Introduction to Unification Theory
 Narrowing

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria

> kutsia@risc.jku.at

Overview

Introduction

Basic Narrowing

Outline

Introduction

Basic Narrowing

Introduction

- The most important special case of the E-unification problem, when the equational theory can be represented by a ground convergent set of rewrite rules.
- Narrowing: The process that is used to solve such E-unification problems.

Introduction

- Let E be a set of identities, and R a convergent term rewriting equivalent to E.
- σ is an E-unifier of s and t, then $s \sigma$ and $t \sigma$ have the same R-normal forms.
- Idea: Construct the unifier and the corresponding reduction chains simultaneously.

Example

- $E=\{0+x=x\}, R=\{0+x \longrightarrow x\}$.
- Solve E-unification problem $\{y+z \doteq \stackrel{?}{E} 0\}$.
- Proceed as follows:

1. Look for an instance of $y+z$ to which the rewrite rule applies. Such instance is computed by syntactically unifying $y+z$ and $0+x$, yielding the $\mathrm{mgu} \varphi=\{y \mapsto 0, z \mapsto x\}$.
2. $(y+z) \varphi=0+x$, rewriting it with $0+x \longrightarrow x$ gives x and we obtain a new problem $\left\{x \doteq_{E}^{?} 0\right\}$.
3. $\left\{x \dot{\doteq}_{E}^{?} 0\right\}$ has the syntactic mgu $\vartheta=\{x \mapsto 0\}$.
4. By this process we have simultaneously constructed the E-unifier $\sigma=\varphi \vartheta=\{y \mapsto 0, z \mapsto 0, x \mapsto 0\}$ and the rewrite chain $(y+z) \sigma=0+0 \longrightarrow 0=0 \sigma$.

Preliminaries

- A rewrite rule: a directed equation $l \longrightarrow r$, where $\operatorname{vars}(r) \subseteq \operatorname{vars}(l)$.
- A term rewriting system (TRS): a set of rewrite rules.
- $\left.s\right|_{p}$: The subterm of s at position p.
- $\left.s[t]\right|_{p}$: A term obtained from s by replacing its subterm at position p with the term t.
- The rewrite relation R associated with a TRS $R: s \longrightarrow_{R} t$ if there exists a variant $l \longrightarrow r$ of a rewrite rule in R, a position p in s, and a substitution σ such that $\left.s\right|_{p}=l \sigma$ and $t=\left.s[r \sigma]\right|_{p}$.
- $\left.s\right|_{p}$ is called a redex.

Preliminaries

$-\rightarrow_{R}$: The transitive-reflexive closure of \longrightarrow_{R}.

- s reduces to t in $R: s \rightarrow_{R} t$.
- If E is the set of equations corresponding to R, i.e., $E=\{l \doteq r \mid l \longrightarrow r \in R\}$, then \doteq_{E} coincides with the reflexive-symmetric-transitive closure of R.
- Two terms t_{1}, t_{2} are joinable (wrt R), denoted by $t_{1} \downarrow_{R} t_{2}$, if there exists a term s such that $t_{1} \rightarrow_{R} s$ and $t_{2} \rightarrow_{R} s$.
- A term s is a normal form (wrt R) if there is no term t with $s \longrightarrow_{R} t$.

Preliminaries

- R is terminating if there are no infinite reduction sequences $t_{1} \longrightarrow_{R} t_{2} \longrightarrow_{R} t_{3} \longrightarrow_{R} \cdots$.
- R is confluent if for all terms s, t_{1}, t_{2} with $s \rightarrow_{R} t_{1}$ and $s \rightarrow_{R} t_{2}$ we have $t_{1} \downarrow_{R} t_{2}$.
- R is convergent if it is confluent and terminating.

Preliminaries

- A constraint system: either \perp (representing failure) or a triple $P ; C ; S$.
- P : A multiset of equations, representing the schema of the problem.
- C : A set of equations, representing constraints on variables in P.
- S : A set of equations, representing bindings in the solution.
- C plays the role similar to P earlier, the rules from \mathcal{U} will be applied to $C ; S$ as before.
- ϑ is said to be a solution (or E-unifier) of a system $P ; C ; S$ if it E-unifies each equation in P, and unifies each of the equations in C and S; the system \perp has no E-unifiers.

Assumptions

- The rewrite system R is ground convergent with respect to a reduction ordering \succ.
- R is represented as a numbered sequence of rules

$$
\left\{l_{1} \longrightarrow r_{1}, \ldots, l_{n} \longrightarrow r_{n}\right\}
$$

- The index of a rule is its number in this sequence.

Preliminaries

Restricted form of substitution:
Definition
Given a rewrite system R, a substitution ϑ is R-reduced (or just reduced if R is unimportant) if for every $x \in \operatorname{dom}(\vartheta), x$ is in R-normal form.

Example

$$
\begin{aligned}
R & =\{f(f(x, y), z) \rightarrow f(x, f(y, z)), f(x, x) \rightarrow x\} . \\
\vartheta_{1} & =\{x \mapsto f(f(u, v), w), y \mapsto f(a, f(a, a))\}: \text { not } R \text {-reduced. } \\
\vartheta_{2} & =\{x \mapsto f(u, f(v, w)), y \mapsto a\}: R \text {-reduced. }
\end{aligned}
$$

For any ϑ and terminating set of rules R one can find an R-equivalent reduced substitution ϑ^{\prime}.

Outline

Introduction

Basic Narrowing

The Calculus \mathcal{B} for Basic Narrowing

The rule set \mathcal{S} :
Trivial: $P ;\left\{s \doteq{ }^{?} s\right\} \cup C^{\prime} ; S \Longrightarrow P ; C^{\prime} ; S$.
Decomposition: $P ;\left\{f\left(s_{1}, \ldots, s_{n}\right) \doteq ? f\left(t_{1}, \ldots, t_{n}\right)\right\} \cup C^{\prime} ; S \Longrightarrow$

$$
\begin{aligned}
& \quad P ;\left\{s_{1} \doteq ? t_{1}, \ldots, s_{n} \doteq ?{ }^{?} t_{n}\right\} \cup C^{\prime} ; S, \\
& \text { where } n \geq 0
\end{aligned}
$$

Orient: $P ;\{t \doteq ? x\} \cup C^{\prime} ; S \Longrightarrow P ;\{x \doteq ? t\} \cup C^{\prime} ; S$ if t is not a variable.

Basic Variable $P ;\{x \doteq ? t\} \cup C^{\prime} ; S \Longrightarrow$
Elimination: $\quad P ; C^{\prime}\{x \mapsto t\} ; S\{x \mapsto t\} \cup\{x \approx t\}$,
if $x \notin \operatorname{vars}(t)$.

The Calculus \mathcal{B} for Basic Narrowing

Two extra rules:
Constrain: $\quad\{e\} \cup P^{\prime} ; C ; S \Longrightarrow$ Con $P^{\prime} ;\left\{e \sigma_{S}\right\} \cup C^{\prime} ; S$.
Lazy Paramodulation: $\{e[t]\} \cup P^{\prime} ; C ; S \Longrightarrow \mathrm{LP}$

$$
\{e[r]\} \cup P^{\prime} ;\left\{l \sigma_{S} \doteq ? t \sigma_{S}\right\} \cup C ; S
$$

for a fresh variant of $l \longrightarrow r$ from R, where

- $e[t]$ is an equation where the term t occurs,
- t is not a variable,
- the top symbol of l and t are the same.

Soundness of the Calculus \mathcal{B}

Theorem
Let R be a ground convergent set of rewrite rules. If $P ; \emptyset ; \emptyset \Longrightarrow{ }_{\mathcal{B}}^{*} \emptyset ; \emptyset ; S$, then σ_{S} is an R-unifier of P.

Proof.
Exercise.

Completeness of the Calculus \mathcal{B}

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P ; \emptyset ; \emptyset$, then there exists a sequence $P ; \emptyset ; \emptyset \Longrightarrow{ }_{\mathcal{B}}^{*} \emptyset ; \emptyset ; S$ such that $\sigma_{S} \leq_{R}^{\text {vars }(P)} \vartheta$.
Proof.

- We may assume that $P \vartheta$ is ground and that ϑ is R -reduced, since the relation \succ does not distinguish between R-equivalent substitutions.
- Thus, we will prove a stronger result, that when ϑ is R-reduced, then $\sigma_{S} \leq{ }^{\operatorname{vars}(P)} \vartheta$.

Completeness of the Calculus \mathcal{B}

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P ; \emptyset ; \emptyset$, then there exists a sequence $P ; \emptyset ; \emptyset \Longrightarrow{ }_{\mathcal{B}}^{*} \emptyset ; \emptyset ; S$ such that $\sigma_{S} \leq_{R}^{\text {vars }(P)} \vartheta$.
Proof (cont.)
The complexity $\left\langle M, n_{1}, n_{2}, n_{3}\right\rangle$ for $P ; C ; S$ and its solution ϑ :
$M=$ The multiset of all terms occurring in $P \vartheta$;
$n_{1}=$ The number of distinct variables in C;
$n_{2}=$ The number of symbols in C;
$n_{3}=$ The number of equations $t \dot{=}{ }_{E}^{?} x \in C$ where t is not a variable.
Associate to it the well-founded ordering: The multiset extension of \prec for the first component, and the ordering on natural numbers on the remaining components.

Completeness of the Calculus \mathcal{B}

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P ; \emptyset ; \emptyset$, then there exists a sequence $P ; \emptyset ; \emptyset \Longrightarrow{ }_{\mathcal{B}}^{*} \emptyset ; \emptyset ; S$ such that $\sigma_{S} \leq_{R}^{\text {vars }(P)} \vartheta$.
Proof (cont.)
Show by induction on this measure that if ϑ is a solution of $P ; C ; S^{\prime}$ with S^{\prime} in a solved form, then there exists a sequence

$$
P ; C ; S^{\prime} \Longrightarrow{ }^{*} \emptyset ; \emptyset ; S
$$

such that $\sigma_{S} \Varangle^{\mathcal{X}} \vartheta$, where $\mathcal{X}=\operatorname{vars}\left(P, C, S^{\prime}\right)$.
The base case $\emptyset ; \emptyset ; S$ is trivial.

Completeness of the Calculus \mathcal{B}

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P ; \emptyset ; \emptyset$, then there exists a sequence $P ; \emptyset ; \emptyset \Longrightarrow{ }_{\mathcal{B}}^{*} \emptyset ; \emptyset ; S$ such that $\sigma_{S} \leq_{R}^{\text {vars }(P)} \vartheta$.
Proof (cont.)
For the induction step there are several overlapping cases:

1. If $C=\left\{s \doteq{ }^{?} t\right\} \cup C^{\prime}$, then $s \vartheta=t \vartheta$ and we use \mathcal{S} to generate a transformation step to a smaller system containing the same set of variables, and with the same solution. By the induction hypothesis, we have

$$
P ; C ; S^{\prime} \Longrightarrow_{\mathcal{S}} P ; C^{\prime \prime} ; S^{\prime \prime} \Longrightarrow^{*} \emptyset ; \emptyset ; S
$$

such that $\sigma_{s} \leq^{\mathcal{X}} \vartheta$ for $\mathcal{X}=\operatorname{vars}\left(P, C, S^{\prime}\right)$.

Completeness of the Calculus \mathcal{B}

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P ; \emptyset ; \emptyset$, then there exists a sequence $P ; \emptyset ; \emptyset \Longrightarrow{ }_{\mathcal{B}}^{*} \emptyset ; \emptyset ; S$ such that $\sigma_{S} \leq_{R}^{\text {vars }(P)} \vartheta$.
Proof (cont.)
2. If $P=\left\{s \doteq{ }^{?} t\right\} \cup P^{\prime}$ and $s \vartheta=t \vartheta$, then we may apply Constrain to obtain a smaller system (reducing the component M) with the same solution and the same set of variables, and we conclude as in the previous case.

Completeness of the Calculus \mathcal{B}

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P ; \emptyset ; \emptyset$, then there exists a sequence $P ; \emptyset ; \emptyset \Longrightarrow{ }_{\mathcal{B}}^{*} \emptyset ; \emptyset ; S$ such that $\sigma_{S} \leq_{R}^{\text {vars }(P)} \vartheta$.
Proof (cont.)
3. Assume $P=\left\{s \doteq{ }^{?} t\right\} \cup P^{\prime}$ and there is an innermost redex in, say $s \vartheta$.

- If more than one instance of a rule from R reduces this redex, we choose the rule with the smallest index in the set R.
- Since ϑ is R-reduced, the redex must occur inside the non-variable positions of s.

Completeness of the Calculus \mathcal{B}

Theorem
Let R be a ground convergent set of rewrite rules. If ϑ is an R-reduced solution of $P ; \emptyset ; \emptyset$, then there exists a sequence $P ; \emptyset ; \emptyset \Longrightarrow{ }_{\mathcal{B}}^{*} \emptyset ; \emptyset ; S$ such that $\sigma_{S} \leq_{R}^{\text {vars }(P)} \vartheta$.
Proof (cont.)
3. Hence, we have the transformation:

$$
\begin{aligned}
& \left\{s\left[s^{\prime}\right] \doteq ? t\right\} \cup P^{\prime} ; C ; S^{\prime} \Longrightarrow \mathrm{LP} \\
& \quad\{s[r] \doteq ? ~
\end{aligned}
$$

- The new system smaller with respect to its new solution $\vartheta^{\prime}=\vartheta \rho . \vartheta^{\prime}$ is still R-reduced.
- By the induction hypothesis, $\{s[r] \doteq ? ~ ? ~ t\} \cup P^{\prime} ;\left\{l \sigma_{S^{\prime}} \doteq ? s^{\prime} \sigma_{S^{\prime}}\right\} \cup C ; S^{\prime} \Longrightarrow{ }^{*} \emptyset ; \emptyset ; S$ such that $\sigma_{S} \leq^{\mathcal{X}} \vartheta^{\prime}$ with $\mathcal{X}=\operatorname{vars}\left(l, r, P, C, S^{\prime}\right)$, and since $x \vartheta=x \vartheta^{\prime}$ for every $x \in \operatorname{vars}\left(P, C, S^{\prime}\right)$, the induction is complete.

Example

- $R=\{0+x \longrightarrow x, s(x)+y \longrightarrow s(x+y)\}$
- Goal: $\{z+z \doteq ? s(s(0))\}$
- Successful derivation:

$$
\begin{aligned}
& \left\{z+z \doteq{ }^{?} s(s(0))\right\} ; \emptyset ; \emptyset \Longrightarrow \mathrm{LP} \\
& \{s(x+y) \doteq ? s(s(0))\} ;\{z+z \doteq ? s(x)+y\} ; \emptyset \Longrightarrow \mathrm{D} \\
& \left\{s(x+y) \doteq{ }^{?} s(s(0))\right\} ;\left\{z \doteq{ }^{?} s(x), z \doteq{ }^{?} y\right\} ; \emptyset \Longrightarrow \text { BVE } \\
& \{s(x+y) \doteq ? s(s(0))\} ;\{s(x) \doteq ? y\} ;\{z \approx s(x)\} \Longrightarrow 0 \\
& \{s(x+y) \doteq ? s(s(0))\} ;\left\{y \doteq{ }^{?} s(x)\right\} ;\{z \approx s(x)\} \Longrightarrow \mathrm{BVE} \\
& \{s(x+y) \doteq ? s(s(0))\} ; \emptyset ;\{z \approx s(x), y \approx s(x)\} \Longrightarrow \mathrm{LP} \\
& \left\{s\left(x^{\prime}\right) \doteq ? s(s(0))\right\} ;\left\{x+s(x) \doteq{ }^{?} 0+x^{\prime}\right\} ; \\
& \{z \approx s(x), y \approx s(x)\} \Longrightarrow_{\mathrm{D}}
\end{aligned}
$$

Example

- $R=\{0+x \longrightarrow x, s(x)+y \longrightarrow s(x+y)\}$
- Goal: $\{z+z \doteq ? s(s(0))\}$
- Successful derivation (cont.):

$$
\begin{gathered}
\left\{s\left(x^{\prime}\right) \doteq ? s(s(0))\right\} ;\left\{x \doteq{ }^{?} 0, s(x) \doteq{ }^{?} x^{\prime}\right\} ;\{z \approx s(x), y \approx s(x)\} \Longrightarrow \mathrm{BVE} \\
\left\{s\left(x^{\prime}\right) \doteq{ }^{?} s(s(0))\right\} ;\left\{s(0) \doteq x^{?} x^{\prime}\right\} ;\{z \approx s(0), y \approx s(0), x \approx 0\} \Longrightarrow \mathrm{O} \\
\left\{s\left(x^{\prime}\right) \doteq{ }^{?} s(s(0))\right\} ;\left\{x^{\prime} \doteq ? s(0)\right\} ;\{z \approx s(0), y \approx s(0), x \approx 0\} \Longrightarrow \mathrm{BVE} \\
\left\{s\left(x^{\prime}\right) \doteq{ }^{?} s(s(0))\right\} ; \emptyset ;\left\{z \approx s(0), y \approx s(0), x \approx 0, x^{\prime} \approx s(0)\right\} \Longrightarrow \mathrm{C} \\
\emptyset ;\left\{s(s(0)) \doteq{ }^{?} s(s(0))\right\} ;\left\{z \approx s(0), y \approx s(0), x \approx 0, x^{\prime} \approx s(0)\right\} \Longrightarrow \mathrm{T} \\
\emptyset ; \emptyset ;\left\{z \approx s(0), y \approx s(0), x \approx 0, x^{\prime} \approx s(0)\right\} .
\end{gathered}
$$

Counterexample for Nonterminating R

If R is not terminating, \mathcal{B} may not find solutions.
Counterexample by A. Middeldorp and E. Hamoen, 1994:

- $R=\{f(x) \longrightarrow g(x, x), a \longrightarrow b, g(a, b) \longrightarrow c, g(b, b) \longrightarrow f(a)\}$
- Goal: $\{f(a) \doteq c\}$
- The goal is unifiable $\left(f(a) \dot{\doteq}_{R} c\right)$, but \mathcal{B} can not verify it:

$$
\begin{aligned}
& \{f(a) \doteq ? c\} ; \emptyset ; \emptyset \Longrightarrow \mathrm{LP} \\
& \left\{g(x, x) \doteq{ }^{?} c\right\} ;\left\{f(x) \doteq{ }^{?} f(a)\right\} ; \emptyset \Longrightarrow \mathrm{D} \\
& \left\{g(x, x) \doteq{ }^{?} c\right\} ;\left\{x \doteq{ }^{?} a\right\} ; \emptyset \Longrightarrow \mathrm{BVE} \\
& \{g(x, x) \doteq ? c\} ; \emptyset ;\{x \approx a\} \Longrightarrow \mathrm{C} \\
& \emptyset ;\{g(a, a) \doteq ? c\} ;\{x \approx a\} \Longrightarrow \perp
\end{aligned}
$$

Counterexample for Nonterminating R

If R is not terminating, \mathcal{B} may not find solutions.
Counterexample by A. Middeldorp and E. Hamoen, 1994:

- $R=\{f(x) \longrightarrow g(x, x), a \longrightarrow b, g(a, b) \longrightarrow c, g(b, b) \longrightarrow f(a)\}$
- Goal: $\{f(a) \doteq c c$
- Second unsuccessful derivation:

$$
\begin{aligned}
& \{f(a) \doteq ? c\} ; \emptyset ; \emptyset \Longrightarrow \mathrm{LP} \\
& \{g(x, x) \doteq ? c\} ;\left\{f(x) \doteq{ }^{?} f(a)\right\} ; \emptyset \Longrightarrow \mathrm{D} \\
& \{g(x, x) \doteq ? c\} ;\{x \doteq ? a\} ; \emptyset \Longrightarrow \mathrm{BVE} \\
& \{g(x, x) \doteq c c\} ; \emptyset ;\{x \approx a\} \Longrightarrow \mathrm{LP} \\
& \left\{c \doteq{ }^{?} c\right\} ;\{g(a, a) \doteq ? ~ g(a, b)\} ;\{x \approx a\} \Longrightarrow \mathrm{D} \\
& \{c \doteq ? c\} ;\{a \doteq ? b, a \doteq ? a\} ;\{x \approx a\} \Longrightarrow \perp
\end{aligned}
$$

Counterexample for Nonterminating R

If R is not terminating, \mathcal{B} may not find solutions.
Counterexample by A. Middeldorp and E. Hamoen, 1994:

- $R=\{f(x) \longrightarrow g(x, x), a \longrightarrow b, g(a, b) \longrightarrow c, g(b, b) \longrightarrow f(a)\}$
- Goal: $\{f(a) \doteq c\}$
- Third unsuccessful derivation:

$$
\begin{aligned}
& \{f(a) \doteq ? c\} ; \emptyset ; \emptyset \Longrightarrow \mathrm{LP} \\
& \left\{g(x, x) \doteq{ }^{?} c\right\} ;\left\{f(x) \doteq{ }^{?} f(a)\right\} ; \emptyset \Longrightarrow \mathrm{D} \\
& \left\{g(x, x) \doteq{ }^{?} c\right\} ;\{x \doteq ? a\} ; \emptyset \Longrightarrow \mathrm{BVE} \\
& \left\{g(x, x) \doteq{ }^{?} c\right\} ; \emptyset ;\{x \approx a\} \Longrightarrow \mathrm{LP} \\
& \{f(a) \doteq ? c\} ;\{g(a, a) \doteq ? g(b, b)\} ;\{x \approx a\} \Longrightarrow \mathrm{D} \\
& \left\{f(a) \doteq{ }^{?} c\right\} ;\left\{a \doteq{ }^{?} b\right\} ;\{x \approx a\} \Longrightarrow \perp
\end{aligned}
$$

Counterexample for Nonterminating R

If R is not terminating, \mathcal{B} may not find solutions.
Counterexample by A. Middeldorp and E. Hamoen, 1994:

- $R=\{f(x) \longrightarrow g(x, x), a \longrightarrow b, g(a, b) \longrightarrow c, g(b, b) \longrightarrow f(a)\}$
- Goal: $\{f(a) \doteq ? c\}$
- Fourth unsuccessful derivation:

$$
\begin{aligned}
& \left\{f(a) \doteq{ }^{?} c\right\} ; \emptyset ; \emptyset \Longrightarrow \mathrm{LP} \\
& \left\{f(b) \doteq^{?} c\right\} ;\left\{a \doteq{ }^{?} a\right\} ; \emptyset \Longrightarrow \mathrm{T}\left\{f(b) \doteq^{?} c\right\} ; \emptyset ; \emptyset \Longrightarrow \mathrm{LP} \\
& \left\{g(x, x) \doteq{ }^{?} c\right\} ;\left\{f(x) \doteq{ }^{?} f(b)\right\} ; \emptyset \Longrightarrow \mathrm{D} \\
& \{g(x, x) \doteq ? c\} ;\{x \doteq ? b\} ; \emptyset \Longrightarrow \mathrm{BVE} \\
& \left\{g(x, x) \doteq{ }^{?} c\right\} ; \emptyset ;\{x \approx b\} \Longrightarrow \mathrm{C} \\
& \emptyset ;\left\{g(b, b) \doteq{ }^{?} c\right\} ;\{x \approx b\} \Longrightarrow \perp
\end{aligned}
$$

Counterexample for Nonterminating R

If R is not terminating, \mathcal{B} may not find solutions.
Counterexample by A. Middeldorp and E. Hamoen, 1994:

- $R=\{f(x) \longrightarrow g(x, x), a \longrightarrow b, g(a, b) \longrightarrow c, g(b, b) \longrightarrow f(a)\}$
- Goal: $\{f(a) \doteq ? c\}$
- An infinite derivation:

$$
\begin{aligned}
& \left\{f(a) \doteq{ }^{?} c\right\} ; \emptyset ; \emptyset \Longrightarrow \mathrm{LP} \\
& \left\{f(b) \doteq{ }^{?} c\right\} ;\left\{a \doteq{ }^{?} a\right\} ; \emptyset \Longrightarrow \mathrm{T}\left\{f(b) \doteq{ }^{?} c\right\} ; \emptyset ; \emptyset \Longrightarrow \mathrm{LP} \\
& \{g(x, x) \doteq ? c\} ;\{f(x) \doteq ? f(b)\} ; \emptyset \Longrightarrow \mathrm{D} \\
& \{g(x, x) \doteq ? c\} ;\{x \doteq ? b\} ; \emptyset \Longrightarrow \mathrm{BVE} \\
& \left\{g(x, x) \doteq{ }^{?} c\right\} ; \emptyset ;\{x \approx b\} \Longrightarrow \mathrm{LP} \\
& \left\{f(a) \doteq{ }^{?} c\right\} ;\left\{g(b, b) \doteq{ }^{?} g(b, b)\right\} ;\{x \approx b\} \Longrightarrow{ }_{\top} \\
& \{f(a) \doteq ? c\} ; \emptyset ;\{x \approx b\} \Longrightarrow \ldots
\end{aligned}
$$

Strategies and refinements

- Variety of strategies and refinements can be developed for the basic narrowing calculus without destroying completeness.
- For instance, composite rules, simplification, redex orderings and variable abstraction.
- For more details, see, e.g.,
E. Faader and W. Snyder. Unification theory. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445-532. Elsevier Science, 2001.

