Task 1 Evaluate the integral $\int \frac{3 \mathrm{e}^{2 t}-2 t \mathrm{e}^{t}+3 t-18 \mathrm{e}^{t}+20}{\left(t-\mathrm{e}^{t}+6\right)^{2}} d t$ using the Risch algorithm.
Task 2 Consider the differential field $K=\mathbb{Q}(x, y)$ with $D(x)=1$ and $D(y)=\frac{1}{x}$. Prove that $\operatorname{Const}(K)=\mathbb{Q}$.

Task 3 Assume that C is algebraically closed (if you wish), and consider the differential field $K=C(x)$ with $D(x)=x$ (so that "x= e^{t} "). Design an algorithm which for given $u, v \in K$ finds all $y \in K$ such that $D^{2}(y)+u D(y)+v y=0$. More specifically:
a) Design an algorithm which finds $a, b \in \mathbb{Z}$ such that all solutions $y \in C\left[x, x^{-1}\right]$ have the form $y=\sum_{i=a}^{b} c_{i} x^{i}$ for some $c_{i} \in C$.
b) Design an algorithm which finds $d \in C[x]$ such that for all solutions $y=p / q$ with $p \in C\left[x, x^{-1}\right]$ and $q \in C[x]$ with $x \nmid q$ we have $q \mid d$.

Task 4 In a computer algebra system of your choice, write a program which takes as input a linear differential equation with polynomial coefficients, $a_{r}(x) y^{(r)}(x)+\cdots+a_{0}(x) y(x)=0$, and returns as output a recurrence equation $b_{0}(n) y_{n}+b_{1}(n) y_{n-1}+\cdots+b_{s}(n) y_{n-s}=0$ for the coefficient sequence (y_{n}) of any series solution $y(x)=\sum_{n} y_{n} x^{n}$ of the input differential equation.

Task 5 What are the groups that can appear as differential Galois group of a first order scalar equation $y^{\prime}=a y$, where a is a fixed element of some differential field K ?
Task 6 It was explained in the lecture that every scalar equation $a_{r} y^{(r)}+\cdots+a_{0} y=0$ can be rephrased as a matrix equation $Y^{\prime}=A Y$ for a suitably chosen matrix $A \in K^{r \times r}$. It was mentioned, though not explained in detail, that there is also some sort of converse. Work this out for the case $r=2$. More precisely: Suppose that $\left(y_{1}, y_{2}\right)$ is a solution of the first order matrix equation

$$
\binom{y_{1}^{\prime}}{y_{2}^{\prime}}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{y_{1}}{y_{2}}
$$

where $a_{11}, a_{12}, a_{21}, a_{22}$ are known elements of K, and show that both y_{1} and y_{2} are also solutions of some scalar equation with coefficients in K (possibly of higher order).

Task 7

a) Construct a linear differential equation with polynomial coefficients which has $\mathrm{e}^{x^{2}}$ and $\frac{x-1}{x^{2}+1}$ among its solutions.
b) Show that there does not exist a linear differential equation with polynomial coefficients which has $\mathrm{e}^{\mathrm{e}^{x}}$ among its solutions. (You may use without proof that e^{x} is not algebraic.)

The use of computer algebra for polynomial arithmetic and linear algebra subtasks is encouraged, but no builtin functions or add-on packages for handling integrals or differential equations are allowed. Please document your calculations accordingly.

