Introduction to Unification Theory Higher-Order Unification

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria kutsia@risc.jku.at

Overview

Introduction

Preliminaries

Higher-Order Unification Procedure

Outline

Introduction

Preliminaries

Higher-Order Unification Procedure

Introduction

- In first order unification, we were not allowed to replace a variable with a function.
- However, it makes sense to ask to find, e.g., a function that when applied to an object gives again this object: Find an *F* such that *F*(*a*) = *a*.
- ► *F*: Higher-order variable, appears at functional position.
- Can be solved, e.g., with the identity function or with the constant function a.
- Higher-order equations.
- Solving method: Higher-order unification.

Introduction

- Higher-order unification is fundamental in automating higher-order reasoning.
- Used in logical frameworks, logic programming, program synthesis, program transformation, type inferencing, computational linguistics, etc.
- Much more complicated than first-order unification (undecidable, of type zero, nonterminating, ...).
- In this lecture: Introduction to higher-order unification.

Outline

Introduction

Preliminaries

Higher-Order Unification Procedure

Simply Typed λ -Calculus

- Simply type λ -calculus is our term language.
- In this section: Definitions and elementary properties.
 - Types
 - Terms
 - Substitutions
 - Reduction
 - Unification

Types

Types

Consider a finite set whose elements are called *atomic types* (or *base types*). Then:

- Atomic types are types,
- If T and U are types than $T \rightarrow U$ is a type.

The expression $T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_n \rightarrow U$ is a notation for the type $T_1 \rightarrow (T_2 \rightarrow \cdots \rightarrow (T_n \rightarrow U) \dots)$.

Types

Order of a Type

•
$$o(T) = 1$$
 if T is atomic.

$$\bullet o(T \to U) = max\{1 + o(T), o(U)\}.$$

Example

Let T_1, T_2, T_3 be atomic types, then

•
$$o(T_1 \rightarrow T_2 \rightarrow T_3) = 2.$$

•
$$o((T_1 \rightarrow T_2) \rightarrow T_3) = 3.$$

Terms

Assumptions:

- Consider finite set of constants.
- To each constant a type is assigned.
- For each atomic type there is at least one constant.
- For each type there is an infinite set of variables.
- Two different types have disjoint sets of variables.

λ -Terms

- Constants are terms.
- Variables are terms.
- ▶ If *t* and *s* are terms then (*t s*) is a term.
- If x is a variable and t is a term then $\lambda x. t$ is a term.

The expression $(t s_1 \dots s_n)$ is a notation for the term $(\dots (t s_1) \dots s_n)$

Terms

- λ*x*. *t* is a function where λ*x* is the λ-abstraction and *t* is the body. Intuitively, it is a function *x* → *t*.
- In λx. t, λx is a binder for x in t. Occurrences of x in t are bound.
- (*ts*) is an application where function *t* is applied to the argument *s*.

Terms

Type of a Term

A term t is said to have the type T if either

- t is a constant of type T,
- t is a variable of type T,
- ▶ t = (rs), r has type $U \to T$ and s has type U for some U,
- t = λx. s, the variable x has type U, the term s has type V and T = U → V.
- A term t is said to be well-typed if there exists a type T such that t has type T.
- ▶ In this case *T* is unique and it is called *the type of t*.
- We consider only well-typed terms.

Order

Order of a Symbol, Language

- The order of a function symbol or a variable is the order of its type.
- ► A language of order *n* is one which allows function symbols of order at most *n* + 1 and variables of order at most *n*.

Formalization of the conventions:

- First order term denotes an individual.
- Second order term denotes a function on individuals.
- etc.

Free Variables

- ► *vars*(*t*): The set of variables occurring in the term *t*.
- An occurrence of a variable in a term is *free* if it is not bound.
- ► The set of variables that occur freely in *t*, denoted *fvars*(*t*):
 - $fvars(c) = \emptyset$, where c is a constant.
 - $fvars(x) = \{x\}.$
 - $fvars((sr)) = fvars(s) \cup fvars(r)$.
 - $fvars(\lambda x. s) = fvars(s) \setminus \{x\}.$
- Closed term: A term without free variables.

Free Variables

Example

- *fvars*(λx. x) = Ø.
 (Closed term)
- $fvars(\lambda x. y) = \{y\}.$
- *fvars*(((λx. x) x)) = {x}. (x has a bound occurrence as well)

Substitution

- We reuse the definition of substitution as finite mapping from the previous lectures, but in addition require that it preserves types.
- ► Hence, if x → t is a binding of a substitution, x and t have the same type.
- The definitions of composition, more general substitution, etc. will also be reused.

Replacement in a Term

Replacement in a Term

Let $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ be a substitution and *t* be a term, then the term $t\langle \sigma \rangle$ is defined as follows:

•
$$c\langle\sigma\rangle = c.$$

• $x_i\langle\sigma\rangle = t_i.$
• $x\langle\sigma\rangle = x$, if $x \notin \{x_1, \dots, x_n\}.$
• $(sr)\langle\sigma\rangle = (s\langle\sigma\rangle r\langle\sigma\rangle).$
• $(\lambda x. s)\langle\sigma\rangle = (\lambda x. s\langle\sigma\rangle).$

Example

•
$$(\lambda x. x) \langle \{x \mapsto y\} \rangle = \lambda x. y.$$

•
$$(\lambda y. x) \langle \{x \mapsto y\} \rangle = \lambda y. y$$
 (variable capture).

α -Equivalence

α -Equivalence

- $\triangleright c \equiv_{\alpha} c.$
- ► $x \equiv_{\alpha} x$.

•
$$(t s) \equiv_{\alpha} (t' s')$$
 if $t \equiv_{\alpha} t'$ and $s \equiv_{\alpha} s'$.

λx. t ≡_α λy. s if t ({x ↦ z}) ≡_α s ({y ↦ z}) for some variable z different from x and y and occurring neither in t nor in s.

Example

•
$$\lambda x. x \equiv_{\alpha} \lambda y. y.$$

- α -equivalence is an equivalence relation.
- Application and abstraction are compatible with α-equivalence.

Substitution in a Term

Substitution in a Term

Let $\sigma = \{x_1 \mapsto t_1, \dots, x_n \mapsto t_n\}$ be a substitution and *t* be a term, then the term $t\sigma$ is defined as follows:

•
$$c\sigma = c$$
.

•
$$x_i \sigma = t_i$$
.

•
$$x\sigma = x$$
, if $x \notin \{x_1, \ldots, x_n\}$.

$$\blacktriangleright (sr)\sigma = (s\sigma r\sigma).$$

(λx. s)σ = (λy. s{x ↦ y}σ), where y is a fresh variable of the same type as x.

Since the choice of fresh variable is arbitrary, the substitution operation is defined on α -equivalence classes.

Substitution in a Term

Example

•
$$(\lambda x. x) \{ x \mapsto y \} = \lambda z. z.$$

- $(\lambda y. x) \{x \mapsto y\} = \lambda z. y$ (no variable capture).
- $(x \lambda x. (xy)) \{x \mapsto \lambda z.z\} = (\lambda z.z \ \lambda u. (uy)).$

- Intuition: Function evaluation.
- For instance, evaluating function $f : x \mapsto x + 1$ at 2: f(2) = 2 + 1.
- As λ-terms: ((λx. x + 1) 2) ▷ x + 1{x ↦ 2} = 2 + 1. (β-reduction)

Formally:

$\beta\eta$ -Reduction

- β -reduction: $((\lambda x.s) t) \rhd s\{x \mapsto t\}.$
- η -reduction: $(\lambda x.(t x)) \triangleright t$, if $x \notin fvars(t)$.

Propagates into contexts:

- If $s \rhd s'$ then $(s t) \rhd (s' t)$.
- If $t \triangleright t'$ then $(s t) \triangleright (s t')$.
- If $t \triangleright t'$ then $\lambda x. t \triangleright \lambda x. t'$.

 $ightarrow^*$ - reflexive-transitive closure of ightarrow. Facts:

- $\beta\eta$ -Reduction preserves types.
- If $s \triangleright^* t$ then $s\sigma \triangleright^* t\sigma$.
- Each term has a unique βη-normal form modulo α-equivalence.

Example

$\lambda x.(f((\lambda y.(y x)) \lambda z.z)) \rhd_{\beta} \lambda x.(f((\lambda z.z) x))$ $\rhd_{\beta} \lambda x.(f x)$ $\rhd_{\eta} f$

Long Normal Form

Long Normal Form

Assume

- $t = \lambda x_1 \dots \lambda x_m (r s_1 \dots s_k)$ is in the $\beta \eta$ -normal form,
- $T_1 \rightarrow \cdots \rightarrow T_n \rightarrow U$ is a type of t,
- U is atomic and $n \ge m$.

Then the long normal form of t is the term

$$t' = \lambda x_1 \dots \lambda x_m \dots \lambda x_{m+1} \dots \lambda x_n \dots (r s'_1 \dots s'_k x'_{m+1} \dots x'_n)$$

where

- s'_i is the long normal form of s_i .
- x'_i is the long normal form of x_i .

The long normal form of any term is that of its normal form. Since t is in the normal form, r (called the *head* of t) is either a constant or a variable.

Long Normal Form

Example

Let the type of f be $T_1 \rightarrow T_2 \rightarrow U$, with U atomic. Let t be $\lambda x.(f((\lambda y.(yx)) \lambda z.z)).$

- The long normal form of *t* is $\lambda x \cdot \lambda y \cdot (f x y)$.
- λx.λy.(f x y) is a long normal form of λx.(f x) as well, which is a β-normal form of t.
- In general, to compute long normal form, it is not necessary to perform η-reductions.

Long Normal Form

- In the rest, "normal form" stands for "long normal form".
- Notation: We write

$$\lambda x_1 \ldots \lambda x_n \ldots r(t_1, \ldots, t_m)$$

for

$$\lambda x_1 \ldots \lambda x_n \ldots (r t_1 \ldots t_m)$$

in normal form. r is either a constant or a variable.

Outline

Introduction

Preliminaries

Higher-Order Unification Procedure

Higher-Order Unification Problem, Unifier

Higher-Order Unification problem: a finite set of equations

$$\Gamma = \{ s_1 \doteq^? t_1, \ldots, s_n \doteq^? t_n \},\$$

where s_i , t_i are λ -terms.

Unifier of Γ: a substitution σ such that s_iσ and t_iσ have the same normal form for each 1 ≤ i ≤ n.

We will use capital letters to denote free variables in unification problems.

Example

- $\Gamma = \{ F(f(a,b)) \doteq^{?} f(F(a),b) \}.$
- Unifier: $\sigma_1 = \{F \mapsto \lambda x.f(x, b)\}.$
- Justification:

$$\begin{split} F(f(a,b))\sigma_1 &= \left(\left(\lambda x.f(x,b) \right) f(a,b) \right) \rhd_\beta f(f(a,b),b).\\ f(F(a),b)\sigma_1 &= f(\left(\left(\lambda x.f(x,b) \right) a \right),b) \rhd_\beta f(f(a,b),b). \end{split}$$

Example

- $\Gamma = \{ F(f(a,b)) \doteq^? f(F(a),b) \}.$
- Another unifier: $\sigma_2 = \{F \mapsto \lambda x.f(f(x, b), b)\}.$
- Justification:

 $F(f(a,b))\sigma_2 = ((\lambda x.f(f(x,b),b))f(a,b)) \rhd_\beta f(f(f(a,b),b),b).$ $f(F(a),b)\sigma_2 = f(((\lambda x.f(f(x,b),b))a),b) \rhd_\beta f(f(f(a,b),b),b).$

Example

- $\Gamma = \{F(f(a,b)) \doteq^{?} f(F(a),b)\}.$
- Infinitely many unifiers, of the shape

$${F \mapsto \lambda x. f(\ldots f(x, b), \ldots b)}.$$

- Incomparable wrt instantiation quasi-ordering.
- Minimal complete set of unifiers.
- There are problems for which this set does not exist!

Higher Order Unification Is of Type 0

. . .

- Unification problem: $\Gamma = \{F(\lambda x. G(x), a) \doteq^? F(\lambda x. G(x), b)\}.$
- Complete set of solutions (together with the instance terms):

$$\sigma = \{F \mapsto \lambda x. \lambda y. H(x)\} \qquad H(\lambda x. G(x))$$

$$\sigma_0 = \{F \mapsto \lambda x. x, G \mapsto \lambda x. Y\} \qquad Y$$

$$\sigma_1 = \{F \mapsto \lambda x. \lambda y. G_1(x, x(H_1^1(x, y))), G \mapsto \lambda x. Y\} \qquad G_1(\lambda x. Y, Y)$$

$$\sigma_2 = \{F \mapsto \lambda x. \lambda y. G_2(x, x(H_1^2(x, y)), x(H_2^2(x, y))), G \mapsto \lambda x. Y\}$$

$$G_2(\lambda x. Y, Y, Y)$$

$$\sigma_n = \{F \mapsto \lambda x. \lambda y. \ G_n(x, x(H_1^n(x, y)), \dots, x(H_n^n(x, y))), G \mapsto \lambda x. \ Y\}$$
$$G_n(\lambda x. \ Y, Y, \dots, Y) \quad (n \ Y's)$$

Higher Order Unification Is of Type 0

- Unification problem: $\Gamma = \{F(\lambda x. G(x), a) \doteq^? F(\lambda x. G(x), b)\}.$
- Complete set of solutions:

$$\sigma = \{F \mapsto \lambda x. \lambda y. H(x)\}$$

$$\sigma_0 = \{F \mapsto \lambda x. x, G \mapsto \lambda x. Y\}$$

$$\sigma_n = \{F \mapsto \lambda x. \lambda y. G_n(x, x(H_1^n(x, y)), \dots, x(H_n^n(x, y))), G \mapsto \lambda x. Y\}$$

► No mcsu. For all
$$i, j > i$$
: $\sigma_i \not\leq^{\{F,G\}} \sigma_j, \sigma \not\leq^{\{F,G\}} \sigma_i, \sigma_i \not\leq^{\{F,G\}} \sigma, \text{ and } \sigma_i = {}^{\{F,G\}} \sigma_{i+1} \vartheta_i \text{ where}$

$$\vartheta_i = \{G_{i+1} \mapsto \lambda x. \lambda y_1 \dots \lambda y_{i+1}. G_i(x, y_1, \dots, y_i), \\ H_1^{i+1} \mapsto H_1^i, \dots, H_i^{i+1} \mapsto H_i^i\}$$

• Infinite descending chain: $\sigma_1 >^{\{F,G\}} \sigma_2 >^{\{F,G\}} \cdots$

Higher Order Unification Is of Type 0

- Unification problem: $\Gamma = \{F(\lambda x. G(x), a) \doteq^? F(\lambda x. G(x), b)\}.$
- The problem is of third order.
- Higher-order unification of the order 3 and above is of type 0.
- Second order unification is infinitary.

Higher Order Unification Is Undecidable

- Idea: Reduce Hilbert's 10th problem to a higher-order unification problem.
- ► Hilbert's 10th problem is undecidable: There is no algorithm that takes as input two polynomials P(X₁,...,X_n) and Q(X₁,...,X_n) with natural coefficients and answers if there exist natural numbers m₁,...,m_n such that

$$P(m_1,\ldots,m_n)=Q(m_1,\ldots,m_n).$$

- Reduction requires to represent
 - natural numbers,
 - addition,
 - multiplication

in terms of higher-order unification.

Higher Order Unification Is Undecidable

Representation (Goldfarb 1981):

• Natural number *n* represented as a λ -term denoted by \overline{n} :

$$\lambda x.g(a,g(a,\ldots g(a,x)\ldots))$$

with *n* occurrences of *g* and *a*. The type of *g* is $i \rightarrow i \rightarrow i$ and the type of *a* is *i*. Such terms are called Goldfarb numbers.

 Goldfarb numbers are exactly those that solve the unification problem

$$\{g(a, X(a)) \doteq^? X(g(a, a))\}$$

and have the type $i \rightarrow i$.

Higher Order Unification Is Undecidable

Representation:

• Addition is represented by the λ -term *add*:

$$\lambda n. \lambda m. \lambda x. n(m(x)).$$

 Multiplication is represented by the higher-order unification problem

$$\{Y(a, b, g(g(X_3(a), X_2(b)), a)) \doteq^? g(g(a, b), Y(X_1(a), g(a, b), a))$$

$$Y(b, a, g(g(X_3(b), X_2(a)), a)) \doteq^? g(g(b, a), Y(X_1(b), g(a, a), a))\}$$

that has a solution $\{X_1 \mapsto \overline{m_1}, X_2 \mapsto \overline{m_2}, X_3 \mapsto \overline{m_3}, Y \mapsto t\}$ for some *t* iff $m_1 \times m_2 = m_3$.

Higher Order Unification Is Undecidable

Reduction from Hilbert's 10th problem:

- ► Every equation P(X₁,...,X_n) = Q(X₁,...,X_n) can be decomposed into a system of equations of the form: X_i + X_i = X_k, X_i × X_i = X_k, X_i = m.
- With each such system associate a unification problem containing
 - ▶ for each X_i an equation $g(a, X_i(a)) \doteq^? X_i(g(a, a))$,
 - for each $X_i + X_j = X_k$ the equation $add(X_i, X_j) \doteq X_k$,
 - ► for each X_i × X_j = X_k the two equations used to define multiplication,
 - for each $X_i = m$ the equation $X_i \doteq ? \overline{m}$.

Second Order Unification Is Undecidable

- The reduction implies undecidability of higher-order unification.
- Since the reduction is actually to second-order unification, the result is sharper:

Theorem

Second-order unification is undecidable.

For the details of undecidability of second-order unification, see

W. D. Goldfarb

The undecidability of the second-order unification problem. Theoretical Computer Science **13**, 225–230.

Higher-Order Unification Procedure

- Higher-order semi-decision procedure is easy to design:
 - 1. Enumerate all substitutions (in fact, it is enough to enumerate all closed substitutions).
 - 2. For a given unification problem, take the first untried substitution and check whether it is a solution.
 - 3. If yes, stop with success. If not, mark the substitution as tried and iterate.
- Checking is not hard: Apply the substitution to both sides of each equation, normalize, and compare the normal forms.
- If the problem is solvable, the procedure will detect it after finite steps.
- Then... why to bother with looking for another unification procedure?

Higher-Order Unification Procedure

Why to look for a "better" procedure?

- ► To find solutions faster.
- ► To report failure for many unsolvable cases.
- To reduce redundancy.
- etc.

Higher-Order Unification Procedure

- System: a pair P; σ, where P is a higher-order unification problem and σ is a substitution.
- Procedure is given by transformation rules on systems.
- The description essentially follows the paper
 - W. Snyder and J. Gallier.

Higher-Order Unification Revisited: Complete Sets of Transformations.

J. Symbolic Computation, **8**(1–2), 101–140, 1989.

Important Observation

Flex-flex equation has a form

 $\lambda x_1...\lambda x_k. F(s_1,...,s_n) \doteq^? \lambda x_1...\lambda x_k. G(t_1,...,t_m).$

The head of both sides are free variables.

Any flex-flex equation is solvable. Just take

$$\{F\mapsto \lambda y_1\ldots\lambda y_n. c, G\mapsto \lambda y_1\ldots\lambda y_m. c\}.$$

- The appropriate c always exists because for each type we have at least one constant of that type.
- Flex-flex equations may introduce infinite branching in the search tree (very undesirable property).
- Idea: Do not try to solve flex-flex equations. Assume them solved. Preunification.

Preunification

Preunifier

- Let ≃ be the least congruence relation on the set of λ-terms that contains the set of flex-flex pairs.
- A substitution σ is a preunifier for a unification problem {s₁ ≐[?] t₁,..., s_n ≐[?] t_n} iff

normal-form
$$(s_i\sigma) \cong normal-form(t_i\sigma)$$

for each $1 \le i \le n$.

Convention

- $\overline{x_n}$ abbreviates x_1, \ldots, x_n .
- $\lambda \overline{x_n}$ abbreviates $\lambda x_1 \dots \lambda x_n$.

One Technical Notion

Partial Binding

A partial binding of type $T_1 \rightarrow \cdots \rightarrow T_n \rightarrow U$ (*U* atomic) is a term of the form

$$\lambda \overline{x_n}. l(\lambda \overline{y_{m_1}^1}.H_1(\overline{x_n},\overline{y_{m_1}^1}),\ldots,\lambda \overline{y_{m_k}^k}.H_k(\overline{x_n},\overline{y_{m_k}^k}))$$

where *l* is a constant or a variable, and

- the type of x_i is T_i for $1 \le i \le n$,
- ▶ the type of *l* is $S_1 \to \cdots \to S_k \to U$, where S_i is $R_i^1 \to \cdots \to R_{m_i}^i \to S'_i$ (S'_i atomic) for $1 \le i \le k$,
- the type of y_j^i is R_j^i for $1 \le i \le k$ and $1 \le j \le m_i$.
- ▶ the type of H_i is $T_1 \to \cdots \to T_n \to R_1^i \to \cdots \to R_{m_i}^i \to S_i'$ for $1 \le i \le k$.

Partial Binding

$\lambda \overline{x_n}. l(\lambda \overline{y_{m_1}^1}.H_1(\overline{x_n},\overline{y_{m_1}^1}),\ldots,\lambda \overline{y_{m_k}^k}.H_k(\overline{x_n},\overline{y_{m_k}^k}))$

- Imitation binding: l is a constant or a free variable.
- (i^{th}) Projection binding: l is x_i .
- ► A partial binding *t* is appropriate to *F* if *t* and *F* have the same types.
- F → t: Appropriate partial (imitation, projection) binding if t is partial (imitation, projection) binding appropriate to F.

Higher-Order Preunification Procedure

- The inference system U_{HOP} consists of the rules:
 - Trivial
 - Decomposition
 - Variable Elimination
 - Orient
 - Imitation
 - Projection
- The rules transform systems: pairs Γ; σ, where Γ is a higher-order unification problem and σ is a substitution.
- A system Γ; σ is in presolved form if Γ is either empty or consists of flex-flex equations only.

Higher-Order Preunification Procedure. Rules

Trivial:
$$\{t \doteq {}^? t\} \cup P'; \vartheta \Longrightarrow P'; \vartheta$$

Decomposition:

$$\{\lambda \overline{x_k}. \ l(s_1, \ldots, s_n) \stackrel{\perp}{=}^? \lambda \overline{x_k}. \ l(t_1, \ldots, t_n)\} \cup P'; \vartheta \Longrightarrow \{\lambda \overline{x_k}. \ s_1 \stackrel{\perp}{=}^? \lambda \overline{x_k}. \ t_1, \ldots, \lambda \overline{x_k}. \ s_n \stackrel{\perp}{=}^? \lambda \overline{x_k}. \ t_n, \} \cup P'; \vartheta.$$

where *l* is either a constant or one of the bound variables x_1, \ldots, x_k .

Variable Elimination:

$$\{\lambda x_1 \dots \lambda x_k, F(x_1, \dots, x_k) \doteq^? t\} \cup P'; \vartheta \Longrightarrow P'\{F \mapsto t\}; \vartheta\{F \mapsto t\}.$$

f $F \notin fvars(t)$

Higher-Order Preunification Procedure. Rules

Orient:

$$\{\lambda \overline{x_k}. \ l(t_1, \ldots, t_m) \stackrel{:}{=} ^? \lambda \overline{x_k}. \ F(s_1, \ldots, s_n) \} \cup P'; \vartheta \Longrightarrow$$

$$\{\lambda \overline{x_k}. \ F(s_1, \ldots, s_n) \stackrel{:}{=} ^? \lambda \overline{x_k}. \ l(t_1, \ldots, t_m) \} \cup P'; \vartheta$$

where l is not a free variable.

Imitation:

$$\begin{aligned} &\{\lambda \overline{x_k}. F(s_1, \dots, s_n) \stackrel{i}{=} {}^? \lambda \overline{x_k}. f(t_1, \dots, t_m)\} \cup P'; \vartheta \Longrightarrow \\ &\{\lambda \overline{x_k}. f(\lambda \overline{z_{r_1}^1}. H_1(s_1, \dots, s_n, \overline{z_{r_1}^1}), \dots, \lambda \overline{z_{r_m}^m}. H_m(s_1, \dots, s_n, \overline{z_{r_m}^m}))\sigma \\ &\stackrel{i}{=} {}^? \lambda \overline{x_k}. f(t_1, \dots, t_m)\sigma\} \cup P'\sigma; \vartheta\sigma \end{aligned}$$

where

•
$$\sigma = \{F \mapsto \lambda \overline{y_n} \cdot f(\lambda \overline{z_{r_1}} \cdot H_1(\overline{y_n}, \overline{z_{r_1}}), \dots, \lambda \overline{z_{r_m}} \cdot H_m(\overline{y_n}, \overline{z_{r_m}}))\},\$$
appropriate imitation binding.

Higher-Order Preunification Procedure. Rules

Projection:

$$\begin{aligned} &\{\lambda \overline{x_k}. \ F(s_1, \dots, s_n) \doteq^? \lambda \overline{x_k}. \ l(t_1, \dots, t_m)\} \cup P'; \vartheta \Longrightarrow \\ &\{\lambda \overline{x_k}. \ s_i(\lambda \overline{z_{r_1}^1}. \ H_1(s_1, \dots, s_n, \overline{z_{r_1}^1}), \dots, \lambda \overline{z_{r_m}^m}. \ H_m(s_1, \dots, s_n, \overline{z_{r_m}^m}))\sigma \\ &\doteq^? \lambda \overline{x_k}. \ l(t_1, \dots, t_m)\sigma\} \cup P'\sigma; \vartheta\sigma \end{aligned}$$

where

- l is either a constant or one of the bound variables x_1, \ldots, x_k ,
- $\sigma = \{F \mapsto \lambda \overline{y_n}. y_i(\lambda \overline{z_{r_1}^1}. H_1(\overline{y_n}, \overline{z_{r_1}^1}), \dots, \lambda \overline{z_{r_m}^m}. H_m(\overline{y_n}, \overline{z_{r_m}^m}))\},\$ appropriate projection binding.
- H_1, \ldots, H_m are fresh variables.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem Γ :

- Create an initial system $\Gamma; \varepsilon$.
- Apply successively rules from U_{HOP}, building a complete (finitely branching, but potentially infinite) tree of derivations.
- If no rule can be applied to a node, and it contains at least one equation that is not flex-flex, then extend the branch with ⊥, indicating failure.
- Successful leaves contain presolved systems.
- If Δ; σ is a successful leaf, σ is a solution of Γ computed by the higher-order preunification procedure.

Higher-Order Preunification. Major Results

Theorem (Soundness)

If $\Gamma; \varepsilon \Longrightarrow^* \Delta; \sigma$ and Δ is in presolved form, then $\sigma|_{fvars(\Gamma)}$ is a preunifier of Γ .

Theorem (Completeness)

If ϑ is a preunifier of Γ , then there exists a sequence of transformations $\Gamma; \varepsilon \Longrightarrow^* \Delta; \sigma$ such that Δ is in presolved form, and $\sigma \leq_{\beta}^{fvars(\Gamma)} \vartheta$.

Higher-Order Preunification. Optimization

- The procedure can be optimized by stripping off the binder λx when x does not occur in the body.
- ► For instance, Elimination rule does not apply to $\lambda x.\lambda y. P(x) \doteq^? \lambda x.\lambda y. f(a)$
- After removing *λy* from both sides, Elimination can be applied directly.

Higher-Order Preunification. Examples

Example

- Unification problem $\{F(f(a)) \doteq^? f(F(a))\}$.
- The preunification procedure enumerates the complete set of (pre)unifiers that is infinite.
- Here we show only two derivations.

$$\{F(f(a)) \stackrel{i}{=}^{?} f(F(a))\}; \varepsilon$$

$$\Longrightarrow_{Proj} \{f(a) \stackrel{i}{=}^{?} f(a)\}; \{F \mapsto \lambda x. x\}$$

$$\Longrightarrow_{Tr} \emptyset; \{F \mapsto \lambda x. x\}$$

$$\{F(f(a)) \stackrel{i}{=}^{?} f(F(a))\}; \varepsilon$$

$$\Longrightarrow_{Imit} \{f(G(f(a))) \stackrel{i}{=}^{?} f(f(G(a)))\}; \{F \mapsto \lambda x. f(G(x))\}$$

$$\Longrightarrow_{Dec} \{G(f(a)) \stackrel{i}{=}^{?} f(G(a))\}; \{F \mapsto \lambda x. f(G(x))\}$$

$$\Longrightarrow_{Proj} \{f(a) \stackrel{i}{=}^{?} f(a)\}; \{F \mapsto \lambda x. f(x), G \mapsto \lambda x. x\}$$

$$\Longrightarrow_{Tr} \emptyset; \{F \mapsto \lambda x. f(x), G \mapsto \lambda x. x\}$$

Higher-Order Preunification. Examples

Example

- ▶ Problem { λx . $F(f(x,G)) \doteq$? λx . $g(f(x,G_1), f(x,G_2))$ }.
- Here we show only the successful derivation.

$$\begin{aligned} &\{\lambda x. \ F(f(x,G)) \stackrel{:}{=}^{?} \lambda x. \ g(f(x,G_1),f(x,G_2))\}; \varepsilon \\ &\implies_{Imit} \{\lambda x. \ g(H_1(f(x,G)),H_2(f(x,G))) \stackrel{:}{=}^{?} \lambda x. \ g(f(x,G_1),f(x,G_2))\}; \\ &\{F \mapsto \lambda y. \ g(H_1(y),H_2(y))\} \\ &\implies_{Dec,Proj,Proj} \{\lambda x. \ f(x,G) \stackrel{:}{=}^{?} \lambda x. \ f(x,G_1), \lambda x. \ f(x,G) \stackrel{:}{=}^{?} \lambda x. \ f(x,G_2)\}; \\ &\{F \mapsto \lambda y. \ g(y,y), H_1 \mapsto \lambda y. \ y, H_2 \mapsto \lambda y. \ y\} \\ &\implies_{Dec,Tr,Dec,Tr} \{\lambda x. \ G \stackrel{:}{=}^{?} \lambda x. \ G_1, \lambda x. \ G \stackrel{:}{=}^{?} \lambda x. \ G_2\}; \\ &\{F \mapsto \lambda y. \ g(y,y), H_1 \mapsto \lambda y. \ y, H_2 \mapsto \lambda y. \ y\} \\ &\implies_{Elim} \emptyset; \{F \mapsto \lambda y. \ g(y,y), H_1 \mapsto \lambda y. \ y, H_2 \mapsto \lambda y. \ y, G \mapsto G_2, G_1 \mapsto G_2\} \end{aligned}$$

Higher-Order Preunification. Examples

Example

- ▶ Problem { $\lambda x. F(x, a) \doteq ? \lambda x. f(G(a, x))$ }.
- One of the successful derivations.

$$\{\{\lambda x. \ F(x,a) \stackrel{i}{=}^{?} \lambda x. \ f(G(a,x))\}; \varepsilon$$

$$\Longrightarrow_{Imit} \{\lambda x. \ f(H(x,a)) \stackrel{i}{=}^{?} \lambda x. \ f(G(a,x))\}; \{F \mapsto \lambda y_1.\lambda y_2. \ f(H(y_1,y_2))\}$$

$$\Longrightarrow_{Dec} \{\lambda x. \ H(x,a) \stackrel{i}{=}^{?} \lambda x. \ G(a,x)\}; \{F \mapsto \lambda y_1.\lambda y_2. \ f(H(y_1,y_2))\}$$

Flex-flex.

Decidable Subcases

Some decidable subcases of higher-order unification:

- Monadic second-order unification. Terms do not contain constants of arity greater than 1.
 Example: {λx.f(F(x)) =[?] λx.F(f(x))}.
- Second-order unification with linear occurrences of second-order variables.
- ► Unification with higher-order patterns. Pattern is a term t such that for every subterm of the form F(s₁,...,s_n), the s's are distinct variables bound in t. Example: {\lambda x. \lambda y. F(x) \Rightarrow [?] \lambda x. \lambda y. c(G(y, x))}.

Example. { $\lambda x. \lambda y. F(x) = \lambda x. \lambda y. C(G(y, x))$ }.

 Higher-order matching. One side in the equations is a closed term.

Example. { $\lambda x. F(x, \lambda y. y) \doteq {}^? \lambda x.f(x, a)$ }.

- Stratified second-order unification.
- Bounded second-order unification.

