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ACU-Unification

» We saw an example how to solve ACU-unification problem.

» Reduction to systems of linear Diophantine equations (LDEs)
over natural numbers.



Elementary ACU-Unification

» Elementary ACU-unification problem
.7
{f(xa f(xa y)) —=ACU f(Z> f(za Z))}
reduces to homogeneous linear Diophantine equation
2 +y = 3z.

» Each equation in the unification problem gives rise to one
linear Diophantine equation.

> A most general ACU-unifier is obtained by combining all the
unifiers corresponding to the minimal solutions of the system
of LDEs.



Elementary ACU-Unification

T ={f(z, f(2,)) =hcv (2 f(2,2))} and
S ={2x+y=3z}.

S has three minimal solutions: (1,1,1),(0,3,1), (3,0,2).
Three unifiers of I':

v

v

v

o1 ={z— v,y = v,z 01}
oy ={x e,y — f(va, f(v2,v2)), 2 = va}
g3 :{‘T — f(U3af(U3,US))ay = e,z f(v37v3)}

v

A most general unifier of I':

o={xw f(v1, f(v3, f(vs,v3))),y = f(v1, f(v2, f(v2,v2))),
z— f(vt, f(v2, f(v3,v3)))}



ACU-Unification with constants
» ACU-unification problem with constants
I'= {f(z. f(x.9)) Zhev Fla, f(z. £ (.2))}
reduces to inhomogeneous linear Diophantine equation
S={2r+y=3z+1}.

» The minimal nontrivial natural solutions of S are (0,1,0) and
(2,0,1).



ACU-Unification with constants

» ACU-unification problem with constants
D= {f(z, f(,9)) Zhcv fla f(z f(z2)}
reduces to inhomogeneous linear Diophantine equation
S={2r+y=3z+1}.

» Every natural solution of S is obtained by as the sum of one
of the minimal solution and a solution of the corresponding
homogeneous LDE 2z + y = 3z.

» One element of the minimal complete set of unifiers of I is
obtained from the combination of one minimal solution of S
with the set of all minimal solutions of 2z + y = 3z.



ACU-Unification with constants

» ACU-unification problem with constants
D= {f(z, f(,9)) Zhcv fla f(z f(z2)}
reduces to inhomogeneous linear Diophantine equation
S={2r+y=3z+1}.
» The minimal complete set of unifiers of I is {01, 02}, where

o1 = {z > f(v1, f(vs, f(vs,v3))),
y = f(a, f(vr, fv2, f(v2,02))),
z = f(vr, f(v2, f(v3,v3)))}
oo = {z — f(a, f(a, f(v1, f(vs, f(v3,03))))),
y = f(vr, fog, f(v2,v2)),
(

z > f(a, f(vr, fv2, f(v3,v3))))} o,



How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

[§ Evelyne Contejean and Hervé Devie.
An Efficient Incremental Algorithm for Solving Systems of
Linear Diophantine Equations.
Information and Computation 113(1): 143-172 (1994).



How to Solve Systems of LDEs over Naturals?

Contejean-Devie Algorithm:

[d Evelyne Contejean and Hervé Devie.

An Efficient Incremental Algorithm for Solving Systems of
Linear Diophantine Equations.

Information and Computation 113(1): 143-172 (1994).

Generalizes Fortenbacher’s Algorithm for solving a single equation:

[ Michael Clausen and Albrecht Fortenbacher.
Efficient Solution of Linear Diophantine Equations.
J. Symbolic Computation 8(1,2): 201-216 (1989).



Homogeneous Case

Homogeneous linear Diophantine system with m equations and n

variables:
a1y +-o-+ apmr, = 0

am1T1 +- o+ QppTn, = 0

> a;;'s are integers.

» Looking for nontrivial natural solutions.



Homogeneous Case

Example

{

Nontrivial solutions:

> s =(0,1,1,1
> sy = (4,2,1,0
> s3=(0,2,2,2
> 54 =(8,4,2,0
> 55 = (4,3,2,1
> 56 = (8,5,3,1
>

T
I

+
+

€2
3.7}2

+ 2x3
— 2$3

3x4
T4



Homogeneous Case
Example

{—xl + 2 + 223 — 314
— 21 + 30 — 213 — 214
Nontrivial solutions:
> :(0,1,1,1)
= (4,2,1,0)
=(0,2,2,2) = 2s;
> 34—(8 4,2,0) = 2s9
= ( )
( )

>

4,3,2,1) = 51+ s9
> s =1(8,5,3,1) = s1 + 259



Homogeneous Case

Homogeneous linear Diophantine system with m equations and n

variables:
a1y +-o-+ apmr, = 0

am1T1 +- o+ QppTn, = 0

> a;;'s are integers.

» Looking for a basis in the set of nontrivial natural solutions.



Homogeneous Case

Homogeneous linear Diophantine system with m equations and n

variables:
a1y +-o-+ apmr, = 0

am1T1 +- o+ QppTn, = 0

> a;;'s are integers.
» Looking for a basis in the set of nontrivial natural solutions.

» Does it exist?



Homogeneous Case

The basis in the set S of nontrivial natural solutions of a
homogeneous LDS is the set of >>-minimal elements S.

> is the ordering on tuples of natural numbers:

(1, yxn) > (Y1, Yn)

if and only if
> x; >y, forall1 <¢<mnand

> x; > y; for some 1 <1 < n.



Matrix Form

Homogeneous linear Diophantine system with m equations and n

variables:
A:L‘i = Oi’
where
aiyr - aip T 0
A = (lii = 0¢ =
Aml - QAmn Tn 0



Matrix Form

» Canonical basis in N™: (e1y,...,e,).
0

> ej, = [ 1 [ with 1in j's row.
0

» Then Az = z1Ae; + - + 2,46,



Matrix Form

» Canonical basis in N™: (e1y,...,e,).
0

> ej, = [ 1 [ with 1in j's row.
0

» Then Az = z1Ae; + - + 2,46,

v

a: The linear mapping associated to A.

v

Then a(z)) = z1a(er)) + - + zpaleny).



Single Equation: ldea

Case m = 1: Single homogeneous LDE ajz1 + -+ - 4+ apx, = 0.
Fortenbacher's idea:

» Search minimal solutions starting from the elements in the
canonical basis of N”.

» Suppose the current vector v is not a solution.

> It can be nondeterministically increased, component by
component, until it becomes a solution or greater than a
solution.

> To decrease the search space, the following restrictions can be
imposed:

» If a(vy) > 0, then increase by one some v; with a; < 0.
» If a(v)) < 0, then increase by one some v; with a; > 0.



Single Equation: ldea

Case m = 1: Single homogeneous LDE ajz1 + -+ - 4+ apx, = 0.
Fortenbacher's idea:

» Search minimal solutions starting from the elements in the
canonical basis of N”.

» Suppose the current vector v is not a solution.

> It can be nondeterministically increased, component by
component, until it becomes a solution or greater than a
solution.

> To decrease the search space, the following restrictions can be
imposed:

» If a(vy) > 0, then increase by one some v; with a; < 0.
» If a(v)) < 0, then increase by one some v; with a; > 0.
> (If a(v,)a(e;;) < 0 for some j, increase v; by one.)



Single Equation: Geometric Interpretation of the Idea

> Fortenbacher’s condition

If a(v))a(e;;) <0 for some j, increase v; by one.
> Increasing v; by one: a(vy +€;,) = a(vy) + a(e; ).
» Going to the “right direction”, towards the origin.

(0] a(vy) ‘ Forbidden
alej) ‘ direction




Single Equation: Algorithm

Case m = 1: Single homogeneous LDE ajz1 + -+ - 4+ apx, = 0.
Fortenbacher's algorithm:



Single Equation: Algorithm

Case m = 1: Single homogeneous LDE ajz1 + -+ - 4+ apx, = 0.
Fortenbacher's algorithm:
» Start with the pair P, M of the set of potential solutions

P ={e1y,...,en,} and the set of minimal nontrivial solutions
M =1).



Single Equation: Algorithm

Case m = 1: Single homogeneous LDE ajz1 + -+ - 4+ apx, = 0.
Fortenbacher's algorithm:
» Start with the pair P, M of the set of potential solutions
P ={e1y,...,en,} and the set of minimal nontrivial solutions
M = 0.
> Apply repeatedly the rules:



Single Equation: Algorithm

Case m = 1: Single homogeneous LDE ajz1 + -+ - 4+ apx, = 0.
Fortenbacher's algorithm:
» Start with the pair P, M of the set of potential solutions
P ={e1y,...,en,} and the set of minimal nontrivial solutions
M = 0.
> Apply repeatedly the rules:

L. {vy}UP' M = P, M,
if vp > u for some uy € M.



Single Equation: Algorithm

Case m = 1: Single homogeneous LDE ajz1 + -+ - 4+ apx, = 0.
Fortenbacher's algorithm:
» Start with the pair P, M of the set of potential solutions
P ={e1y,...,en,} and the set of minimal nontrivial solutions
M =1).
> Apply repeatedly the rules:
1. {u, yUP',M = P', M,
if vp > u for some uy € M.
2. {v,}UP M = P' {v,}UM,
if a(vy) =0 and rule 1 is not applicable.



Single Equation: Algorithm

Case m = 1: Single homogeneous LDE ajz1 + -+ - 4+ apx, = 0.
Fortenbacher's algorithm:
» Start with the pair P, M of the set of potential solutions
P ={e1y,...,en,} and the set of minimal nontrivial solutions
M =1).
> Apply repeatedly the rules:
1. {u, yUP',M = P', M,
if vp > u for some uy € M.
2. {v,}UP M = P' {v,}UM,
if a(vy) =0 and rule 1 is not applicable.

3. PM = {v, +¢; v, €P alvyalej) <0,j€l.n}, M,
if rules 1 and 2 are not applicable.



Single Equation: Algorithm

Case m = 1: Single homogeneous LDE ajz1 + -+ - 4+ apx, = 0.
Fortenbacher's algorithm:

» Start with the pair P, M of the set of potential solutions
P ={e1y,...,en,} and the set of minimal nontrivial solutions
M = 0.

> Apply repeatedly the rules:

1. {v,}UP M= P' M,
if vp > u for some uy € M.

2. {0, }UP' M = P' {v,} UM,
if a(vy) =0 and rule 1 is not applicable.

3. P,M = {v, +ej v € 1.3, a(vy)a(ej ) <0, j € l.n}, M,
if rules 1 and 2 are not applicable.

» If O, M is reached, return M. 7™\



System of Equations: Idea

» General case: System of homogeneous LDEs.
> a(xy) =0.
» Generalizing Fortenbacher’s idea:

» Search minimal solutions starting from the elements in the
canonical basis of N™.

» Suppose the current vector v is not a solution.

» It can be nondeterministically increased, component by
component, until it becomes a solution or greater than a
solution.

» To decrease the search space, increase only those components
that lead to the “right direction”.



System of Equations: How to Restrict

> “Right direction”: Towards the origin.
> If a(vy) # 0, then do a(v) +¢;)) = a(vy) + a(e;)).
> a(vy) +a(e;,) should lie in the half-space containing O.

> Contejean-Devie condition: If a(v,) - a(e;;) < 0 for some j,
increase v;j by one. (- is the scalar product.)

Forbidden
half-space



How to Restrict: Comparison
» Fortenbacher’s condition

If a(vy)a(e;,) <0 for some j, increase v; by one.

0 a(vy) ‘ Forbidden
a(ej) ‘ direction

» Contejean-Devie condition
If a(v,) - ale;;) <0 for some j, increase v; by one.

Forbidden
half-space

a(vy + ej¢) A4



System of Equations: Algorithm

System of homogeneous LDEs: a(z) = 0,.
Contejean-Devie algorithm:
» Start with the pair P, M where

» P={e1,...,en} is the set of potential solutions,
» M = () is the set of minimal nontrivial solutions.

> Apply repeatedly the rules:
1. {v,}UP' M = P' M,
if vy > uy for some uy € M.
2. {v,} UP' M = P' {v,} UM,
if a(v;) =0y and rule 1 is not applicable.
3. PM = {v,+e; [v, €P alv)- ale)<0,j€l.n},M,
if rules 1 and 2 are not applicable.
» If O, M is reached, return M. .



Contejean-Devie Algorithm on an Example

o

- x1 + ro + 2933 - 3134 =
7$1+3$2*2$37.’E4:0

€1¢ = (1,0,070)T 62\[] = (0, 17070)T
€3, = (0707 1a O)T €4, = (0,0,0, 1)T

1. {v,}UP' M= P M,
if vy > uy for some uy € M.

2. {v,}UP", M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.




Contejean-Devie Algorithm on an Example

o

- x1 + ro + 2933 - 3134 =
7$1+3$2*2$37.’E4:0

31¢:(1,07070)T e2¢:(0,17070)T :}‘1000 ;‘0100 _5‘0010 :3‘0001
es; = (0,0,1,0)7 eq; = (0,0,0,1)

1. {v,}UP' M= P M,
if vy > uy for some uy € M.

2. {v,}UP", M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.




Contejean-Devie Algorithm on an Example

o

- x1 + ro + 2933 - 3134 =
—x1+3x272x3—x4:0

31¢:(1,07070)T e2¢:(0,17070)T :}‘1000 ;‘0100 _5‘0010 :3‘0001
ez, = (0,0,1,07 eq, = (0,0,0,1)7 |

0
> ‘ 1100

1. {v,}UP' M= P M,
if vy > uy for some uy € M.

2. {v,}UP", M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.




Contejean-Devie Algorithm on an Example

- x1 +  x2 +
- x1 + 3252 -

€1¢ = (1,07070)T 62\[] = (0, 17070)T
es; = (0,0,1,0)" esy =(0,0,0,1)"

1. {v,}UP' M= P M,
if vy > uy for some uy € M.

2. {v,}UP", M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.

2933 - 3£E4 = 0
20 — x4 = 0
-1 1 2 -3
1 ‘1000 3 ‘0100 5 ‘0010 I ‘0001
0 3 -
> ‘ 1100 1 ‘0110 5 ‘0101




Contejean-Devie Algorithm on an Example

o

- x1 + ro + 2933 - 3134 =
7$1+3$2*2$37.’E4:0

-2

€3] = (07 07 1a O)T €4, = (07 07 07 1)T l l \‘

0 3 -
> ‘ 1100 1 ‘ 0110 ‘ 0101

e1) = (1,07070)T ey = (0,17070)T :}‘1000 ;‘0100 2‘0010 :3‘0001

-1
3 ‘ 0011

1. {v,}UP' M= P M,
if vy > uy for some uy € M.

2. {0,}UP',M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.




Contejean-Devie Algorithm on an Example

o

- x1 + ro + 2933 - 3134 =
7$1+3$2*2$37.’E4:0

-2

es; = (0,0,1,0)7 e4; = (0,0,0,1)T ] ] X ]

0 3 - -1
> ‘ 1100 1 ‘0110 ‘0101 3 ‘0011

e1) = (1,07070)T ey = (0,17070)T :}‘1000 ;‘0100 2‘0010 :3‘0001

1. {v,}UP' M= P M,
if vy > uy for some uy € M.

2. {0,}UP',M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.




Contejean-Devie Algorithm on an Example

- x1 + ro + 2933 - 3254 =0
- x1 + 3(E2 — 21’3 — Ty = 0
e1) = (1, 0,0, O)T ey = (07 1,0, O)T :} ‘1000 ; ‘0100 g ‘0010 j ‘0001
es; = (0,0,1,0)7 e4; = (0,0,0,1)T ; ] i ] . >§ll
) ‘1100 1 ‘0110 5 ‘0101 3 ‘0011
1 {v,}UP' M= P M, IR
if vy > uy for some uy € M. ’1‘2100 3‘1110 ’f‘um

2. {0,}UP',M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.




Contejean-Devie Algorithm on an Example

o

- x1 + ro + 2933 - 3264 =
7$1+3$2*2$37$4:0

31¢:(1,07070)T e2¢:(0,17070)T :1‘1000 3‘0100 _2‘0010 :1‘0001
ez, = (0,0,1,07 eq, = (0,0,0,1)7 l l il

g ‘1100 i ‘0110 g ‘0101 :; ‘0011
1. {v,}UP M= P' .M, [ N
if v, > u for some uy € M. ’Hzloo 3‘1110 ’f‘um

S1

2. {0,}UP',M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.




Contejean-Devie Algorithm on an Example

o

- x1 + ro + 2933 - 3264 =
7$1+3$2*2$37$4:0

31¢:(1,07070)T e2¢:(0,17070)T :1‘1000 3‘0100 _2‘0010 :1‘0001
ez, = (0,0,1,07 eq, = (0,0,0,1)7 l l il

g ‘1100 i ‘0110 g ‘0101 :; ‘0011
1. {v,}UP M= P' .M, [ N
if v, > u for some uy € M. ’Hzloo 3‘1110 ’f‘um

S1

2. {0,}UP',M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.




Contejean-Devie Algorithm on an Example

o

- x1 + ro + 2933 - 3264 =
7$1+3$2*2$37$4:0

31¢:(1,07070)T e2¢:(0,17070)T :1‘1000 3‘0100 _2‘0010 :1‘0001
ez, = (0,0,1,07 eq, = (0,0,0,1)7 l l il

g ‘1100 i ‘0110 g ‘0101 :; ‘0011
1. {v,}UP M= P' .M, [ N
if v, > u for some uy € M. ’Hzloo 3‘1110 ’f‘um

S1

2. {0,}UP',M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.




Contejean-Devie Algorithm on an Example

+
+

+

1
T

Z2
3252

{

€1¢ = (1,070,0)T 62\[] = (07 17070)T
es; = (0,0,1,0)" esy =(0,0,0,1)"

1. {v,}UP' M= P M,
if vy > uy for some uy € M.

AvJUP M = P, {v,}UM,
if a(v;) =0, and rule 1 is not
applicable.

P.M = {vy +¢;, |v, €P,
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.

2933 - 3£E4 =0
20 — x4 = 0
:} ‘1000 ; ‘0100 g ‘0010 j ‘0001
l l X
g ‘1100 i ‘0110 g ‘0101 :; ‘0011
I S,
T ‘2100 ; ‘1110 3 ‘1101
N N
i ‘2110




Contejean-Devie Algorithm on an Example

- x1 + ro + 2933 - 3254 =0
7$1+3$2*2$37$4:0

31¢:(1,07070)T e2¢:(0,17070)T :1‘1000 3‘0100 _2‘0010 :1‘0001
ez, = (0,0,1,07 eq, = (0,0,0,1)7 l l il

(2) ‘1100 i ‘0110 g ‘0101 :; ‘0011
1. {v,}UP M= P' .M, [ N
if v, > u for some uy € M. ’Hzloo 3‘1110 ’f‘um
2. {0, }UP',M = P', {u,} UM, - '
if a(v;) =0, and rule 1 is not 1 ‘2“0
applicable. "

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.




Contejean-Devie Algorithm on an Example

— I + To
- x1 + 3252 —

€1¢ = (1,070,0)T 62\[] = (07 17070)T
es; = (0,0,1,0)" esy =(0,0,0,1)"

1. {v,}UP' M= P M,
if vy > uy for some uy € M.

2. {0,}UP',M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.

+ 2933

- 3£E4 =0
— Ty = 0
1 1 2 3
I ‘1000 ; ‘0100 5 ‘0010 > ‘0001
0 3 2 1
) ‘1100 ] ‘0110 3 ‘0101 3 ‘0011
D Vi
1 2 3
1 ‘2100 0 ‘1110 ] ‘1101
N o
e
l > s1
3 ‘2210
> 81




Contejean-Devie Algorithm on an Example

- x1 + ro + 2933 - 3254 =0
- x1 + 3(E2 — 21’3 — Ty = 0
e1) = (1,0,0, O)T ey = (0,1,0, O)T :} ‘1000 é ‘0100 g ‘0010 j ‘0001
ez, = (0,0,1,07 eq, = (0,0,0,1)7 I I >
g ‘1100 i ‘0110 g ‘0101 :; ‘0011
1. {v,}UP M= P' .M, [ N
if v, > u for some uy € M. ’Hzloo 3‘1110 ’f‘nm
2. {v,}UP',M = P', {v,}UM, - h
if a(vy) =0} and rule 1 is not 1 ‘2“0
. > s1
applicable. |
2
3. P,M:>{’UJ,+€]'¢|’U¢€P, 2‘2210
a(vy)-ale; ) <0, j€l.n}, M, - l
if rules 1 and 2 are not 1 ‘3210
applicable. !
.M&‘
W




Contejean-Devie Algorithm on an Example

+
+

+

1
T

Z2
3252

{

e = (1,0,0,0)" ez, =(0,1,0,0)"
€3, = (0707 1a O)T €4, = (0,0,0, 1)T

1. {v,}UP' M= P M,
if vy > uy for some uy € M.

2. {0,}UP',M = P’ {v,} UM,
if a(v;) =0, and rule 1 is not
applicable.

3. PM = {v,+¢; |v €P
a(vy)-ale; ) <0, j€l.n}, M,
if rules 1 and 2 are not
applicable.

2933 - 3£E4 = 0
20 — x4 = 0
-1 1 2 -3
1 ‘1000 3 ‘0100 5 ‘0010 I ‘0001
0 3 2 -1
> ‘ 1100 1 ‘0110 5 ‘0101 3 ‘0011

1 2 3
1 ‘2100 5 ‘1110 ; ‘1101
e
l > s1
3 ‘2210
l > s1
7 |20
> s1
1
3211
> s1

S1



Contejean-Devie Algorithm on an Example

- x1 -+ Tro + 2933 - 3134 = 0
- 1 + 3(E2 — 2£L’3 — Ty = 0
-1 1 2 -3
1 ‘1000 3 ‘0100 - ‘0010 1 ‘0001

ales) afes) 1 71 <]

0‘1100 i‘ono 2| or01|- ‘0011

5(32] 2 l X\
a(e3) —
: a(es) 1 ‘2100 S ‘1110 i ‘ 1101

SN
ale, a(e1) _}‘2110

5 ‘2210
l > s1
i 3210
> s1
it .
> 81 -M&-



Properties of the Algorithm

» Completeness
» Soundness

» Termination

In the theorems:
a(z) = 0;: An n-variate system of homogeneous LDEs.
(€1y,--.,eny): The canonical basis of N".
B(a(xz)) = 0y): Basis in the set of nontrivial natural solutions of
a(wi) = Oi'
|vy||: Euclidean norm of v;.



Properties of the Algorithm

Theorem (Completeness)

Let (e1y,...,eny),0 =>* 0, M be the sequence of transformations
performed by the Contejean-Devie algorithm for a(x|) = 0;. Then

B(a(zy) = 0y) € M.



Properties of the Algorithm

Theorem (Soundness)

Let (e1y,...,eny),0 =>* 0, M be the sequence of transformations
performed by the Contejean-Devie algorithm for a(x|) = 0;. Then

M C B(a(z,) = 0y).



Properties of the Algorithm

Lemma (Limit Lemma)

Let vi|,va,... be an infinite sequence satisfying the
Contejean-Devie condition for a(x)) = 0;:
» w1 is a basic vector and for each i > 1 there exists 1 < j < n
such that a(v;|) - a(e;|) <0 and vig1 = vy + €5,
Then

a\v
el
k—o0 k
Theorem (Termination)
Let v1,vay,... be an infinite sequence satisfying the conditions of

the Limit Lemma. Then there exist v| and k such that
» v, is a solution of a(x)) =0, and

> v L Vg - [Z8N)



Non-Homogeneous Case

Non-homogeneous linear Diophantine system with m equations
and n variables:

a1z +-oo+ awrT, = b
Am1Z1 + 4 GnTn = b

» a's and b’s are integers.

» Matrix form: a(z)) = b;.



Non-Homogeneous Case. Solving Idea

Turn the system into a homogeneous one, denoted Sy:

—bizg + anxm + - 4+ ammTn = 0

—bmro + amiz1 + - 4+ @mprn, = 0

v

Solve Sy and keep only the solutions with xy < 1.

» xo = 1: a minimal solution for a(x}) = b,.

v

xo = 0: a minimal solution for a(x;) = 0,.

v

Any solution of the non-homogeneous system a(x;) = b; has
the form | + y; where:
» x, is a minimal solution of a(z,) = b;.
» y, is a linear combination (with natural coefficients) of
minimal solutions of a(x;) = 0,.



