Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples

Foundations

Theses

GCD Algorithm Groebner.thy Multival Eurotions

Benefits

Download

Master Theses: Implementation of Computer Algebra in the Theorem Prover Isabelle Computation meets Deduction

> Wolfgang Schreiner Walther Neuper

Research Institute for Symbolic Computation, JKU Linz, Institute for Software Technology, TU Graz

Linz, 12.4.2013

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Computer Algebra ~~ Isabelle

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific Examples Foundations

GCD Algo

Groebner.thy Multival.Function

Benefits

Download

1 Motivations and Goals

Promote "Formal Methods" (+ Róle of Mathematicians) Develop Verified Computer Algebra Make Systems "Transparent" for Education

2 Interlude: Isabelle's Simplifier

How the Simplifier Works Logical Foundations of the Simplifier

3 Topics for Master Theses

GCD Algorithm for Polynomials "Groebner_Basis.thy" for Equation Solving "Multivalued Functions" in Simplification

4 Benefits for Students

5 Download:

http://www.ist.tugraz.at/projects/isac/www/download/RISC_Theses_presentation.pd

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Wolfgang Schreiner Walther Neuper

Computer Algebra

Isabelle

Motivations

Formal Methods

Computer Algebra Educational Systems

Isabelle Simplific Examples Foundations

Theses GCD Algorithm Groebner.thy Multival Functions

Benefits

Download

1 Motivations and Goals

Promote "Formal Methods" (+ Róle of Mathematicians)

Develop Verified Computer Algebra Make Systems "Transparent" for Education

Interlude: Isabelle's Simplifier

How the Simplifier Works Logical Foundations of the Simplifier

Topics for Master Theses

GCD Algorithm for Polynomials "Groebner_Basis.thy" for Equation Solving "Multivalued Functions" in Simplification

4 Benefits for Students

5 Download:

http://www.ist.tugraz.at/projects/isac/www/download/RISC_Theses_presentation.pd

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods

Computer Algebra Educational Systems

- Isabelle Simplific.
- Examples
- Foundations
- Theses
- GCD Algorithm Groebner.thy
- Multival.Functions
- Benefits
- Download

Promote "Formal Methods" (+ Róle of Mathematicians)

• "Formal Methods" (FM) — an advancing discipline:

http://www.fmeurope.org/?page_id=2

- Conferences on FM: http: //lipn.univ-paris13.fr/~andre/conferences.php
 - 11th International Conference on Software Engineering and Formal Methods http://antares.sip.ucm.es/sefm2013/
 - FM-RAIL-BOK WORKSHOP 2013
 - http://ssfmgroup.wordpress.com/about/
 - iFM 2013: 10th International Conference on integrated Formal Methods http://www.it.abo.fi/iFM2013/
 - ...
- · Applications of FM:
 - railway operation and control systems http://www.informatik.uni-bremen.de/agbs/lehre/tracs/
 - circuit design ("Pentium Bug") http://www.csl.sri.com/ papers/computer96/computer96.html

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- robotics http://cps-vo.org/node/1134
- ...
- promotes róle for mathematicians in engineering by FM:

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods

Computer Algebra Educational Systems

- Isabelle Simplific.
- Examples
- Theses
- GCD Algorithm Groebner.thy
- Multival.Functions
- Benefits
- Download

Promote "Formal Methods" (+ Róle of Mathematicians)

• "Formal Methods" (FM) — an advancing discipline:

http://www.fmeurope.org/?page_id=2

- Conferences on FM: http: //lipn.univ-paris13.fr/~andre/conferences.php
 - 11th International Conference on Software Engineering and Formal Methods http://antares.sip.ucm.es/sefm2013/
 - FM-RAIL-BOK WORKSHOP 2013
 - http://ssfmgroup.wordpress.com/about/
 - iFM 2013: 10th International Conference on integrated Formal Methods http://www.it.abo.fi/iFM2013/
 - . . .
- Applications of FM:
 - railway operation and control systems http://www.informatik.uni-bremen.de/agbs/lehre/tracs/
 - circuit design ("Pentium Bug") http://www.csl.sri.com/ papers/computer96/computer96.html

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- robotics http://cps-vo.org/node/1134
- ...
- promotes róle for mathematicians in engineering by FM:

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

Examples

Theses

GCD Algorithm Groebner.thy

Benefits

Download

Promote "Formal Methods" (+ Róle of Mathematicians)

- "Formal Methods" (FM) an advancing discipline:
- promotes róle for mathematicians in engineering:
 - FM extends the field of application of mathematics

definition is_convex :: "Point set \Rightarrow bool" where "is_convex K = ($\forall x \in K$. $\forall y \in K$. segment x y \subseteq K)"

- FM raises demand for specifying systems' features
- FM raise demand for verified implementation
- ... thus increases involvement of mathematicians.

Wolfgang Schreiner Walther Neuper

Motivations

- Formal Methods Computer Algebra
- Educational Systems
- Isabelle Simplific.
- Examples
- Foundations
- Theses
- GCD Algorithm Groebner.thy
- Multival.Functio
- Benefits
- Download

Promote "Formal Methods" (+ Róle of Mathematicians)

- "Formal Methods" (FM) an advancing discipline:
- promotes róle for mathematicians in engineering:
 - FM extends the field of application of mathematics
 - FM raises demand for specifying systems' features

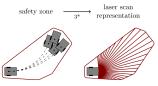


Fig. 5 Postprocessing step 3: Convert safety zone from internal Sphere Swept Convex Hull (SSCH) representation into a laser scan like representation. In this representation the safety zone can be safeguarded by simply comparing with a laser scan.

(日) (日) (日) (日) (日) (日) (日)

- FM raise demand for verified implementation
- ... thus increases involvement of mathematicians.

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods

Educational Systems

- Isabelle Simplific.
- Examples
- Foundations
- Theses
- GCD Algorithm Groebner.thy
- Multival.Functio
- Benefits
- Download

Promote "Formal Methods" (+ Róle of Mathematicians)

- "Formal Methods" (FM) an advancing discipline:
- promotes róle for mathematicians in engineering:
 - · FM extends the field of application of mathematics
 - FM raises demand for specifying systems' features
 - · FM raise demand for verified implementation

 $T(s, \alpha)$. This results in the overall computation

$$\begin{split} H(s_{\min}, s_{\max}, \alpha_{\min}, \alpha_{\max}) &= \\ A\left(\left[\left[\left.\left[P_{i,s,\alpha}^{1}, P_{i,s,\alpha}^{2}, \left[V_{i,s,\alpha}^{j}\right]_{j=0}^{L-1}\right]_{i=0}^{n}\right]_{s_{\min}}\right]_{q_{\max}}_{q_{\max}}; q\right), \end{split}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

with

ŀ

$$\begin{split} q &= q^{A} + q^{B} \\ q^{A} &= \frac{1}{6} \left(\frac{\alpha_{\max} - \alpha_{\min}}{2} \right)^{2} \max\left\{ |s_{\max}|; |s_{\min}| \right\} \\ q^{B} &= \left(1 - \cos \frac{\alpha_{\max} - \alpha_{\min}}{2} \right) \max_{1 \leq i \leq n} \left\{ |R_{i}| \right\}. \end{split}$$

• ... thus increases involvement of mathematicians.

Wolfgang Schreiner Walther Neuper

Motivations

- Formal Methods Computer Algebra
- Educational Systems
- Isabelle Simplific.
- Examples
- Foundations
- Theses
- GCD Algorithm Groebner.thy Multival Eurotions
- Benefits
- Download

Promote "Formal Methods" (+ Róle of Mathematicians)

- "Formal Methods" (FM) an advancing discipline:
- promotes róle for mathematicians in engineering:
 - FM extends the field of application of mathematics
 - FM raises demand for specifying systems' features
 - FM raise demand for verified implementation
 - ... thus increases involvement of mathematicians.

Fig. 1 The SAMS demonstrator driving a right hand bent and the collision-free safety zone of that movement. If there was any obstacle inside the safety zone the AGV would stop.

(ロ) (同) (三) (三) (三) (○) (○)

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Computer Algebra → Isabelle

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific Examples Foundations

Theses GCD Algori

Groebner.thy Multival.Functions

Benefits

Download

1 Motivations and Goals

Promote "Formal Methods" (+ Róle of Mathematicians) Develop Verified Computer Algebra Make Systems "Transparent" for Education

Interlude: Isabelle's Simplifier

How the Simplifier Works Logical Foundations of the Simplifier

Topics for Master Theses

GCD Algorithm for Polynomials "Groebner_Basis.thy" for Equation Solving "Multivalued Functions" in Simplification

4 Benefits for Students

5 Download:

http://www.ist.tugraz.at/projects/isac/www/download/RISC_Theses_presentation.pd

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra

Isabelle Simplific. Examples Foundations

Theses GCD Algorithm Groebner.thy Multival.Function

Benefits

Download

Develop Verified Computer Algebra

- FM require essential functionality of systems verified
- functionality is determined by (hard- and) **software** components
- Computer Algebra (CA) is foundamental for software
- so FM requires verified implementation of CA.

We shall implement selected CA algorithms in the Theorem Prover Isabelle —

— using Isabelle's recent "function package" ("computation"), which automates much of verification tasks ("deduction").

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra

Isabelle Simplific. Examples Foundations

Theses GCD Algorithm Groebner.thy Multival.Function

Benefits

Download

Develop Verified Computer Algebra

• FM require essential functionality of systems verified

- functionality is determined by (hard- and) **software** components
- Computer Algebra (CA) is foundamental for software
- so FM requires verified implementation of CA.

We shall implement selected CA algorithms in the Theorem Prover Isabelle —

— using Isabelle's recent "function package" ("computation"), which automates much of verification tasks ("deduction").

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

Theses GCD Algorithm Groebner.thy Multival.Function

Benefits

Download

Develop Verified Computer Algebra

- FM require essential functionality of systems verified
- functionality is determined by (hard- and) **software** components
- Computer Algebra (CA) is foundamental for software
- so FM requires verified implementation of CA.

We shall implement selected CA algorithms in the Theorem Prover Isabelle —

— using lsabelle's recent "function package" ("computation"), which automates much of verification tasks ("deduction").

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

Theses GCD Algorithm Groebner.thy Multival.Function

Benefits

Download

Develop Verified Computer Algebra

- FM require essential functionality of systems verified
- functionality is determined by (hard- and) **software** components
- Computer Algebra (CA) is foundamental for software
- so FM requires verified implementation of CA.

We shall implement selected CA algorithms in the Theorem Prover Isabelle —

— using lsabelle's recent "function package" ("computation"), which automates much of verification tasks ("deduction").

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

Theses GCD Algorithm Groebner.thy Multival.Function

Benefits

Download

Develop Verified Computer Algebra

- FM require essential functionality of systems verified
- functionality is determined by (hard- and) **software** components
- Computer Algebra (CA) is foundamental for software
- so FM requires verified implementation of CA.

We shall implement selected CA algorithms in the Theorem Prover Isabelle —

— using lsabelle's recent "function package" ("computation"), which automates much of verification tasks ("deduction").

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Isabelle Wolfgang

Computer Algebra

Schreiner Walther Neuper

Motivations Formal Methods Computer Algebra Educational Systems

Isabelle Simplific Examples Foundations

GCD Algorithm Groebner.thy Multival.Functions

Benefits

Download

1 Motivations and Goals

Promote "Formal Methods" (+ Róle of Mathematicians) Develop Verified Computer Algebra Make Systems "Transparent" for Education

Interlude: Isabelle's Simplifier

How the Simplifier Works Logical Foundations of the Simplifier

Topics for Master Theses

GCD Algorithm for Polynomials "Groebner_Basis.thy" for Equation Solving "Multivalued Functions" in Simplification

4 Benefits for Students

5 Download:

http://www.ist.tugraz.at/projects/isac/www/download/RISC_Theses_presentation.pd

Wolfgang Schreiner Walther Neuper

Motivations Formal Methods

Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

```
Theses
```

GCD Algorithm Groebner.thy Multival.Functions

```
Benefits
```

Download

"Transparent" Systems for Education

- Learning math starts with algorithms: simplify, gcd, ...
- Understanding an algorithm requires both,

```
program a
fun gcd :: nat ⇒ nat ⇒ nat where
"gcd a 0 = a"
| "gcd a b = if a < b
then gcd a (b mod a)
else gcd b (a mod b))"
```

```
\begin{array}{l} \textbf{specification} \\ gcd :: nat \Rightarrow nat \Rightarrow nat \\ gcd a b = c \\ assumes a \neq 0 \\ yields c dvd a \land c dvd b \land \\ \forall c'.(c' dvd a \land c' dvd b) \Rightarrow c' \leq c \end{array}
```

• TSAC "explains itself"; so it is transparent to both

• and combines computation and deduction by "Lucas-Interpretation":

We re-use CA algorithms implemented in Isabelle in the experimental ${\it ISAC}$ system (which is based on Isabelle) —

Wolfgang Schreiner Walther Neuper

Motivations

Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

```
Theses
```

GCD Algorithm Groebner.thy Multival.Function

```
Benefits
```

Download

"Transparent" Systems for Education

- Learning math starts with algorithms: simplify, gcd, ...
- Understanding an algorithm requires both,

```
programallfun gcd :: nat \Rightarrow nat \Rightarrow nat where"gcd a 0 = a""gcd a b = if a < bthen gcd a (b mod a)else gcd b (a mod b))"
```

```
specification

gcd :: nat \Rightarrow nat \Rightarrow nat

gcd a b = c

assumes a \neq 0

yields c dvd a \land c dvd b \land

\forall c'.(c' dvd a \land c' dvd b) \Rightarrow c' \leq c
```

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

• TSAC "explains itself"; so it is transparent to both

 and combines computation and deduction by "Lucas-Interpretation":

We re-use CA algorithms implemented in Isabelle in the experimental ${\it ISAC}$ system (which is based on Isabelle) —

Wolfgang Schreiner Walther Neuper

- Motivations
- Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples

```
Theses
```

```
GCD Algorithm
Groebner.thy
Multival.Function
```

Benefits

Download

"Transparent" Systems for Education

- Learning math starts with algorithms: simplify, gcd, ...
- Understanding an algorithm requires both,

program and	specification
fun gcd :: nat \Rightarrow nat \Rightarrow nat where	$gcd :: nat \Rightarrow nat \Rightarrow nat$
<i>"gcd a 0 = a</i> "	gcd a b = c
"gcd a b = if a < b	assumes $a \neq 0$
then gcd a (b mod a)	yields <i>c</i> dvd $a \land c$ dvd $b \land$
else gcd b (a mod b))"	$\forall c'.(c' dvd a \land c' dvd b) \Rightarrow c' \leq c$

• *ISAC* "explains itself"; so it is **transparent** to both

 and combines computation and deduction by "Lucas-Interpretation":

computationanddeductionenvironment: $\epsilon = \{(a, 75), (b, 6), \dots\}$ logical context: $c = \{a \neq 0, a \geq b \Rightarrow .$

We re-use CA algorithms implemented in Isabelle in the experimental ${\it ISAC}$ system (which is based on Isabelle) —

Wolfgang Schreiner Walther Neuper

- Motivations
- Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples

- Theses
- GCD Algorithm Groebner.thy Multival Euroction
- Benefits

Download

"Transparent" Systems for Education

- Learning math starts with algorithms: simplify, gcd, ...
- Understanding an algorithm requires both,

program

and

specification

fun $gcd :: nat \Rightarrow nat \Rightarrow nat$ where "gcd a 0 = a" | "gcd a b = if a < bthen $gcd a (b \mod a)$

else gcd b (a mod b))"

 $\begin{array}{l} ccd::nat \Rightarrow nat \Rightarrow nat\\ ccd a b = c\\ assumes a \neq 0\\ yields \ c \ dvd \ a \land c \ dvd \ b \land\\ \forall c'.(c' \ dvd \ a \land c' \ dvd \ b) \Rightarrow c' \leq c \end{array}$

• ISAC "explains itself"; so it is transparent to both

 and combines computation and deduction by "Lucas-Interpretation":

computationanddeductionenvironment: $\epsilon = \{(a, 75), (b, 6), \ldots\}$ logical context: $c = \{a \neq 0, a \ge b \Rightarrow .$

We re-use CA algorithms implemented in Isabelle in the experimental ${\it ISAC}$ system (which is based on Isabelle) —

Wolfgang Schreiner Walther Neuper

- Motivations
- Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

```
Theses
```

```
GCD Algorithm
Groebner.thy
Multival.Function
```

Benefits

Download

"Transparent" Systems for Education

- Learning math starts with algorithms: simplify, gcd, ...
- Understanding an algorithm requires both,

program	and	specificatio
fun gcd :: nat \Rightarrow nat \Rightarrow nat	where	$gcd :: nat \Rightarrow$
"gcd a 0 = a"		gcd a b = c
"gcd a b = if a < b		assumes
then gcd a (b mod a)		yields <i>c d</i> i
else gcd b (a mod b))"		∀c'.(c'

pecification $cd :: nat \Rightarrow nat \Rightarrow nat$ cd a b = cassumes $a \neq 0$ yields $c dvd a \land c dvd b \land$ $\forall c'.(c' dvd a \land c' dvd b) \Rightarrow c' \leq c$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- TSAC "explains itself"; so it is transparent to both
- and combines computation and deduction by "Lucas-Interpretation":

We re-use CA algorithms implemented in Isabelle in the experimental ${\it ISAC}$ system (which is based on Isabelle) —

Wolfgang Schreiner Walther Neuper

- Motivations
- Formal Methods Computer Algebra
- Educational Systems
- Examples
- Theses
- GCD Algorithm Groebner.thy Multival.Functions
- Benefits
- Download

$\mathcal{ISAC}\text{-}\mathsf{Project}\;\mathsf{Graz}$

- *TSAC* development started 1997 under supervision by Peter Lucas, Graz and Bruno Buchberger, Linz. http://www.ist.tugraz.at/isac/
- ISAC is an experimental system for math education
 - ISAC is "ISAbelle for Calculations in applied math"
 - math-engine builds upon Isabelle
 - "Lucas-Interpretation"
 - 1 determines a next step in a calculation
 - 2 checks a step (expression / thm) input by students
- Development at Graz focuses user interfaces and dialogs,
- and requires Computer Algebra (CA) which is not yet implemented in Isabelle

Download Isabelle:

http://isabelle.in.tum.de/index.html
Isabelle NEWs:

http://www21.in.tum.de/
World map of Isabelle users:

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

Theses

GCD Algorithm Groebner.thy Multival.Functions

Benefits

Download

$\mathcal{ISAC}\text{-}Project\ Graz$

- *ISAC* development started 1997 under supervision by Peter Lucas, Graz and Bruno Buchberger, Linz. http://www.ist.tugraz.at/isac/
- ISAC is an experimental system for math education
 - ISAC is "ISAbelle for Calculations in applied math"
 - math-engine builds upon Isabelle
 - "Lucas-Interpretation"
 - 1 determines a next step in a calculation
 - 2 checks a step (expression / thm) input by students
- Development at Graz focuses user interfaces and dialogs,
- and requires Computer Algebra (CA) which is not yet implemented in Isabelle

Download Isabelle:

http://isabelle.in.tum.de/index.html
Isabelle NEWs:

http://www21.in.tum.de/
World map of Isabelle users:

Wolfgang Schreiner Walther Neuper

- Motivations
- Formal Methods Computer Algebra Educational Systems
- Isabelle Simplific. Examples Foundations
- Theses
- GCD Algorithm Groebner.thy Multival.Functions
- Benefits
- Download

$\mathcal{ISAC}\text{-}Project \; Graz$

- *ISAC* development started 1997 under supervision by Peter Lucas, Graz and Bruno Buchberger, Linz. http://www.ist.tugraz.at/isac/
- $\ensuremath{\textit{TSAC}}$ is an experimental system for math education
 - ISAC is "ISAbelle for Calculations in applied math"
 - math-engine builds upon Isabelle
 - "Lucas-Interpretation"
 - determines a next step in a calculation
 - 2 checks a step (expression / thm) input by students
 - Development at Graz focuses user interfaces and dialogs,
- and requires Computer Algebra (CA) which is not yet implemented in Isabelle

Download Isabelle:

http://isabelle.in.tum.de/index.html
Isabelle NEWs:

http://www21.in.tum.de/
World map of Isabelle users:

Wolfgang Schreiner Walther Neuper

- Motivations
- Formal Methods Computer Algebra Educational Systems
- Isabelle Simplific. Examples Foundations
- Theses
- GCD Algorithm Groebner.thy Multival.Function
- Benefits
- Download

ISAC-Project Graz

- *ISAC* development started 1997 under supervision by Peter Lucas, Graz and Bruno Buchberger, Linz. http://www.ist.tugraz.at/isac/
- $\ensuremath{\textit{TSAC}}$ is an experimental system for math education
 - ISAC is "ISAbelle for Calculations in applied math"
 - math-engine builds upon Isabelle
 - "Lucas-Interpretation"
 - determines a next step in a calculation
 - 2 checks a step (expression / thm) input by students
- Development at Graz focuses user interfaces and dialogs,
- and requires Computer Algebra (CA) which is not yet implemented in Isabelle

Download Isabelle:

http://isabelle.in.tum.de/index.html
Isabelle NEWs:

http://www21.in.tum.de/
World map of Isabelle users:

Wolfgang Schreiner Walther Neuper

- Motivations
- Formal Methods Computer Algebra Educational Systems
- Isabelle Simplific. Examples Foundations
- Theses
- GCD Algorithm Groebner.thy Multival.Function
- Benefits
- Download

$\mathcal{ISAC}\text{-}Project \; Graz$

- *ISAC* development started 1997 under supervision by Peter Lucas, Graz and Bruno Buchberger, Linz. http://www.ist.tugraz.at/isac/
- $\ensuremath{\textit{TSAC}}$ is an experimental system for math education
 - ISAC is "ISAbelle for Calculations in applied math"
 - math-engine builds upon Isabelle
 - "Lucas-Interpretation"
 - determines a next step in a calculation
 - 2 checks a step (expression / thm) input by students
- Development at Graz focuses user interfaces and dialogs,
- and requires Computer Algebra (CA) which is not yet implemented in Isabelle

Download Isabelle:

http://isabelle.in.tum.de/index.html
Isabelle NEWs:

http://www21.in.tum.de/
World map of Isabelle users:

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Wolfgang Schreiner Walther Neuper

Computer Algebra

Isabelle

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific

Examples

Theses

GCD Algorithm Groebner.thy Multival Eurotions

Benefits

Download

Motivations and Goals

Promote "Formal Methods" (+ Róle of Mathematicians) Develop Verified Computer Algebra Make Systems "Transparent" for Education

Interlude: Isabelle's Simplifier How the Simplifier Works

ogical Foundations of the Simplifier

Topics for Master Theses

GCD Algorithm for Polynomials "Groebner_Basis.thy" for Equation Solving "Multivalued Functions" in Simplification

4 Benefits for Students

5 Download:

http://www.ist.tugraz.at/projects/isac/www/download/RISC_Theses_presentation.pd

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

- Examples
- Foundations
- Theses
- GCD Algorithm Groebner.thy Multival Euroction
- Benefits
- Download

How the Simplifier Works

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We demonstrate "life in Isabelle" how to

- rewrite by 'rule' and 'by simp'lification
- use the simplifier as a proof tool
- evaluate functions using the simplifier
- investigate Isabelle's "transparent" knowledge.

sabelle's simplifier is

- a general and powerful proof tool
- frequently usedin Isabelle proofs
- highly efficient on large "simp-sets" due to "discrimination-nets"

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

- Examples
- Foundations
- Theses
- GCD Algorithm Groebner.thy Multival.Function
- Benefits
- Download

How the Simplifier Works

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

We demonstrate "life in Isabelle" how to

- rewrite by 'rule' and 'by simp'lification
- use the simplifier as a proof tool
- evaluate functions using the simplifier
- investigate Isabelle's "transparent" knowledge.

Isabelle's simplifier is

- a general and powerful proof tool
- frequently usedin Isabelle proofs
- highly efficient on large "simp-sets" due to "discrimination-nets"

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Wolfgang Schreiner Walther Neuper

Computer Algebra

Isahelle

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplif Examples

Foundations

Theses

GCD Algorithm Groebner.thy Multival Eurotions

Benefits

Download

Motivations and Goals

Promote "Formal Methods" (+ Róle of Mathematicians) Develop Verified Computer Algebra Make Systems "Transparent" for Education

Interlude: Isabelle's Simplifier How the Simplifier Works Logical Foundations of the Simplifier

Topics for Master Theses

GCD Algorithm for Polynomials "Groebner_Basis.thy" for Equation Solving "Multivalued Functions" in Simplification

4 Benefits for Students

5 Download:

http://www.ist.tugraz.at/projects/isac/www/download/RISC_Theses_presentation.pd

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific Examples

Foundations

Theses

GCD Algorithm Groebner.thy Multival.Functions

Benefits

Download

Logical Foundations

A D F A 同 F A E F A E F A Q A

• Equations are *proved* theorems (rewrite rules):

- no extraneous variables in right-hand sides
- left-hand sides are "higher-order patterns" (+functions)

• "Bottom-up" rewriting after preprocessing:

 $\neg P \quad \mapsto \quad P = \text{False}$ $P \longrightarrow Q \quad \mapsto \quad P \Longrightarrow Q$ $P \land Q \quad \mapsto \quad P, \ Q$ $\forall x. P x \quad \mapsto \quad P?x$ $\forall x \in A. P x \quad \mapsto \quad P \Rightarrow Q, \ \neg P \Rightarrow R$ if P then Q else R $\mapsto \quad P \Rightarrow Q, \ \neg P \Rightarrow R$ emaining non-equations P $\mapsto \quad P = \text{True}$

- Conditional rewriting, ordered rewriting (lexicographic order)
- Congruence rules for \longrightarrow , \forall , \exists , *if..then..else*, etc: e.g. for \longrightarrow : [[P = P'; $P' \Longrightarrow Q = Q'$]] $\Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

Examples

Foundations

Theses

GCD Algorithm Groebner.thy Multival.Functions

Benefits

Download

Logical Foundations

- Equations are *proved* theorems (rewrite rules):
 - no extraneous variables in right-hand sides
 - left-hand sides are "higher-order patterns" (+functions)
- "Bottom-up" rewriting after preprocessing:

 $\neg P \quad \mapsto \quad P = \text{False}$ $P \longrightarrow Q \quad \mapsto \quad P \Longrightarrow Q$ $P \land Q \quad \mapsto \quad P, \ Q$ $\forall x. \ P \ x \quad \mapsto \quad P \ ?x$ $\forall x \in A. \ P \ x \quad \mapsto \quad P \ \Rightarrow Q, \ \neg P \Longrightarrow R$ if P then Q else R $\mapsto \quad P \implies Q, \ \neg P \implies R$ remaining non-equations P $\mapsto \quad P = \text{True}$

- Conditional rewriting, ordered rewriting (lexicographic order)
- Congruence rules for $\longrightarrow, \forall, \exists$, *if..then..else*, etc: e.g. for \longrightarrow : $[[P = P'; P' \Longrightarrow Q = Q']] \Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific

Examples

Foundations

```
Theses
```

GCD Algorithm Groebner.thy Multival Eurotions

Benefits

Download

Logical Foundations

- Equations are *proved* theorems (rewrite rules):
 - no extraneous variables in right-hand sides
 - left-hand sides are "higher-order patterns" (+functions)
- "Bottom-up" rewriting after preprocessing:

 $\neg P \quad \mapsto \quad P = \text{False}$ $P \rightarrow Q \quad \mapsto \quad P \Longrightarrow Q$ $P \land Q \quad \mapsto \quad P, Q$ $\forall x. P x \quad \mapsto \quad P?x$ $\forall x \in A. P x \quad \mapsto \quad ?x \in A \Longrightarrow P?x$ if P then Q else R $\mapsto \quad P \Longrightarrow Q, \ \neg P \Longrightarrow R$ remaining non-equations P $\mapsto \quad P = \text{True}$

- Conditional rewriting, ordered rewriting (lexicographic order)
- Congruence rules for \longrightarrow , \forall , \exists , *if..then..else*, etc: e.g. for \longrightarrow : [[P = P'; $P' \Longrightarrow Q = Q'$]] $\Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific

Examples

Foundations

Theses

GCD Algorithm Groebner.thy Multival.Functions

Benefits

Download

Logical Foundations

- Equations are *proved* theorems (rewrite rules):
 - no extraneous variables in right-hand sides
 - left-hand sides are "higher-order patterns" (+functions)
- "Bottom-up" rewriting after preprocessing:

 $\neg P \quad \mapsto \quad P = \text{False}$ $P \rightarrow Q \quad \mapsto \quad P \Longrightarrow Q$ $P \land Q \quad \mapsto \quad P, Q$ $\forall x. P x \quad \mapsto \quad P?x$ $\forall x \in A. P x \quad \mapsto \quad ?x \in A \Longrightarrow P?x$ if P then Q else R $\mapsto \quad P \Longrightarrow Q, \neg P \Longrightarrow R$ remaining non-equations P $\mapsto \quad P = \text{True}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Conditional rewriting, ordered rewriting (lexicographic order)
- Congruence rules for \longrightarrow , \forall , \exists , *if..then..else*, etc: e.g. for \longrightarrow : [[P = P'; $P' \Longrightarrow Q = Q'$]] $\Longrightarrow (P \longrightarrow Q) = (P' \longrightarrow Q')$

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Wolfgang Schreiner Walther Neuper

Computer Algebra

Isahelle

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific Examples Foundations

Theses

GCD Algorithm Groebner.thy Multival Eurotions

Benefits

Download

Motivations and Goals

Promote "Formal Methods" (+ Róle of Mathematicians) Develop Verified Computer Algebra Make Systems "Transparent" for Education

Interlude: Isabelle's Simplifier

How the Simplifier Works Logical Foundations of the Simplifier

3 Topics for Master Theses GCD Algorithm for Polynomials

'Groebner_Basis.thy" for Equation Solvin 'Multivalued Functions" in Simplification

4 Benefits for Students

5 Download:

http://www.ist.tugraz.at/projects/isac/www/download/RISC_Theses_presentation.pd

Algebra

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific Examples Foundations

Theses

GCD Algorithm Groebner.thy Multival.Function

Benefits

Download

GCD Algorithm for Polynomials

Thesis Description: Implement and Verify a GCD Algorithm for Polynomials in Isabelle http://www.risc.jku.at/education/theses/?view=53

Demonstration:

ML code: ~~/src/Tools/isac/Knowledge/GCD_Poly.thy Translation to Isabelle:

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

~~/src/Tools/isac/Knowledge/GCD_Poly_FP.thy Translated code:

~~/test/Tools/isac/Knowledge/gcd_poly.sml

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Isabelle Wolfgang Schreiner Walther Neuper

Computer Algebra

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific Examples Foundations

Theses

Groebner.thy

Multival.Functions

Denents

Download

Motivations and Goals

Promote "Formal Methods" (+ Róle of Mathematicians) Develop Verified Computer Algebra Make Systems "Transparent" for Education

Interlude: Isabelle's Simplifier

How the Simplifier Works Logical Foundations of the Simplifier

3 Topics for Master Theses GCD Algorithm for Polynomial

"Groebner_Basis.thy" for Equation Solving

'Multivalued Functions" in Simplification

4 Benefits for Students

5 Download:

http://www.ist.tugraz.at/projects/isac/www/download/RISC_Theses_presentation.pd

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

Fheses GCD Algorith

Groebner.thy Multival Eurotions

Benefits

Download

"Groebner_Basis.thy" for Equation Solving

Thesis Description: *Promote Isabelle's "Groebner.thy" to Equation Solving* http://www.risc.jku.at/education/theses/?view=54

Download Isabelle:

http://isabelle.in.tum.de/index.html
Isabelle NEWs:

http://www21.in.tum.de/

World map of Isabelle users:

http://isabelle.in.tum.de/google_map.html

Demonstration:

Example: ~~/src/HOL/ex/Groebner_Examples.thy "Transparent" knowledge: ~~/src/HOL/Rings.thy Theory: ~~/src/HOL/Groebner_Basis.thy Translate code: ~~/src/HOL/Tools/groebner.ML

Outline

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Wolfgang Schreiner Walther Neuper

Computer Algebra

Isahelle

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific Examples Foundations

Cheses GCD Algorithm Groebner.thy Multival Functions

Benefits

Download

Motivations and Goals

Promote "Formal Methods" (+ Róle of Mathematicians) Develop Verified Computer Algebra Make Systems "Transparent" for Education

Interlude: Isabelle's Simplifier

How the Simplifier Works Logical Foundations of the Simplifier

3 Topics for Master Theses

GCD Algorithm for Polynomials "Groebner_Basis.thy" for Equation Solving "Multivalued Functions" in Simplification

- 4 Benefits for Students
- 5 Download:

http://www.ist.tugraz.at/projects/isac/www/download/RISC_Theses_presentation.pd

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

Theses GCD Algorithm Groebner.thy Multival.Functions

Benefits

Download

"Multivalued Functions" in Simplification

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Thesis Description: "Multivalued Functions" in Reliable Algebraic Simplification http://www.risc.jku.at/education/theses/?view=55

Demonstration:

sin, cos, tan, arcsin, DERIVative, power series: http:

//isabelle.in.tum.de/dist/library/HOL/Transcendental.html
log, DERIVative, power series:

http://isabelle.in.tum.de/dist/library/HOL/Ln.html

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

Examples

Foundations

Theses

GCD Algorit

Groebner.thy

Multival.Functions

Benefits

Download

"multivalued functions"

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Examples: terms with multivalued "functions":

 $\sin x = y$ $x = \arcsin y \quad ???$ $x = \begin{cases} \{\} \qquad \qquad y < -1 \lor 1 < y \\ \{x. \sin x = y \land \forall x'. \sin x' = y \Rightarrow \\ \exists k \in \mathcal{Z}. \ x' = 2k\pi - x \lor x' = (2k+1)\pi + x\} \quad -1 \le y \land y < 0 \\ \{x. \sin x = y \land \forall x'. \sin x' = y \Rightarrow \\ \exists k \in \mathcal{Z}. \ x' = 2k\pi + x \lor x' = (2k+1)\pi - x\} \quad 0 \le y \land y \le 1 \end{cases}$ $\arctan x + \arctan y = \arctan \left(\frac{x+y}{1-xy}\right) + \begin{cases} \pi \quad xy > 1 \land x > 0 \\ 0 \quad xy < 1 \\ -\pi \quad xy > 1 \land x < 0 \end{cases}$

These terms give raise to **branching problems**, branches connected with assumptions.

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

GCD Algorithm Groebner.thy Multival Functions

Benefits

Download

"multivalued functions"

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Major deficiencies in state-of-the-art CA result from (1) under-*specification* and (2) weak *deductive mechanisms*.

Isabelle has concepts and mechanisms to tackle the deficiencies:

- log, exp, sin, arcsin, etc are rigorously specified as functions (not relations)
- 2 Deductive mechanisms are present: provers, contexts, tactics, etc.

Using these mechanisms promise substantial advances in:

- Simplification involving multivalued "functions", radicals.
- Integration of terms containing multivalued "functions"
- Equation solving with multivalued "functions".

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

Theses GCD Algorithm Groebner.thy Multival Functions

Benefits

Download

"multivalued functions"

Major deficiencies in state-of-the-art CA result from (1) under-*specification* and (2) weak *deductive mechanisms*.

Isabelle has concepts and mechanisms to tackle the deficiencies:

- log, exp, sin, arcsin, etc are rigorously specified as functions (not relations)
- 2 Deductive mechanisms are present: provers, contexts, tactics, etc.

Using these mechanisms promise substantial advances in:

- Simplification involving multivalued "functions", radicals.
- Integration of terms containing multivalued "functions"
- Equation solving with multivalued "functions".

Wolfgang Schreiner Walther Neuper

Motivations

- Formal Methods Computer Algebra Educational Systems
- Isabelle Simplific. Examples
- Foundations
- Theses
- GCD Algorithm Groebner.thy
- Multival.Functions
- Benefits
- Download

"multivalued functions"

Possible directions:

- Clarify principles for overcoming deficiencies in CA
 - Which provers for which kinds of assumptions ?
 - · Handle assumptions using Isabelle's contexts
 - Expressiveness of assumptions (full predicate calculus ?)
- Design specific improvements for particular deficiencies
- Implement improvements for selected topics in Isabelle

Open issues:

- Interplay between computation and deduction during simplification: How stop simplifier for
 - for automated proof ?
 - for interactive proving ?
 - for debugging (inspecting context, etc) ?
- Code generation for functions with integrated proving
- How call deductive mechanisms from generated code ?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Wolfgang Schreiner Walther Neuper

Motivations

- Formal Methods Computer Algebra Educational Systems
- Isabelle Simplific. Examples
- Foundations
- Theses
- GCD Algorithm Groebner.thy
- Multival.Functions
- Benefits
- Download

"multivalued functions"

Possible directions:

- Clarify principles for overcoming deficiencies in CA
 - Which provers for which kinds of assumptions ?
 - · Handle assumptions using Isabelle's contexts
 - Expressiveness of assumptions (full predicate calculus ?)
- Design specific improvements for particular deficiencies
- Implement improvements for selected topics in Isabelle

Open issues:

- Interplay between computation and deduction during simplification: How stop simplifier for
 - for automated proof ?
 - for interactive proving ?
 - for debugging (inspecting context, etc) ?
- Code generation for functions with integrated proving
- How call deductive mechanisms from generated code ?

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific Examples Foundations

Theses GCD Algorithm Groebner.thy Multival.Functions

Benefits

Download

"multivalued functions"

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

Summary:

"Multivalued functions" is an important topic, suffers from long-standing deficiencies unresolved in CA.

Handling assumptions appears most promising by deductive mechanisms . . . not yet tackled, because

- CA developers are not interested (e.g. no logics) ?
- TP systems are not ready (e.g. no complex functions yet) ?

Calling deductive mechanisms during computation would require Isabelle to adapt

- the simplifier for calls during "execution" of functions
- the code generator for inserting "call-backs" to provers.

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

Theses GCD Algorithm Groebner.thy Multival.Functions

Benefits

Download

"multivalued functions"

Summary:

"Multivalued functions" is an important topic, suffers from long-standing deficiencies unresolved in CA.

Handling assumptions appears most promising by deductive mechanisms ... not yet tackled, because

- CA developers are not interested (e.g. no logics) ?
- TP systems are not ready (e.g. no complex functions yet) ?

Calling deductive mechanisms during computation would require Isabelle to adapt

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- the simplifier for calls during "execution" of functions
- the code generator for inserting "call-backs" to provers.

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples Foundations

Theses GCD Algorithm Groebner.thy Multival.Functions

Denents

Summary:

"Multivalued functions" is an important topic, suffers from long-standing deficiencies unresolved in CA.

Handling assumptions appears most promising by deductive mechanisms ... not yet tackled, because

• CA developers are not interested (e.g. no logics) ?

• TP systems are not ready (e.g. no complex functions yet) ?

Calling deductive mechanisms during computation would require Isabelle to adapt

- the simplifier for calls during "execution" of functions
- the code generator for inserting "call-backs" to provers.

"multivalued functions"

Wolfgang Schreiner Walther Neuper

Motivations

- Formal Methods Computer Algebra Educational Systems
- Isabelle Simplific.
- Examples Eoundations
- Theses
- GCD Algorithm Groebner.thy Multival.Function

Benefits

Download

Benefits for Students

Get a thorough introduction to Isabelle

- · Isabelle courses included in work on thesis
- visits at Isabelle developer team, Munich
- support and supervision during master thesis
- Gain experience with Formal Methods (FM)
 - experience with Computer Algebra and FN
 - experience with Theorem Proving and FM
 - ... both at the core of future engineering
- Produce code which will be widely useful
 - in the Isabelle distribution worldwide
 - http://isabelle.in.tum.de/google_map.html

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• in ISAC, TU Graz

https://lists.cam.ac.uk/mailman/htdig/cl-isabelle-users/2013-April/msg00020.html

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific. Examples

Foundations

Theses

GCD Algorithm Groebner.thy Multival.Function

Benefits

Download

Benefits for Students

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Get a thorough introduction to Isabelle

- · Isabelle courses included in work on thesis
- visits at Isabelle developer team, Munich
- support and supervision during master thesis

Gain experience with Formal Methods (FM)

- experience with Computer Algebra and FM
- experience with Theorem Proving and FM
- ... both at the core of future engineering

• Produce code which will be widely useful

- in the Isabelle distribution worldwide
 - http://isabelle.in.tum.de/google_map.html
- in *ISAC*, TU Graz

https://lists.cam.ac.uk/mailman/htdig/cl-isabelle-users/2013-April/msg00020.html

Wolfgang Schreiner Walther Neuper

Motivations

- Formal Methods Computer Algebra Educational Systems
- Isabelle Simplific. Examples
- Examples
- Theses
- GCD Algorithm Groebner.thy Multival.Function

Benefits

Download

Benefits for Students

Get a thorough introduction to Isabelle

- · Isabelle courses included in work on thesis
- visits at Isabelle developer team, Munich
- support and supervision during master thesis

Gain experience with Formal Methods (FM)

- · experience with Computer Algebra and FM
- experience with Theorem Proving and FM
- ... both at the core of future engineering

Produce code which will be widely useful

· in the Isabelle distribution worldwide

http://isabelle.in.tum.de/google_map.html

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• in ISAC, TU Graz

https://lists.cam.ac.uk/mailman/htdig/cl-isabelle-users/2013-April/msg00020.html

Wolfgang Schreiner Walther Neuper

Questions?

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

Examples

Theses

GCD Algorithm Groebner.thy Multival.Functions

Benefits

Download

Any questions are welcome !

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

Examples

Theses

GCD Algorithm Groebner.thy Multival.Functions

Benefits

Download

FM & CA in engineering

Deduction

Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

Examples

Theses

GCD Algorithm Groebner.thy Multival.Functions

Benefits

Download

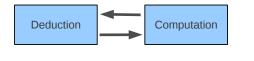
Wolfgang Schreiner Walther Neuper

Motivations

Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

Examples


Theses

GCD Algorithm Groebner.thy Multival.Functions

Benefits

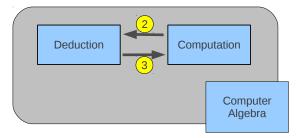
Download

FM & CA in engineering

Computer Algebra

Wolfgang Schreiner Walther Neuper

Motivations


Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

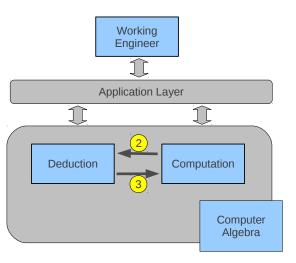
- Examples
- Foundations

Theses

- GCD Algorithm Groebner.thy Multival.Functions
- Benefits
- Download

Wolfgang Schreiner Walther Neuper

Motivations


Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

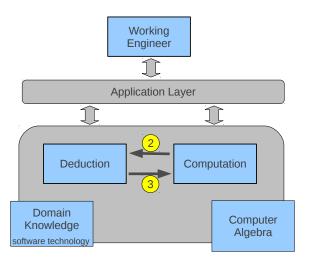
- Examples
- 1 ounduron
- Theses
- GCD Algorithm Groebner.thy
- Multival.Functions

Benefits

Download

Wolfgang Schreiner Walther Neuper

Motivations


Formal Methods Computer Algebra Educational Systems

Isabelle Simplific.

- Examples
- Thores
- Theses
- GCD Algorithm
- Multival.Functions

Benefits

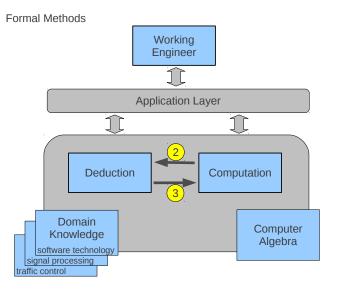
Download

Wolfgang Schreiner Walther Neuper

Computer Algebra Educational Systems

Isabelle Simplific.

Examples


Thosos

GCD Algo

Groebner.thy Multival.Functions

Benefits

Download

