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Introduction

I The most important special case of the E-unification
problem, when the equational theory can be represented
by a ground convergent set of rewrite rules.

I Narrowing: The process that is used to solve such
E-unification problems.



Introduction

I Let E be a set of identities, and R a convergent term
rewriting equivalent to E .

I σ is an E-unifier of s and t , then sσ and tσ have the same
R-normal forms.

I Idea: Construct the unifier and the corresponding
reduction chains simultaneously.



Example

I E = {0 + x = x}, R = {0 + x −→ x}.
I Solve E-unification problem {y + z .

=?
E 0}.

I Proceed as follows:

1. Look for an instance of y + z to which the rewrite rule
applies. Such instance is computed by syntactically unifying
y + z and 0 + x , yielding the mgu ϕ = {y 7→ 0, z 7→ x}.

2. (y + z)ϕ = 0 + x , rewriting it with 0 + x −→ x gives x and
we obtain a new problem {x .

=
?
E 0}.

3. {x .
=

?
E 0} has the syntactic mgu ϑ = {x 7→ 0}.

4. By this process we have simultaneously constructed the
E-unifier σ = ϕϑ = {y 7→ 0, z 7→ 0, x 7→ 0} and the rewrite
chain (y + z)σ = 0 + 0 −→ 0 = 0σ.
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Preliminaries

I A rewrite rule: a directed equation l −→ r , where
vars(r) ⊆ vars(l).

I A term rewriting system (TRS): a set of rewrite rules.
I s[t ]|p: A term obtained from s by replacing its subterm at

position p with the term t .
I The rewrite relation R associated with a TRS R: s −→R t if

there exists a variant l −→ r of a rewrite rule in R, a
position p in s, and a substitution σ such that s|p = lσ and
t = s[rσ]p.

I s|p is called a redex.



Preliminaries

I �R: The transitive-reflexive closure of −→R.
I s reduces to t in R: s �R t .
I If E is the set of equations corresponding to R, i.e.,

E = {l .= r | l −→ r ∈ R}, then .
=E coincides with the

reflexive-symmetric-transitive closure of R.
I Two terms t1, t2 are joinable (wrt R), denoted by t1 ↓R t2, if

there exists a term s such that t1 �R s and t2 �R s.
I A term s is a normal form (wrt R) if there is no term t with

s −→R t .



Preliminaries

I R is terminating if there are no infinite reduction sequences
t1 −→R t2 −→R t3 −→R · · · .

I R is confluent if for all terms s, t1, t2 with s �R t1 and
s �R t2 we have t1 ↓R t2.

I R is convergent if it is confluent and terminating.



Preliminaries

I A constraint system: either⊥ (representing failure) or a
triple P;C;S.

I P: A multiset of equations, representing the schema of the
problem.

I C: A set of equations, representing constraints on
variables in P.

I S: A set of equations, representing bindings in the solution.
I C plays the role similar to P earlier, the rules from U will be

applied to C;S as before.
I ϑ is said to be a solution (or E-unifier) of a system P;C;S

if it E-unifies each equation in P, and unifies each of the
equations in C and S; the system ⊥ has no E-unifiers.



Assumptions

I The rewrite system R is ground convergent with respect to
a reduction ordering �.

I R is represented as a numbered sequence of rules

{l1 −→ r1, . . . , ln −→ rn}.

I The index of a rule is its number in this sequence.



Preliminaries

Restricted form of substitution:

Definition
Given a rewrite system R, a substitution ϑ is R-reduced (or just
reduced if R is unimportant) if for every x ∈ dom(ϑ), x is in
R-normal form.

Example

R = {f (f (x , y), z)→ f (x , f (y , z)), f (x , x)→ x}.
ϑ1 = {x 7→ f (f (u, v),w), y 7→ f (a, f (a,a))} : not R-reduced.
ϑ2 = {x 7→ f (u, f (v ,w)), y 7→ a} : R-reduced.

For any ϑ and terminating set of rules R one can find an
R-equivalent reduced substitution ϑ′.
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The Calculus B for Basic Narrowing

The rule set S:

Trivial: P; {s .
=? s} ∪ C′;S =⇒ P;C′;S.

Decomposition: P; {f (s1, . . . , sn)
.
=? f (t1, . . . , tn)} ∪ C′;S =⇒

P; {s1
.
=? t1, . . . , sn

.
=? tn} ∪ C′;S,

where n ≥ 0.

Orient: P; {t .
=? x} ∪ C′;S =⇒ P; {x .

=? t} ∪ C′;S
if t is not a variable.

Basic Variable P; {x .
=? t} ∪ C′;S =⇒

Elimination: P;C′{x 7→ t};S{x 7→ t} ∪ {x ≈ t},
if x /∈ vars(t).



The Calculus B for Basic Narrowing

Two extra rules:

Constrain: {e} ∪ P ′;C;S =⇒Con P ′; {eσS} ∪ C′;S.
Lazy Paramodulation: {e[t ]} ∪ P ′;C;S =⇒LP

{e[r ]} ∪ P ′; {lσS
.
=? tσS} ∪ C;S,

for a fresh variant of l −→ r from R, where
I e[t ] is an equation where the term t occurs,
I t is not a variable,
I the top symbol of l and t are the same.



Soundness of the Calculus B

Theorem
Let R be a ground convergent set of rewrite rules. If
P; ∅; ∅ =⇒∗B ∅; ∅;S, then σS is an R-unifier of P.

Proof.
Exercise.



Completeness of the Calculus B

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an
R-reduced solution of P; ∅; ∅, then there exists a sequence
P; ∅; ∅ =⇒∗B ∅; ∅;S such that σS ≤·

vars(P)
R ϑ.

Proof.
I We may assume that Pϑ is ground and that ϑ is

R-reduced, since the relation � does not distinguish
between R-equivalent substitutions.

I Thus, we will prove a stronger result, that when ϑ is
R-reduced, then σS ≤·vars(P) ϑ.



Completeness of the Calculus B

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an
R-reduced solution of P; ∅; ∅, then there exists a sequence
P; ∅; ∅ =⇒∗B ∅; ∅;S such that σS ≤·

vars(P)
R ϑ.

Proof.
The complexity 〈M,n1,n2,n3〉 for P;C;S and its solution ϑ:

M = The multiset of all terms occurring in Pϑ;
n1 = The number of distinct variables in C;
n2 = The number of symbols in C;
n3 = The number of equations t .

=?
E x ∈ C where t is

not a variable.
Associate to it the well-founded ordering: The multiset
extension of ≺ for the first component, and the ordering on
natural numbers on the remaining components.



Completeness of the Calculus B

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an
R-reduced solution of P; ∅; ∅, then there exists a sequence
P; ∅; ∅ =⇒∗B ∅; ∅;S such that σS ≤·

vars(P)
R ϑ.

Proof.
Show by induction on this measure that if ϑ is a solution of
P;C;S′ with S′ in a solved form, then there exists a sequence

P;C;S′ =⇒∗ ∅; ∅;S

such that σS ≤·X ϑ, where X = vars(P,C,S′).

The base case ∅; ∅;S is trivial.



Completeness of the Calculus B
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R-reduced solution of P; ∅; ∅, then there exists a sequence
P; ∅; ∅ =⇒∗B ∅; ∅;S such that σS ≤·

vars(P)
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Proof.
For the induction step there are several overlapping cases:

1. If C = {s .
=? t} ∪ C′, then sϑ = tϑ and we use S to

generate a transformation step to a smaller system
containing the same set of variables, and with the same
solution. By the induction hypothesis, we have

P;C;S′ =⇒S P;C′′;S′′ =⇒∗ ∅; ∅;S

such that σs ≤·X ϑ for X = vars(P,C,S′).



Completeness of the Calculus B

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an
R-reduced solution of P; ∅; ∅, then there exists a sequence
P; ∅; ∅ =⇒∗B ∅; ∅;S such that σS ≤·

vars(P)
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Proof.

2. If P = {s .
=? t} ∪ P ′ and sϑ = tϑ, then we may apply

Constrain to obtain a smaller system (reducing the
component M) with the same solution and the same set of
variables, and we conclude as in the previous case.



Completeness of the Calculus B

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an
R-reduced solution of P; ∅; ∅, then there exists a sequence
P; ∅; ∅ =⇒∗B ∅; ∅;S such that σS ≤·

vars(P)
R ϑ.

Proof.
3. I Assume P = {s .

=
? t} ∪ P ′ and there is an innermost redex

in, say sϑ.
I If more than one instance of a rule from R reduces this

redex, we choose the rule with the smallest index in the set
R.

I Since ϑ is R-reduced, the redex must occur inside the
non-variable positions of s.



Completeness of the Calculus B
Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an
R-reduced solution of P; ∅; ∅, then there exists a sequence
P; ∅; ∅ =⇒∗B ∅; ∅;S such that σS ≤·

vars(P)
R ϑ.

Proof.
3. I Hence, we have the transformation:

{s[s′] .=? t} ∪ P ′;C;S′ =⇒LP

{s[r ] .=? t} ∪ P ′; {lσ′S
.
=

? s′σ′S} ∪ C;S′

I The new system smaller with respect to its new solution
ϑ′ = ϑρ. ϑ′ is still R-reduced.

I By the induction hypothesis,
{s[r ] .=? t} ∪ P ′; {lσS′

.
=

? s′σS′} ∪ C;S′ =⇒∗ ∅; ∅;S such
that σS ≤·X ϑ′ with X = vars(l , r ,P,C,S′), and since
xϑ = xϑ′ for every x ∈ vars(P,C,S′), the induction is
complete.



Example
I R = {0 + x −→ x , s(x) + y −→ s(x + y)}
I Goal: {z + z .

=? s(s(0))}
I Successful derivation:

{z + z .
=

? s(s(0))}; ∅; ∅ −→LP

{s(x + y) .=? s(s(0))}; {z + z .
=

? s(x) + y}; ∅ −→D

{s(x + y) .=? s(s(0))}; {z .
=

? s(x), z .
=

? y}; ∅ −→BVE

{s(x + y) .=? s(s(0))}; {s(x) .=? y}; {z ≈ s(x)} −→O

{s(x + y) .=? s(s(0))}; {y .
=

? s(x)}; {z ≈ s(x)} −→BVE

{s(x + y) .=? s(s(0))}; ∅; {z ≈ s(x), y ≈ s(x)} −→LP

{s(x ′) .=? s(s(0))}; {x + s(x) .=? 0 + x ′};
{z ≈ s(x), y ≈ s(x)} −→D



Example
I R = {0 + x −→ x , s(x) + y −→ s(x + y)}
I Goal: {z + z .

=? s(s(0))}
I Successful derivation (cont.):

{s(x ′) .=? s(s(0))}; {x .
=

? 0, s(x) .=? x ′}; {z ≈ s(x), y ≈ s(x)} −→BVE

{s(x ′) .=? s(s(0))}; {s(0) .=? x ′}; {z ≈ s(0), y ≈ s(0), x ≈ 0} −→O

{s(x ′) .=? s(s(0))}; {x ′ .=? s(0)}; {z ≈ s(0), y ≈ s(0), x ≈ 0} −→BVE

{s(x ′) .=? s(s(0))}; ∅; {z ≈ s(0), y ≈ s(0), x ≈ 0, x ′ ≈ s(0)} −→C

∅; {s(s(0)) .=? s(s(0))}; {z ≈ s(0), y ≈ s(0), x ≈ 0, x ′ ≈ s(0)} −→T

∅; ∅; {z ≈ s(0), y ≈ s(0), x ≈ 0, x ′ ≈ s(0)}.



Counterexample for Nonterminating R
If R is not terminating, B may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

I R = {f (x) −→ g(x , x),a −→ b,g(a,b) −→ c,g(b,b) −→ f (a)}

I Goal: {f (a) .=? c}
I The goal is unifiable (f (a) .=R c), but B can not verify it:

{f (a) .=? c}; ∅; ∅ −→LP

{g(x , x) .=? c}; {f (x) .=? f (a)}; ∅ −→D

{g(x , x) .=? c}; {x .
=

? a)}; ∅ −→BVE

{g(x , x) .=? c}; ∅; {x ≈ a} −→C

∅; {g(a,a) .=? c}; {x ≈ a} −→ ⊥
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Counterexample for Nonterminating R
If R is not terminating, B may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

I R = {f (x) −→ g(x , x),a −→ b,g(a,b) −→ c,g(b,b) −→ f (a)}

I Goal: {f (a) .=? c}
I Fourth unsuccessful derivation:

{f (a) .=? c}; ∅; ∅ −→LP

{f (b) .=? c}; {a .
=

? a}; ∅ −→T {f (b)
.
=

? c}; ∅; ∅ −→LP

{g(x , x) .=? c}; {f (x) .=? f (b))}; ∅ −→D

{g(x , x) .=? c}; {x .
=

? b}; ∅ −→BVE

{g(x , x) .=? c}; ∅; {x ≈ b} −→C

∅; {g(b,b) .=? c}; {x ≈ b} −→



Counterexample for Nonterminating R
If R is not terminating, B may not find solutions.

Counterexample by A. Middeldorp and E. Hamoen, 1994:

I R = {f (x) −→ g(x , x),a −→ b,g(a,b) −→ c,g(b,b) −→ f (a)}

I Goal: {f (a) .=? c}
I An infinite derivation:

{f (a) .=? c}; ∅; ∅ −→LP

{f (b) .=? c}; {a .
=

? a}; ∅ −→T {f (b)
.
=

? c}; ∅; ∅ −→LP

{g(x , x) .=? c}; {f (x) .=? f (b))}; ∅ −→D

{g(x , x) .=? c}; {x .
=

? b}; ∅ −→BVE

{g(x , x) .=? c}; ∅; {x ≈ b} −→LP

{f (a) .=? c}; {g(b,b) .=? g(b,b)}; {x ≈ b} −→T

{f (a) .=? c}; ∅; {x ≈ b} −→ . . .



Strategies and refinements

I Variety of strategies and refinements can be developed for
the basic narrowing calculus without destroying
completeness.

I For instance, composite rules, simplification, redex
orderings and variable abstraction.

I For more details, see, e.g.,

F. Baader and W. Snyder.
Unification theory.
In A. Robinson and A. Voronkov, editors, Handbook of
Automated Reasoning, volume I, chapter 8, pages
445–532. Elsevier Science, 2001.
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