = \{y \mapsto 0, z \mapsto 0, x \mapsto 0\}$ and the rewrite chain $(y + z)\sigma = 0 + 0 \longrightarrow 0 = 0\sigma$.

・ ロ ト ・ 雪 ト ・ 目 ト ・

- A rewrite rule: a directed equation *I* → *r*, where vars(*r*) ⊆ vars(*I*).
- ► A term rewriting system (TRS): a set of rewrite rules.
- ► s[t]|_p: A term obtained from s by replacing its subterm at position p with the term t.
- The rewrite relation *R* associated with a TRS *R*: s →_R t if there exists a variant *l* → r of a rewrite rule in *R*, a position p in s, and a substitution σ such that s|_p = lσ and t = s[rσ]_p.
- $s|_{p}$ is called a redex.

- \rightarrow_R : The transitive-reflexive closure of \rightarrow_R .
- s reduces to t in R: $s \rightarrow R t$.
- ▶ If *E* is the set of equations corresponding to *R*, i.e., $E = \{I \doteq r \mid I \longrightarrow r \in R\}$, then \doteq_E coincides with the reflexive-symmetric-transitive closure of *R*.
- Two terms t₁, t₂ are joinable (wrt R), denoted by t₁ ↓_R t₂, if there exists a term s such that t₁ →_R s and t₂ →_R s.
- A term *s* is a normal form (wrt *R*) if there is no term *t* with $s \rightarrow_R t$.

・ロン ・雪 と ・ ヨ と

э

► *R* is terminating if there are no infinite reduction sequences $t_1 \longrightarrow_R t_2 \longrightarrow_R t_3 \longrightarrow_R \cdots$.

< □ > < @ > < \arrow \arro

э

- ► *R* is confluent if for all terms *s*, t_1 , t_2 with $s \rightarrow R t_1$ and $s \rightarrow R t_2$ we have $t_1 \downarrow_R t_2$.
- R is convergent if it is confluent and terminating.

- A constraint system: either⊥ (representing failure) or a triple P; C; S.
- P: A multiset of equations, representing the schema of the problem.
- C: A set of equations, representing constraints on variables in P.
- S: A set of equations, representing bindings in the solution.
- ► C plays the role similar to P earlier, the rules from U will be applied to C; S as before.
- ϑ is said to be a solution (or *E*-unifier) of a system *P*; *C*; *S* if it *E*-unifies each equation in *P*, and unifies each of the equations in *C* and *S*; the system ⊥ has no *E*-unifiers.

э

< □ > < @ > < \arrow \arro

Assumptions

- ► The rewrite system R is ground convergent with respect to a reduction ordering ≻.
- R is represented as a numbered sequence of rules

$$\{I_1 \longrightarrow r_1, \ldots, I_n \longrightarrow r_n\}.$$

• The index of a rule is its number in this sequence.

Restricted form of substitution:

Definition

Given a rewrite system *R*, a substitution ϑ is *R*-reduced (or just reduced if *R* is unimportant) if for every $x \in dom(\vartheta)$, *x* is in *R*-normal form.

Example

$$R = \{f(f(x, y), z) \rightarrow f(x, f(y, z)), f(x, x) \rightarrow x\}.$$

$$\vartheta_1 = \{x \mapsto f(f(u, v), w), y \mapsto f(a, f(a, a))\}: \text{ not } R\text{-reduced.}$$

$$\vartheta_2 = \{x \mapsto f(u, f(v, w)), y \mapsto a\}: R\text{-reduced.}$$

For any ϑ and terminating set of rules *R* one can find an *R*-equivalent reduced substitution ϑ' .

э

Outline

Introduction

Basic Narrowing

The Calculus \mathcal{B} for Basic Narrowing

The rule set S:

Trivial: $P: \{s \doteq s \in C': S \Longrightarrow P: C': S \Longrightarrow P: C': S$. **Decomposition:** P; { $f(s_1, \ldots, s_n) \doteq$? $f(t_1, \ldots, t_n)$ } $\cup C'$; $S \Longrightarrow$ $P: \{ \mathbf{s}_1 \doteq^? t_1, \ldots, \mathbf{s}_n \doteq^? t_n \} \cup C': S,$ where n > 0. **Orient:** $P: \{t \doteq^? x\} \cup C': S \Longrightarrow P: \{x \doteq^? t\} \cup C': S$ if t is not a variable. **Basic Variable** $P: \{x \doteq^{?} t\} \cup C': S \Longrightarrow$ **Elimination:** $P: C'\{x \mapsto t\}; S\{x \mapsto t\} \cup \{x \approx t\},\$ if $x \notin vars(t)$.

The Calculus \mathcal{B} for Basic Narrowing

Two extra rules:

Constrain: $\{e\} \cup P'; C; S \Longrightarrow_{Con} P'; \{e\sigma_S\} \cup C'; S.$ **Lazy Paramodulation:** $\{e[t]\} \cup P'; C; S \Longrightarrow_{LP}$ $\{e[r]\} \cup P'; \{I\sigma_S \doteq^? t\sigma_S\} \cup C; S,$

for a fresh variant of $I \longrightarrow r$ from R, where

- *e*[*t*] is an equation where the term *t* occurs,
- t is not a variable,
- the top symbol of I and t are the same.

Soundness of the Calculus \mathcal{B}

Theorem

Let R be a ground convergent set of rewrite rules. If $P; \emptyset; \emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset; \emptyset; S$, then σ_S is an R-unifier of P.

Proof.

Exercise.

Theorem

Let *R* be a ground convergent set of rewrite rules. If ϑ is an *R*-reduced solution of *P*; \emptyset ; \emptyset , then there exists a sequence *P*; \emptyset ; $\emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset$; \emptyset ; *S* such that $\sigma_S \leq_R^{vars(P)} \vartheta$.

Proof.

- We may assume that Pϑ is ground and that ϑ is R-reduced, since the relation ≻ does not distinguish between *R*-equivalent substitutions.
- ► Thus, we will prove a stronger result, that when ϑ is R-reduced, then $\sigma_S \leq vars(P) \vartheta$.

・ ロ ト ・ 白 ト ・ 正 ト ・ 正 ト

Theorem

Let *R* be a ground convergent set of rewrite rules. If ϑ is an *R*-reduced solution of *P*; \emptyset ; \emptyset , then there exists a sequence *P*; \emptyset ; $\emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset$; \emptyset ; *S* such that $\sigma_S \leq_R^{vars(P)} \vartheta$.

Proof.

The complexity $\langle M, n_1, n_2, n_3 \rangle$ for *P*; *C*; *S* and its solution ϑ :

M = The multiset of all terms occurring in $P\vartheta$;

- n_1 = The number of distinct variables in *C*;
- n_2 = The number of symbols in *C*;
- n_3 = The number of equations $t \doteq_E^? x \in C$ where *t* is not a variable.

Associate to it the well-founded ordering: The multiset extension of \prec for the first component, and the ordering on natural numbers on the remaining components.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset; \emptyset; S$ such that $\sigma_S \leq_R^{vars(P)} \vartheta$.

Proof.

Show by induction on this measure that if ϑ is a solution of *P*; *C*; *S*' with *S*' in a solved form, then there exists a sequence

$$P; C; S' \Longrightarrow^* \emptyset; \emptyset; S$$

such that $\sigma_{\mathcal{S}} \leq^{\mathcal{X}} \vartheta$, where $\mathcal{X} = vars(\mathcal{P}, \mathcal{C}, \mathcal{S}')$.

The base case \emptyset ; \emptyset ; *S* is trivial.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset; \emptyset; S$ such that $\sigma_S \leq_R^{vars(P)} \vartheta$.

Proof.

For the induction step there are several overlapping cases:

1. If $C = \{s \doteq^? t\} \cup C'$, then $s\vartheta = t\vartheta$ and we use S to generate a transformation step to a smaller system containing the same set of variables, and with the same solution. By the induction hypothesis, we have

$$P; C; S' \Longrightarrow_{\mathcal{S}} P; C''; S'' \Longrightarrow^* \emptyset; \emptyset; S$$

such that $\sigma_s \leq^{\mathcal{X}} \vartheta$ for $\mathcal{X} = vars(P, C, S')$.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset; \emptyset; S$ such that $\sigma_S \leq_R^{vars(P)} \vartheta$.

Proof.

If P = {s ≐? t} ∪ P' and sϑ = tϑ, then we may apply Constrain to obtain a smaller system (reducing the component M) with the same solution and the same set of variables, and we conclude as in the previous case.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset; \emptyset; S$ such that $\sigma_S \leq_R^{vars(P)} \vartheta$.

Proof.

- 3. Assume $P = \{s \doteq^? t\} \cup P'$ and there is an innermost redex in, say $s\vartheta$.
 - If more than one instance of a rule from R reduces this redex, we choose the rule with the smallest index in the set R.
 - ► Since ϑ is *R*-reduced, the redex must occur inside the non-variable positions of *s*.

Theorem

Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P; \emptyset; \emptyset$, then there exists a sequence $P; \emptyset; \emptyset \Longrightarrow_{\mathcal{B}}^* \emptyset; \emptyset; S$ such that $\sigma_S \leq_R^{\mathsf{vars}(P)} \vartheta$.

Proof.

3. • Hence, we have the transformation:

$$\{ \boldsymbol{s}[\boldsymbol{s}'] \stackrel{:}{=} {}^{?} t \} \cup \boldsymbol{P}'; \boldsymbol{C}; \boldsymbol{S}' \Longrightarrow_{\mathsf{LP}} \\ \{ \boldsymbol{s}[r] \stackrel{:}{=} {}^{?} t \} \cup \boldsymbol{P}'; \{ l\sigma'_{\boldsymbol{S}} \stackrel{:}{=} {}^{?} \boldsymbol{s}'\sigma'_{\boldsymbol{S}} \} \cup \boldsymbol{C}; \boldsymbol{S}$$

- ► The new system smaller with respect to its new solution $\vartheta' = \vartheta \rho$. ϑ' is still *R*-reduced.
- ▶ By the induction hypothesis, $\{s[r] \stackrel{:}{=}^{?} t\} \cup P'; \{l\sigma_{S'} \stackrel{:}{=}^{?} s'\sigma_{S'}\} \cup C; S' \implies^{*} \emptyset; \emptyset; S \text{ such that } \sigma_{S} \leq^{\mathcal{X}} \vartheta' \text{ with } \mathcal{X} = vars(I, r, P, C, S'), \text{ and since } x\vartheta = x\vartheta' \text{ for every } x \in vars(P, C, S'), \text{ the induction is complete.}$

A = A + A = A + A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $\blacktriangleright R = \{0 + x \longrightarrow x, s(x) + y \longrightarrow s(x + y)\}$
- ▶ Goal: {z + z ≐[?] s(s(0))}
- Successful derivation:

$$\{z + z \stackrel{:}{=}^{?} s(s(0))\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}} \\ \{s(x + y) \stackrel{:}{=}^{?} s(s(0))\}; \{z + z \stackrel{:}{=}^{?} s(x) + y\}; \emptyset \longrightarrow_{\mathsf{D}} \\ \{s(x + y) \stackrel{:}{=}^{?} s(s(0))\}; \{z \stackrel{:}{=}^{?} s(x), z \stackrel{:}{=}^{?} y\}; \emptyset \longrightarrow_{\mathsf{BVE}} \\ \{s(x + y) \stackrel{:}{=}^{?} s(s(0))\}; \{s(x) \stackrel{:}{=}^{?} y\}; \{z \approx s(x)\} \longrightarrow_{\mathsf{O}} \\ \{s(x + y) \stackrel{:}{=}^{?} s(s(0))\}; \{y \stackrel{:}{=}^{?} s(x)\}; \{z \approx s(x)\} \longrightarrow_{\mathsf{BVE}} \\ \{s(x + y) \stackrel{:}{=}^{?} s(s(0))\}; \emptyset; \{z \approx s(x), y \approx s(x)\} \longrightarrow_{\mathsf{LP}} \\ \{s(x') \stackrel{:}{=}^{?} s(s(0))\}; \{x + s(x) \stackrel{:}{=}^{?} 0 + x'\}; \\ \{z \approx s(x), y \approx s(x)\} \longrightarrow_{\mathsf{D}}$$

・ロット 御マ キョマ キョン

- $\blacktriangleright R = \{0 + x \longrightarrow x, s(x) + y \longrightarrow s(x + y)\}$
- ► Goal: {z + z ≐[?] s(s(0))}
- Successful derivation (cont.):

$$\{ s(x') \stackrel{:}{=} {}^{?} s(s(0)) \}; \{ x \stackrel{:}{=} {}^{?} 0, s(x) \stackrel{:}{=} {}^{?} x' \}; \{ z \approx s(x), y \approx s(x) \} \longrightarrow_{\mathsf{BVE}} \\ \{ s(x') \stackrel{:}{=} {}^{?} s(s(0)) \}; \{ s(0) \stackrel{:}{=} {}^{?} x' \}; \{ z \approx s(0), y \approx s(0), x \approx 0 \} \longrightarrow_{\mathsf{O}} \\ \{ s(x') \stackrel{:}{=} {}^{?} s(s(0)) \}; \{ x' \stackrel{:}{=} {}^{?} s(0) \}; \{ z \approx s(0), y \approx s(0), x \approx 0 \} \longrightarrow_{\mathsf{BVE}} \\ \{ s(x') \stackrel{:}{=} {}^{?} s(s(0)) \}; \emptyset; \{ z \approx s(0), y \approx s(0), x \approx 0, x' \approx s(0) \} \longrightarrow_{\mathsf{C}} \\ \emptyset; \{ s(s(0)) \stackrel{:}{=} {}^{?} s(s(0)) \}; \{ z \approx s(0), y \approx s(0), x \approx 0, x' \approx s(0) \} \longrightarrow_{\mathsf{T}} \\ \emptyset; \emptyset; \{ z \approx s(0), y \approx s(0), x \approx 0, x' \approx s(0) \}.$$

・ロット (雪) (日) (日)

э

If R is not terminating, \mathcal{B} may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

$$\blacktriangleright R = \{f(x) \longrightarrow g(x, x), a \longrightarrow b, g(a, b) \longrightarrow c, g(b, b) \longrightarrow f(a)\}$$

- ▶ Goal: {f(a) ≐[?] c}
- ▶ The goal is unifiable $(f(a) \doteq_R c)$, but \mathcal{B} can not verify it:

$$\{f(a) \stackrel{i}{=} {}^{?} c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}} \\ \{g(x, x) \stackrel{i}{=} {}^{?} c\}; \{f(x) \stackrel{i}{=} {}^{?} f(a)\}; \emptyset \longrightarrow_{\mathsf{D}} \\ \{g(x, x) \stackrel{i}{=} {}^{?} c\}; \{x \stackrel{i}{=} {}^{?} a)\}; \emptyset \longrightarrow_{\mathsf{BVE}} \\ \{g(x, x) \stackrel{i}{=} {}^{?} c\}; \emptyset; \{x \approx a\} \longrightarrow_{\mathsf{C}} \\ \emptyset; \{g(a, a) \stackrel{i}{=} {}^{?} c\}; \{x \approx a\} \longrightarrow \bot$$

If R is not terminating, \mathcal{B} may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

$$\blacktriangleright R = \{f(x) \longrightarrow g(x, x), a \longrightarrow b, g(a, b) \longrightarrow c, g(b, b) \longrightarrow f(a)\}$$

▶ Goal: {f(a) ≐[?] c}

Second unsuccessful derivation:

$$\{f(a) \doteq^{?} c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}}$$

$$\{g(x, x) \doteq^{?} c\}; \{f(x) \doteq^{?} f(a)\}; \emptyset \longrightarrow_{\mathsf{D}}$$

$$\{g(x, x) \doteq^{?} c\}; \{x \doteq^{?} a\}\}; \emptyset \longrightarrow_{\mathsf{BVE}}$$

$$\{g(x, x) \doteq^{?} c\}; \emptyset; \{x \approx a\} \longrightarrow_{\mathsf{LP}}$$

$$\{c \doteq^{?} c\}; \{g(a, a) \doteq^{?} g(a, b)\}; \{x \approx a\} \longrightarrow_{\mathsf{D}}$$

$$\{c \doteq^{?} c\}; \{a \doteq^{?} b, a \doteq^{?} a\}; \{x \approx a\} \longrightarrow \bot$$

If R is not terminating, \mathcal{B} may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

$$\blacktriangleright R = \{f(x) \longrightarrow g(x, x), a \longrightarrow b, g(a, b) \longrightarrow c, g(b, b) \longrightarrow f(a)\}$$

- ▶ Goal: {*f*(*a*) ≐[?] *c*}
- Third unsuccessful derivation:

$$\{f(a) \stackrel{i}{=} {}^{?} c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}} \\ \{g(x, x) \stackrel{i}{=} {}^{?} c\}; \{f(x) \stackrel{i}{=} {}^{?} f(a)\}; \emptyset \longrightarrow_{\mathsf{D}} \\ \{g(x, x) \stackrel{i}{=} {}^{?} c\}; \{x \stackrel{i}{=} {}^{?} a\}; \emptyset \longrightarrow_{\mathsf{BVE}} \\ \{g(x, x) \stackrel{i}{=} {}^{?} c\}; \emptyset; \{x \approx a\} \longrightarrow_{\mathsf{LP}} \\ \{f(a) \stackrel{i}{=} {}^{?} c\}; \{g(a, a) \stackrel{i}{=} {}^{?} g(b, b)\}; \{x \approx a\} \longrightarrow_{\mathsf{D}} \\ \{f(a) \stackrel{i}{=} {}^{?} c\}; \{a \stackrel{i}{=} {}^{?} b\}; \{x \approx a\} \longrightarrow \bot \end{cases}$$

If R is not terminating, \mathcal{B} may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

$$\blacktriangleright R = \{f(x) \longrightarrow g(x, x), a \longrightarrow b, g(a, b) \longrightarrow c, g(b, b) \longrightarrow f(a)\}$$

▶ Goal: {f(a) ≐[?] c}

Fourth unsuccessful derivation:

$$\{f(a) \doteq^{?} c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}} \{f(b) \doteq^{?} c\}; \{a \doteq^{?} a\}; \emptyset \longrightarrow_{\mathsf{T}} \{f(b) \doteq^{?} c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}} \{g(x, x) \doteq^{?} c\}; \{f(x) \doteq^{?} f(b))\}; \emptyset \longrightarrow_{\mathsf{D}} \{g(x, x) \doteq^{?} c\}; \{x \doteq^{?} b\}; \emptyset \longrightarrow_{\mathsf{BVE}} \{g(x, x) \doteq^{?} c\}; \{x \approx b\} \longrightarrow_{\mathsf{C}} \emptyset; \{g(b, b) \doteq^{?} c\}; \{x \approx b\} \longrightarrow$$

If R is not terminating, \mathcal{B} may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

- $\blacktriangleright R = \{f(x) \longrightarrow g(x, x), a \longrightarrow b, g(a, b) \longrightarrow c, g(b, b) \longrightarrow f(a)\}$
- ► Goal: {f(a) ≐[?] c}
- An infinite derivation:

$$\{f(a) \stackrel{:}{=}^{?} c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}} \{f(b) \stackrel{:}{=}^{?} c\}; \{a \stackrel{:}{=}^{?} a\}; \emptyset \longrightarrow_{\mathsf{T}} \{f(b) \stackrel{:}{=}^{?} c\}; \emptyset; \emptyset \longrightarrow_{\mathsf{LP}} \{g(x, x) \stackrel{:}{=}^{?} c\}; \{f(x) \stackrel{:}{=}^{?} f(b))\}; \emptyset \longrightarrow_{\mathsf{D}} \{g(x, x) \stackrel{:}{=}^{?} c\}; \{x \stackrel{:}{=}^{?} b\}; \emptyset \longrightarrow_{\mathsf{BVE}} \{g(x, x) \stackrel{:}{=}^{?} c\}; \{x \approx b\} \bigoplus_{\mathsf{LP}} \{f(a) \stackrel{:}{=}^{?} c\}; \{g(b, b) \stackrel{:}{=}^{?} g(b, b)\}; \{x \approx b\} \longrightarrow_{\mathsf{T}} \{f(a) \stackrel{:}{=}^{?} c\}; \emptyset; \{x \approx b\} \longrightarrow \dots$$

э

Strategies and refinements

- Variety of strategies and refinements can be developed for the basic narrowing calculus without destroying completeness.
- For instance, composite rules, simplification, redex orderings and variable abstraction.
- For more details, see, e.g.,
 - F. Baader and W. Snyder. Unification theory.
 In A. Robinson and A. Voronkov, editors, *Handbook of Automated Reasoning*, volume I, chapter 8, pages 445–532. Elsevier Science, 2001.

