Introduction to Unification Theory Higher-Order Unification

Temur Kutsia

RISC, Johannes Kepler University of Linz, Austria
kutsia@risc.jku.at

Overview

Introduction

Preliminaries

Higher-Order Unification Procedure

Outline

Introduction

Preliminaries

Higher-Order Unification Procedure

Introduction

- In first order unification, we were not allowed to replace a variable with a function.
- However, it makes sense to ask to find, e.g., a function that when applied to an object gives again this object: Find an F such that $F(a)=a$.
- F : Higher-order variable, appears at functional position.
- Can be solved, e.g., with the identity function or with the constant function a.
- Higher-order equations.
- Solving method: Higher-order unification.

Introduction

- Higher-order unification is fundamental in automating higher-order reasoning.
- Used in logical frameworks, logic programming, program synthesis, program transformation, type inferencing, computational linguistics, etc.
- Much more complicated than first-order unification (undecidable, of type zero, nonterminating,).
- In this lecture: Introduction to higher-order unification.

Outline

Introduction

Preliminaries

Higher-Order Unification Procedure

Simply Typed λ-Calculus

- Simply type λ-calculus is our term language.
- In this section: Definitions and elementary properties.
- Types
- Terms
- Substitutions
- Reduction
- Unification

Types

Types

Consider a finite set whose elements are called atomic types (or base types). Then:

- Atomic types are types,
- If T and U are types than $T \rightarrow U$ is a type.

The expression $T_{1} \rightarrow T_{2} \rightarrow \cdots \rightarrow T_{n} \rightarrow U$ is a notation for the type $T_{1} \rightarrow\left(T_{2} \rightarrow \cdots \rightarrow\left(T_{n} \rightarrow U\right) \ldots\right)$.

Types

Order of a Type

- $o(T)=1$ if T is atomic.
- $o(T \rightarrow U)=\max \{1+o(T), o(U)\}$.

Example

Let T_{1}, T_{2}, T_{3} be atomic types, then

- $o\left(T_{1} \rightarrow T_{2} \rightarrow T_{3}\right)=2$.
- $o\left(\left(T_{1} \rightarrow T_{2}\right) \rightarrow T_{3}\right)=3$.

Terms

Assumptions:

- Consider finite set of constants.
- To each constant a type is assigned.
- For each atomic type there is at least one constant.
- For each type there is an infinite set of variables.
- Two different types have disjoint sets of variables.
λ-Terms
- Constants are terms.
- Variables are terms.
- If t and s are terms then $(t s)$ is a term.
- If x is a variable and t is a term then $\lambda x . t$ is a term.

The expression $\left(t s_{1} \ldots s_{n}\right)$ is a notation for the term
$\left(\ldots\left(t s_{1}\right) \ldots s_{n}\right)$

Terms

- $\lambda x . t$ is a function where λx is the λ-abstraction and t is the body. Intuitively, it is a function $x \mapsto t$.
- In $\lambda x . t, \lambda x$ is a binder for x in t. Occurrences of x in t are bound.
- ($t s)$ is an application where function t is applied to the argument s.

Terms

Type of a Term
A term t is said to have the type T if either

- t is a constant of type T,
- t is a variable of type T,
- $t=(r s), r$ has type $U \rightarrow T$ and s has type U for some U,
- $t=\lambda x$. s, the variable x has type U, the term s has type V and $T=U \rightarrow V$.
- A term t is said to be well-typed if there exists a type T such that t has type T.
- In this case T is unique and it is called the type of t.
- We consider only well-typed terms.

Order

Order of a Symbol, Language

- The order of a function symbol or a variable is the order of its type.
- A language of order n is one which allows function symbols of order at most $n+1$ and variables of order at most n.

Formalization of the conventions:

- First order term denotes an individual.
- Second order term denotes a function on individuals.
- etc.

Free Variables

- $\operatorname{vars}(t)$: The set of variables occurring in the term t.
- An occurrence of a variable in a term is free if it is not bound.
- The set of variables that occur freely in t, denoted f fvars (t) :
- $\operatorname{fvars}(c)=\emptyset$, where c is a constant.
- $\operatorname{fvars}(x)=\{x\}$.
- fvars $((s r))=f$ vars $(s) \cup f$ fvars (r).
- $\operatorname{fvars}(\lambda x . s)=\operatorname{fvars}(s) \backslash\{x\}$.
- Closed term: A term without free variables.

Free Variables

Example

- $\operatorname{fvars}(\lambda x \cdot x)=\emptyset$.
(Closed term)
- $\operatorname{fvars}(\lambda x . y)=\{y\}$.
- $\operatorname{fvars}(((\lambda x . x) x))=\{x\}$.
(x has a bound occurrence as well)

Substitution

- We reuse the definition of substitution as finite mapping from the previous lectures, but in addition require that it preserves types.
- Hence, if $x \mapsto t$ is a binding of a substitution, x and t have the same type.
- The definitions of composition, more general substitution, etc. will also be reused.

Replacement in a Term

Replacement in a Term

Let $\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$ be a substitution and t be a term, then the term $t\langle\sigma\rangle$ is defined as follows:

- $c\langle\sigma\rangle=c$.
- $x_{i}\langle\sigma\rangle=t_{i}$.
- $x\langle\sigma\rangle=x$, if $x \notin\left\{x_{1}, \ldots, x_{n}\right\}$.
- $(s r)\langle\sigma\rangle=(s\langle\sigma\rangle r\langle\sigma\rangle)$.
- $(\lambda x . s)\langle\sigma\rangle=(\lambda x . s\langle\sigma\rangle)$.

Example

- $(\lambda x \cdot x)\langle\{x \mapsto y\}\rangle=\lambda x . y$.
- $(\lambda y \cdot x)\langle\{x \mapsto y\}\rangle=\lambda y \cdot y$ (variable capture).

α-Equivalence

α-Equivalence

- $c \equiv{ }_{\alpha} c$.
- $x \equiv{ }_{\alpha} x$.
- $(t s) \equiv{ }_{\alpha}\left(t^{\prime} s^{\prime}\right)$ if $t \equiv{ }_{\alpha} t^{\prime}$ and $s \equiv{ }_{\alpha} s^{\prime}$.
- $\lambda x . t \equiv{ }_{\alpha} \lambda y . s$ if $t\langle\{x \mapsto z\}\rangle \equiv_{\alpha} s\langle\{y \mapsto z\}\rangle$ for some variable z different from x and y and occurring neither in t nor in s.

Example

- $\lambda x . x \equiv_{\alpha} \lambda y . y$.
- α-equivalence is an equivalence relation.
- Application and abstraction are compatible with α-equivalence.

Substitution in a Term

Substitution in a Term

Let $\sigma=\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}$ be a substitution and t be a term, then the term $t \sigma$ is defined as follows:
$-c \sigma=c$.

- $x_{i} \sigma=t_{i}$.
- $x \sigma=x$, if $x \notin\left\{x_{1}, \ldots, x_{n}\right\}$.
- $(s r) \sigma=(s \sigma r \sigma)$.
- $(\lambda x . s) \sigma=(\lambda y . s\{x \mapsto y\} \sigma)$, where y is a fresh variable of the same type as x.

Since the choice of fresh variable is arbitrary, the substitution operation is defined on α-equivalence classes.

Substitution in a Term

Example

- $(\lambda x . x)\{x \mapsto y\}=\lambda z . z$.
- $(\lambda y \cdot x)\{x \mapsto y\}=\lambda z \cdot y$ (no variable capture).
- $(x \lambda x \cdot(x y))\{x \mapsto \lambda z \cdot z\}=(\lambda z \cdot z \lambda u .(u y))$.

Reduction

- Intuition: Function evaluation.
- For instance, evaluating function $f: x \mapsto x+1$ at 2: $f(2)=2+1$.
- As λ-terms: $((\lambda x . x+1) 2) \triangleright x+1\{x \mapsto 2\}=2+1$. (β-reduction)

Reduction

Formally:
$\beta \eta$-Reduction

- β-reduction: $((\lambda x . s) t) \triangleright s\{x \mapsto t\}$.
- η-reduction: $(\lambda x .(t x)) \triangleright t$, if $x \notin \operatorname{fvars}(t)$.

Propagates into contexts:

- If $s \triangleright s^{\prime}$ then $(s t) \triangleright\left(s^{\prime} t\right)$.
- If $t \triangleright t^{\prime}$ then $(s t) \triangleright\left(s t^{\prime}\right)$.
- If $t \triangleright t^{\prime}$ then λx. $t \triangleright \lambda x . t^{\prime}$.

Reduction

\triangleright^{*} - reflexive-transitive closure of \triangleright.
Facts:

- $\beta \eta$-Reduction preserves types.
- If $s \triangleright^{*} t$ then $s \sigma \triangleright^{*} t \sigma$.
- Each term has a unique $\beta \eta$-normal form modulo α-equivalence.

Reduction

Example

$$
\begin{aligned}
\lambda x \cdot(f((\lambda y \cdot(y x)) \lambda z \cdot z)) & \triangleright_{\beta} \lambda x \cdot(f((\lambda z \cdot z) x)) \\
& \triangleright_{\beta} \lambda x \cdot(f x) \\
& \triangleright_{\eta} f
\end{aligned}
$$

Long Normal Form

Long Normal Form

Assume

- $t=\lambda x_{1} \ldots \lambda x_{m} .\left(r s_{1} \ldots s_{k}\right)$ is in the $\beta \eta$-normal form,
- $T_{1} \rightarrow \cdots \rightarrow T_{n} \rightarrow U$ is a type of t,
- U is atomic and $n \geq m$.

Then the long normal form of t is the term

$$
t^{\prime}=\lambda x_{1} \ldots \lambda x_{m} \cdot \lambda x_{m+1} \ldots \lambda x_{n} \cdot\left(r s_{1}^{\prime} \ldots s_{k}^{\prime} x_{m+1}^{\prime} \ldots x_{n}^{\prime}\right)
$$

where

- s_{i}^{\prime} is the long normal form of s_{i}.
- x_{i}^{\prime} is the long normal form of x_{i}.

The long normal form of any term is that of its normal form.
Since t is in the normal form, r (called the head of t) is either a constant or a variable.

Long Normal Form

Example

Let the type of f be $T_{1} \rightarrow T_{2} \rightarrow U$, with U atomic.
Let t be $\lambda x .(f((\lambda y .(y x)) \lambda z . z))$.

- The long normal form of t is $\lambda x . \lambda y .(f x y)$.
- λx. $\lambda y .(f x y)$ is a long normal form of $\lambda x .(f x)$ as well, which is a β-normal form of t.
- In general, to compute long normal form, it is not necessary to perform η-reductions.

Long Normal Form

- In the rest, "normal form" stands for "long normal form".
- Notation: We write

$$
\lambda x_{1} \ldots \lambda x_{n} \cdot r\left(t_{1}, \ldots, t_{m}\right)
$$

for

$$
\lambda x_{1} \ldots \lambda x_{n} \cdot\left(r t_{1} \ldots t_{m}\right)
$$

in normal form. r is either a constant or a variable.

Outline

Introduction

Preliminaries

Higher-Order Unification Procedure

Higher Order Unification

Higher-Order Unification Problem, Unifier

- Higher-Order Unification problem: a finite set of equations

$$
\Gamma=\left\{s_{1} \doteq ? t_{1}, \ldots, s_{n} \doteq ? t_{n}\right\}
$$

where s_{i}, t_{i} are λ-terms.

- Unifier of Γ : a substitution σ such that $s_{i} \sigma$ and $t_{i} \sigma$ have the same normal form for each $1 \leq i \leq n$.

We will use capital letters to denote free variables in unification problems.

Higher Order Unification

Example

- $\Gamma=\{F(f(a, b)) \doteq ? f(F(a), b)\}$.
- Unifier: $\sigma_{1}=\{F \mapsto \lambda x . f(x, b)\}$.
- Justification:

$$
\begin{aligned}
F(f(a, b)) \sigma_{1} & =((\lambda x . f(x, b)) f(a, b)) \triangleright_{\beta} f(f(a, b), b) . \\
f(F(a), b) \sigma_{1} & =f(((\lambda x . f(x, b)) a), b) \triangleright_{\beta} f(f(a, b), b) .
\end{aligned}
$$

Higher Order Unification

Example

- $\Gamma=\{F(f(a, b)) \doteq ? f(F(a), b)\}$.
- Another unifier: $\sigma_{2}=\{F \mapsto \lambda x . f(f(x, b), b)\}$.
- Justification:

$$
\begin{aligned}
F(f(a, b)) \sigma_{2} & =((\lambda x . f(f(x, b), b)) f(a, b)) \triangleright_{\beta} f(f(f(a, b), b), b) . \\
f(F(a), b) \sigma_{2} & =f(((\lambda x . f(f(x, b), b)) a), b) \triangleright_{\beta} f(f(f(a, b), b), b) .
\end{aligned}
$$

Higher Order Unification

Example

- $\Gamma=\{F(f(a, b)) \doteq ? f(F(a), b)\}$.
- Infinitely many unifiers, of the shape

$$
\{F \mapsto \lambda x . f(\ldots f(x, b), \ldots b)\}
$$

- Incomparable wrt instantiation quasi-ordering.
- Minimal complete set of unifiers.
- There are problems for which this set does not exist!

Higher Order Unification Is of Type 0

- Unification problem: $\Gamma=\{F(\lambda x . G(x), a) \doteq ? ~ F(\lambda x . G(x), b)\}$.
- Complete set of solutions (together with the instance terms):

$$
\begin{aligned}
\sigma= & \{F \mapsto \lambda x . \lambda y \cdot H(x)\} \quad H(\lambda x . G(x)) \\
\sigma_{0}= & \{F \mapsto \lambda x \cdot x, G \mapsto \lambda x . Y\} \quad Y \\
\sigma_{1}= & \left\{F \mapsto \lambda x \cdot \lambda y \cdot G_{1}\left(x, x\left(H_{1}^{1}(x, y)\right)\right), G \mapsto \lambda x . Y\right\} \quad G_{1}(\lambda x . Y, Y) \\
\sigma_{2}= & \left\{F \mapsto \lambda x . \lambda y \cdot G_{2}\left(x, x\left(H_{1}^{2}(x, y)\right), x\left(H_{2}^{2}(x, y)\right)\right), G \mapsto \lambda x . Y\right\} \\
& G_{2}(\lambda x . Y, Y, Y) \\
& \ldots \\
\sigma_{n}= & \left\{F \mapsto \lambda x . \lambda y . G_{n}\left(x, x\left(H_{1}^{n}(x, y)\right), \ldots, x\left(H_{n}^{n}(x, y)\right)\right), G \mapsto \lambda x . Y\right\} \\
& G_{n}(\lambda x . Y, Y, \ldots, Y) \quad\left(n Y^{\prime} s\right)
\end{aligned}
$$

Higher Order Unification Is of Type 0

- Unification problem: $\Gamma=\{F(\lambda x . G(x), a) \doteq ? F(\lambda x . G(x), b)\}$.
- Complete set of solutions:

$$
\begin{aligned}
\sigma & =\{F \mapsto \lambda x . \lambda y . H(x)\} \\
\sigma_{0} & =\{F \mapsto \lambda x . x, G \mapsto \lambda x . Y\} \\
\sigma_{n} & =\left\{F \mapsto \lambda x . \lambda y . G_{n}\left(x, x\left(H_{1}^{n}(x, y)\right), \ldots, x\left(H_{n}^{n}(x, y)\right)\right), G \mapsto \lambda x . Y\right\}
\end{aligned}
$$

- No mcsu. For all $i, j>i: \sigma_{i} \overleftarrow{\Sigma}^{\{F, G\}} \sigma_{j}, \sigma \not \AA^{\{F, G\}} \sigma_{i}$, $\sigma_{i} \not \mathbb{E}^{\{F, G\}} \sigma$, and $\sigma_{i}=\{F, G\} \sigma_{i+1} \vartheta_{i}$ where

$$
\begin{aligned}
& \vartheta_{i}=\left\{G_{i+1} \mapsto \lambda x \cdot \lambda y_{1} \ldots \lambda y_{i+1} \cdot G_{i}\left(x, y_{1}, \ldots, y_{i}\right),\right. \\
&\left.H_{1}^{i+1} \mapsto H_{1}^{i}, \ldots, H_{i}^{i+1} \mapsto H_{i}^{i}\right\}
\end{aligned}
$$

- Infinite descending chain: $\sigma_{1}>\{F, G\} \sigma_{2}>\{F, G\} \ldots$

Higher Order Unification Is of Type 0

- Unification problem: $\Gamma=\{F(\lambda x . G(x), a) \doteq ? F(\lambda x . G(x), b)\}$.
- The problem is of third order.
- Higher-order unification of the order 3 and above is of type 0.
- Second order unification is infinitary.

Higher Order Unification Is Undecidable

- Idea: Reduce Hilbert's 10th problem to a higher-order unification problem.
- Hilbert's 10th problem is undecidable: There is no algorithm that takes as input two polynomials $P\left(X_{1}, \ldots, X_{n}\right)$ and $Q\left(X_{1}, \ldots, X_{n}\right)$ with natural coefficients and answers if there exist natural numbers m_{1}, \ldots, m_{n} such that

$$
P\left(m_{1}, \ldots, m_{n}\right)=Q\left(m_{1}, \ldots, m_{n}\right)
$$

- Reduction requires to represent
- natural numbers,
- addition,
- multiplication
in terms of higher-order unification.

Higher Order Unification Is Undecidable

Representation (Goldfarb 1981):

- Natural number n represented as a λ-term denoted by \bar{n} :

$$
\lambda x . g(a, g(a, \ldots g(a, x) \ldots))
$$

with n occurrences of g and a. The type of g is $i \rightarrow i \rightarrow i$ and the type of a is i. Such terms are called Goldfarb numbers.

- Goldfarb numbers are exactly those that solve the unification problem

$$
\{g(a, X(a)) \doteq ? X(g(a, a))\}
$$

and have the type $i \rightarrow i$.

Higher Order Unification Is Undecidable

Representation:

- Addition is represented by the λ-term add:

$$
\lambda n \cdot \lambda m \cdot \lambda x . n(m(x)) .
$$

- Multiplication is represented by the higher-order unification problem

$$
\begin{aligned}
\left\{Y\left(a, b, g\left(g\left(X_{3}(a), X_{2}(b)\right), a\right)\right)\right. & \doteq ? g\left(g(a, b), Y\left(X_{1}(a), g(a, b), a\right)\right) \\
Y\left(b, a, g\left(g\left(X_{3}(b), X_{2}(a)\right), a\right)\right) & \left.\doteq ? g\left(g(b, a), Y\left(X_{1}(b), g(a, a), a\right)\right)\right\}
\end{aligned}
$$

that has a solution $\left\{X_{1} \mapsto \overline{m_{1}}, X_{2} \mapsto \overline{m_{2}}, X_{3} \mapsto \overline{m_{3}}, Y \mapsto t\right\}$ for some t iff $m_{1} \times m_{2}=m_{3}$.

Higher Order Unification Is Undecidable

Reduction from Hilbert's 10th problem:

- Every equation $P\left(X_{1}, \ldots, X_{n}\right)=Q\left(X_{1}, \ldots, X_{n}\right)$ can be decomposed into a system of equations of the form:

$$
X_{i}+X_{j}=X_{k}, \quad X_{i} \times X_{j}=X_{k}, \quad X_{i}=m
$$

- With each such system associate a unification problem containing
- for each X_{i} an equation $g\left(a, X_{i}(a)\right) \doteq{ }^{?} X_{i}(g(a, a))$,
- for each $X_{i}+X_{j}=X_{k}$ the equation $\operatorname{add}\left(X_{i}, X_{j}\right) \doteq{ }^{?} X_{k}$,
- for each $X_{i} \times X_{j}=X_{k}$ the two equations used to define multiplication,
- for each $X_{i}=m$ the equation $X_{i} \doteq ? \bar{m}$.

Second Order Unification Is Undecidable

- The reduction implies undecidability of higher-order unification.
- Since the reduction is actually to second-order unification, the result is sharper:

Theorem
Second-order unification is undecidable.
For the details of undecidability of second-order unification, see
E W. D. Goldfarb
The undecidability of the second-order unification problem.
Theoretical Computer Science 13, 225-230.

Higher-Order Unification Procedure

- Higher-order semi-decision procedure is easy to design:

1. Enumerate all substitutions (in fact, it is enough to enumerate all closed substitutions).
2. For a given unification problem, take the first untried substitution and check whether it is a solution.
3. If yes, stop with success. If not, mark the substitution as tried and iterate.

- Checking is not hard: Apply the substitution to both sides of each equation, normalize, and compare the normal forms.
- If the problem is solvable, the procedure will detect it after finite steps.
- Then... why to bother with looking for another unification procedure?

Higher-Order Unification Procedure

Why to look for a "better" procedure?

- To find solutions faster.
- To report failure for many unsolvable cases.
- To reduce redundancy.
- etc.

Higher-Order Unification Procedure

- System: a pair $P ; \sigma$, where P is a higher-order unification problem and σ is a substitution.
- Procedure is given by transformation rules on systems.
- The description essentially follows the paper

EW. Snyder and J. Gallier.
Higher-Order Unification Revisited: Complete Sets of Transformations.
J. Symbolic Computation, 8(1-2), 101-140, 1989.

Important Observation

- Flex-flex equation has a form

$$
\lambda x_{1} \ldots \lambda x_{k} . F\left(s_{1}, \ldots, s_{n}\right) \doteq ? \lambda x_{1} \ldots \lambda x_{k} . G\left(t_{1}, \ldots, t_{m}\right) .
$$

The head of both sides are free variables.

- Any flex-flex equation is solvable. Just take

$$
\left\{F \mapsto \lambda y_{1} \ldots \lambda y_{n} . c, \quad G \mapsto \lambda y_{1} \ldots \lambda y_{m} . c\right\} .
$$

- The appropriate c always exists because for each type we have at least one constant of that type.
- Flex-flex equations may introduce infinite branching in the search tree (very undesirable property).
- Idea: Do not try to solve flex-flex equations. Assume them solved. Preunification.

Preunification

Preunifier

- Let \cong be the least congruence relation on the set of λ-terms that contains the set of flex-flex pairs.
- A substitution σ is a preunifier for a unification problem $\left\{s_{1} \doteq{ }^{?} t_{1}, \ldots, s_{n} \doteq{ }^{?} t_{n}\right\}$ iff

$$
\operatorname{normal-form}\left(s_{i} \sigma\right) \cong \text { normal-form }\left(t_{i} \sigma\right)
$$

for each $1 \leq i \leq n$.
Convention

- $\overline{x_{n}}$ abbreviates x_{1}, \ldots, x_{n}.
- $\lambda \overline{x_{n}}$ abbreviates $\lambda x_{1} \ldots . \lambda x_{n}$.

One Technical Notion

Partial Binding

A partial binding of type $T_{1} \rightarrow \cdots \rightarrow T_{n} \rightarrow U$ (U atomic) is a term of the form

$$
\lambda \overline{x_{n}} \cdot l\left(\lambda \overline{y_{m_{1}}^{1}} \cdot H_{1}\left(\overline{x_{n}}, \overline{y_{m_{1}}^{1}}\right), \ldots, \lambda \overline{y_{m_{k}}^{k}} \cdot H_{k}\left(\overline{x_{n}}, \overline{y_{m_{k}}^{k}}\right)\right)
$$

where l is a constant or a variable, and

- the type of x_{i} is T_{i} for $1 \leq i \leq n$,
- the type of l is $S_{1} \rightarrow \cdots \rightarrow S_{k} \rightarrow U$, where S_{i} is $R_{i}^{1} \rightarrow \cdots \rightarrow R_{m_{i}}^{i} \rightarrow S_{i}^{\prime}\left(S_{i}^{\prime}\right.$ atomic) for $1 \leq i \leq k$,
- the type of y_{j}^{i} is R_{j}^{i} for $1 \leq i \leq k$ and $1 \leq j \leq m_{i}$.
- the type of H_{i} is $T_{1} \rightarrow \cdots \rightarrow T_{n} \rightarrow R_{1}^{i} \rightarrow \cdots \rightarrow R_{m_{i}}^{i} \rightarrow S_{i}^{\prime}$ for $1 \leq i \leq k$.

Partial Binding

$$
\lambda \overline{x_{n}} \cdot l\left(\lambda \overline{y_{m_{1}}} \cdot H_{1}\left(\overline{x_{n}}, \overline{y_{m_{1}}^{1}}\right), \ldots, \lambda \overline{y_{m_{k}}^{k}} \cdot H_{k}\left(\overline{x_{n}}, \overline{y_{m_{k}}^{k}}\right)\right)
$$

- Imitation binding: l is a constant or a free variable.
- $\left(i^{\text {th }}\right)$ Projection binding: l is x_{i}.
- A partial binding t is appropriate to F if t and F have the same types.
- $F \mapsto t$: Appropriate partial (imitation, projection) binding if t is partial (imitation, projection) binding appropriate to F.

Higher-Order Preunification Procedure

- The inference system $\mathcal{U}_{H O P}$ consists of the rules:
- Trivial
- Decomposition
- Variable Elimination
- Orient
- Imitation
- Projection
- The rules transform systems: pairs $\Gamma ; \sigma$, where Γ is a higher-order unification problem and σ is a substitution.
- A system $\Gamma ; \sigma$ is in presolved form if Γ is either empty or consists of flex-flex equations only.

Higher-Order Preunification Procedure. Rules

Trivial: $\quad\left\{t \doteq{ }^{?} t\right\} \cup P^{\prime} ; \vartheta \Longrightarrow P^{\prime} ; \vartheta$

Decomposition:

$$
\begin{aligned}
& \left\{\lambda \overline{x_{k}} \cdot l\left(s_{1}, \ldots, s_{n}\right) \doteq ? \lambda \overline{x_{k}} \cdot l\left(t_{1}, \ldots, t_{n}\right)\right\} \cup P^{\prime} ; \vartheta \Longrightarrow \\
& \left\{\lambda \overline{x_{k}} \cdot s_{1} \doteq ? \lambda \overline{x_{k}} \cdot t_{1}, \ldots, \lambda \overline{x_{k}} \cdot s_{n} \doteq ? \lambda \overline{x_{k}} \cdot t_{n},\right\} \cup P^{\prime} ; \vartheta .
\end{aligned}
$$

where l is either a constant or one of the bound variables x_{1}, \ldots, x_{k}.
Variable Elimination:

$$
\left\{\lambda x_{1} \ldots \lambda x_{k} . F\left(x_{1}, \ldots, x_{k}\right) \doteq ? t\right\} \cup P^{\prime} ; \vartheta \Longrightarrow P^{\prime}\{F \mapsto t\} ; \vartheta\{F \mapsto t\} .
$$

If $F \notin \operatorname{fvars}(t)$

Higher-Order Preunification Procedure. Rules

Orient:

$$
\begin{aligned}
& \left\{\lambda \overline{x_{k}} \cdot l\left(t_{1}, \ldots, t_{m}\right) \doteq ? \lambda \overline{x_{k}} \cdot F\left(s_{1}, \ldots, s_{n}\right)\right\} \cup P^{\prime} ; \vartheta \Longrightarrow \\
& \left\{\lambda \overline{x_{k}} \cdot F\left(s_{1}, \ldots, s_{n}\right) \doteq{ }^{?} \lambda \overline{x_{k}} \cdot l\left(t_{1}, \ldots, t_{m}\right)\right\} \cup P^{\prime} ; \vartheta
\end{aligned}
$$

where l is not a free variable.
Imitation:

$$
\begin{aligned}
& \left\{\lambda \overline{x_{k}} \cdot F\left(s_{1}, \ldots, s_{n}\right) \doteq ? \overline{=} \lambda \overline{x_{k}} \cdot f\left(t_{1}, \ldots, t_{m}\right)\right\} \cup P^{\prime} ; \vartheta \Longrightarrow \\
& \left\{\lambda \overline{x_{k}} \cdot f\left(\lambda \overline{z_{r_{1}}^{1}} \cdot H_{1}\left(s_{1}, \ldots, s_{n}, \overline{z_{r_{1}}^{1}}\right), \ldots, \lambda \overline{z_{r_{m}}^{m}} \cdot H_{m}\left(s_{1}, \ldots, s_{n}, \overline{z_{r_{m}}^{m}}\right)\right) \sigma\right. \\
& \left.\quad \doteq ? \lambda \overline{x_{k}} \cdot f\left(t_{1}, \ldots, t_{m}\right) \sigma\right\} \cup P^{\prime} \sigma ; \vartheta \sigma
\end{aligned}
$$

where
$-\sigma=\left\{F \mapsto \lambda \overline{y_{n}} \cdot f\left(\lambda \overline{z_{r_{1}}^{1}} \cdot H_{1}\left(\overline{y_{n}}, \overline{z_{r_{1}}^{1}}\right), \ldots, \lambda \overline{z_{r_{m}}^{m}} . H_{m}\left(\overline{y_{n}}, \overline{z_{r_{m}}^{m}}\right)\right)\right\}$, appropriate imitation binding.

- H_{1}, \ldots, H_{m} are fresh variables.

Higher-Order Preunification Procedure. Rules

Projection:

$$
\begin{aligned}
& \left\{\lambda \overline{x_{k}} \cdot F\left(s_{1}, \ldots, s_{n}\right) \doteq{ }^{?} \lambda \overline{x_{k}} \cdot l\left(t_{1}, \ldots, t_{m}\right)\right\} \cup P^{\prime} ; \vartheta \Longrightarrow \\
& \left\{\lambda \overline{x_{k}} \cdot s_{i}\left(\lambda \overline{z_{r_{1}}^{1}} \cdot H_{1}\left(s_{1}, \ldots, s_{n}, \overline{z_{r_{1}}^{1}}\right), \ldots, \lambda \overline{z_{r_{m}}^{m}} \cdot H_{m}\left(s_{1}, \ldots, s_{n}, \overline{z_{r_{m}}^{m}}\right)\right) \sigma\right. \\
& \left.\quad \doteq^{?} \lambda \overline{x_{k}} \cdot l\left(t_{1}, \ldots, t_{m}\right) \sigma\right\} \cup P^{\prime} \sigma ; \vartheta \sigma
\end{aligned}
$$

where

- l is either a constant or one of the bound variables x_{1}, \ldots, x_{k},
- $\sigma=\left\{F \mapsto \lambda \overline{y_{n}} \cdot y_{i}\left(\lambda \overline{z_{r_{1}}^{1}} \cdot H_{1}\left(\overline{y_{n}}, \overline{z_{r_{1}}^{1}}\right), \ldots, \lambda \overline{z_{r_{m}}^{m}} . H_{m}\left(\overline{y_{n}}, \overline{z_{r_{m}}^{m}}\right)\right)\right\}$, appropriate projection binding.
- H_{1}, \ldots, H_{m} are fresh variables.

Higher-Order Preunification Procedure. Control

In order to solve a higher-order unification problem Γ :

- Create an initial system $\Gamma ; \varepsilon$.
- Apply successively rules from $\mathcal{U}_{\text {HOP }}$, building a complete (finitely branching, but potentially infinite) tree of derivations.
- If no rule can be applied to a node, and it contains at least one equation that is not flex-flex, then extend the branch with \perp, indicating failure.
- Successful leaves contain presolved systems.
- If $\Delta ; \sigma$ is a successful leaf, σ is a solution of Γ computed by the higher-order preunification procedure.

Higher-Order Preunification. Major Results

Theorem (Soundness)
If $\Gamma ; \varepsilon \Longrightarrow{ }^{*} \Delta ; \sigma$ and Δ is in presolved form, then $\left.\sigma\right|_{\text {farrs }(\Gamma)}$ is a preunifier of Γ.

Theorem (Completeness)
If ϑ is a preunifier of Γ, then there exists a sequence of transformations $\Gamma ; \varepsilon \Longrightarrow{ }^{*} \Delta ; \sigma$ such that Δ is in presolved form, and $\sigma \leq_{\beta}^{\text {fivars }(\Gamma)} \vartheta$.

Higher-Order Preunification. Optimization

- The procedure can be optimized by stripping off the binder λx when x does not occur in the body.
- For instance, Elimination rule does not apply to $\lambda x . \lambda y . P(x) \doteq$? $\lambda x . \lambda y . f(a)$
- After removing λy from both sides, Elimination can be applied directly.

Higher-Order Preunification. Examples

Example

- Unification problem $\{F(f(a)) \doteq ? f(F(a))\}$.
- The preunification procedure enumerates the complete set of (pre)unifiers that is infinite.
- Here we show only two derivations.

$$
\begin{aligned}
\{F(f(a)) & \doteq ? f(F(a))\} ; \varepsilon \\
& \Longrightarrow P_{\text {roj }}\left\{f(a) \doteq^{?} f(a)\right\} ;\{F \mapsto \lambda x \cdot x\} \\
& \Longrightarrow r_{r} \emptyset ;\{F \mapsto \lambda x \cdot x\} \\
\{F(f(a)) & \doteq ? f(F(a))\} ; \varepsilon \\
& \Longrightarrow_{\text {mint }}\left\{f(G(f(a))) \doteq^{?} f(f(G(a)))\right\} ;\{F \mapsto \lambda x \cdot f(G(x))\} \\
& \Longrightarrow_{\text {Dec }}\left\{G(f(a)) \doteq^{?} f(G(a))\right\} ;\{F \mapsto \lambda x \cdot f(G(x))\} \\
& \Longrightarrow_{\text {Proj }}\left\{f(a) \doteq^{?} f(a)\right\} ;\{F \mapsto \lambda x \cdot f(x), G \mapsto \lambda x \cdot x\} \\
& \Longrightarrow T_{r} \emptyset ;\{F \mapsto \lambda x \cdot f(x), G \mapsto \lambda x \cdot x\}
\end{aligned}
$$

Higher-Order Preunification. Examples

Example

- Problem $\left\{\lambda x . F(f(x, G)) \doteq ? \lambda x . g\left(f\left(x, G_{1}\right), f\left(x, G_{2}\right)\right)\right\}$.
- Here we show only the successful derivation.

$$
\begin{aligned}
& \left\{\lambda x . F(f(x, G)) \doteq{ }^{?} \lambda x . g\left(f\left(x, G_{1}\right), f\left(x, G_{2}\right)\right)\right\} ; \varepsilon \\
& \Longrightarrow{ }_{\text {Imit }}\left\{\lambda x . g\left(H_{1}(f(x, G)), H_{2}(f(x, G))\right) \doteq{ }^{?} \lambda x . g\left(f\left(x, G_{1}\right), f\left(x, G_{2}\right)\right)\right\} ; \\
& \left\{F \mapsto \lambda y . g\left(H_{1}(y), H_{2}(y)\right)\right\} \\
& \Longrightarrow_{\text {Dec, } P_{r o j}, P_{r o j}}\left\{\lambda x . f(x, G) \doteq{ }^{?} \lambda x . f\left(x, G_{1}\right), \lambda x \cdot f(x, G) \doteq{ }^{?} \lambda x . f\left(x, G_{2}\right)\right\} ; \\
& \left\{F \mapsto \lambda y . g(y, y), H_{1} \mapsto \lambda y . y, H_{2} \mapsto \lambda y . y\right\} \\
& \Longrightarrow{ }_{\text {Dec }, T, D e c, T r}\left\{\lambda x . G \doteq{ }^{?} \lambda x \cdot G_{1}, \lambda x . G \doteq{ }^{?} \lambda x . G_{2}\right\} ; \\
& \left\{F \mapsto \lambda y . g(y, y), H_{1} \mapsto \lambda y . y, H_{2} \mapsto \lambda y . y\right\} \\
& \Longrightarrow{ }_{\text {Elim }}^{2} \emptyset ;\left\{F \mapsto \lambda y . g(y, y), H_{1} \mapsto \lambda y . y, H_{2} \mapsto \lambda y . y, G \mapsto G_{2}, G_{1} \mapsto G_{2}\right\}
\end{aligned}
$$

Higher-Order Preunification. Examples

Example

- Problem $\{\lambda x . F(x, a) \doteq$? $\lambda x . f(G(a, x))\}$.
- One of the successful derivations.
$\{\{\lambda x . F(x, a) \doteq$? $\lambda x . f(G(a, x))\} ; \varepsilon$

$$
\begin{aligned}
& \Longrightarrow_{\text {Imit }}\left\{\lambda x \cdot f(H(x, a)) \doteq{ }^{?} \lambda x \cdot f(G(a, x))\right\} ;\left\{F \mapsto \lambda y_{1} \cdot \lambda y_{2} \cdot f\left(H\left(y_{1}, y_{2}\right)\right)\right\} \\
& \Longrightarrow_{\text {Dec }}\{\lambda x \cdot H(x, a) \doteq ? \lambda x \cdot G(a, x)\} ;\left\{F \mapsto \lambda y_{1} \cdot \lambda y_{2} \cdot f\left(H\left(y_{1}, y_{2}\right)\right)\right\}
\end{aligned}
$$

Flex-flex.

Decidable Subcases

Some decidable subcases of higher-order unification:

- Monadic second-order unification. Terms do not contain constants of arity greater than 1.
Example: $\{\lambda x . f(F(x)) \doteq ? \lambda x . F(f(x))\}$.
- Second-order unification with linear occurrences of second-order variables.
- Unification with higher-order patterns. Pattern is a term t such that for every subterm of the form $F\left(s_{1}, \ldots, s_{n}\right)$, the s's are distinct variables bound in t.
Example: $\{\lambda x . \lambda y . F(x) \doteq$? $\lambda x . \lambda y . c(G(y, x))\}$.
- Higher-order matching. One side in the equations is a closed term.
Example. $\{\lambda x . F(x, \lambda y . y) \doteq ? \lambda x . f(x, a)\}$.
- Stratified second-order unification.
- Bounded second-order unification.

