3. Übungszettel

Lineare Algebra und Analytische Geometrie 2 Linear Algebra 2 für PhysikerInnen Sommersemester 2013

- 1. Sei $P_n(\mathbb{R})$ der \mathbb{R} -Vektorraum der reellen Polynomfunktionen von Grad höchstens n, und wähle $B_n:=(1,x,\ldots,x^n)$ als Basis. (a) Man stelle die Ableitung $D:P_3(\mathbb{R})\to P_2(\mathbb{R})$ als Matrix dar; d.h., man berechne $A_{D;B_3,B_2}$, sodaß $D=(_)_{B_2}^{-1}\circ h_{A_{D;B_3,B_2}}\circ (_)_{B_3}$. (b) Überprüfe letztere Gleichung durch Anwendung beider Seiten auf $p(x)=1+2x+3x^2$.
- 2. Sei $h_A: \mathbb{R}_3 \to \mathbb{R}_4$ die zur Matrix

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{pmatrix}$$

assoziierte lineare Abbildung. Bestimme $f: P_2(\mathbb{R}) \to P_3(\mathbb{R})$, sodaß $A = A_{f;B_3,B_4}$ mit B_n wie im Beispiel 1, und berechne f(p(x)) für $p(x) = 1 + 2x + 3x^2$.

3. Sei $h_A: \mathbb{R}_3 \to \mathbb{R}_2$ definiert durch

$$h_A(x_1, x_2, x_3) := A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$
 wobei $A = \begin{pmatrix} 1 & 1 & -2 \\ 0 & 3 & 2 \end{pmatrix}$.

- (a) Man berechne eine Basis von $Ker(h_A)$. (b) Man berechne eine Basis von $Im(h_A)$.
- 4. Sei

$$U := \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 : 3x_1 - 2x_3 + x_4 = 0\}.$$

- (a) Man beweise $U \leq_{\mathbb{R}} \mathbb{R}^4$. (b) Man bestimme eine Basis von U.
- 5. (a) Man bestimme den Rang der reellen Matrix A und eine Basis des Null-Raums NR(A). (b) Welche Bedingungen müssen die Komponenten von b erfüllen, damit Ax = b mindestens eine Lösung hat? (c) Welche Lösungen hat Ax = c?

$$A = \begin{pmatrix} 0 & 1 & 4 & 0 \\ 0 & 2 & 8 & 0 \end{pmatrix} , b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} , c = \begin{pmatrix} 1 \\ 2 \end{pmatrix} .$$

6. Man berechne jeweils die Dimension und eine Basis der Räume NR(A), ZR(A) und SR(A):

(a)
$$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 2 & 0 & 1 \end{pmatrix}$$
, (b) $A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.