Algebraic and Discrete Methods in Biology

First-Order Predicate Logic

Nikolaj Popov

Research Institute for Symbolic Computation, Linz

popov@risc.uni-linz.ac.at

Outline

Example Everything greater than 0 has a square root.

This statement can be interpreted, for example, in arithmetic on \mathbb{R} , the set of real numbers, where it is true.

It can be also interpreted, for example, in arithmetic on \mathbb{Q} , the set of rational numbers, where it is false.

Formalization For all x ($0 < x \implies$ there is some y such that $x = y \cdot y$).

Example

Everything greater than 0 has a square root.

This statement can be interpreted, for example, in arithmetic on \mathbb{R} , the set of real numbers, where it is true.

It can be also interpreted, for example, in arithmetic on \mathbb{Q} , the set of rational numbers, where it is false.

・ロト・日本・日本・日本・日本

Formalization For all x ($0 < x \implies$ there is some y such that $x = y \cdot y$).

Example

Everything greater than 0 has a square root.

This statement can be interpreted, for example, in arithmetic on \mathbb{R} , the set of real numbers, where it is true.

It can be also interpreted, for example, in arithmetic on \mathbb{Q} , the set of rational numbers, where it is false.

Formalization For all x ($0 < x \implies$ there is some y such that $x = y \cdot y$).

Example

Everything greater than 0 has a square root.

This statement can be interpreted, for example, in arithmetic on \mathbb{R} , the set of real numbers, where it is true.

It can be also interpreted, for example, in arithmetic on \mathbb{Q} , the set of rational numbers, where it is false.

(ロ) (型) (ヨ) (ヨ) (ヨ) (マ)

Formalization

For all *x* ($0 < x \implies$ there is some y such that $x = y \cdot y$).

Example

Everything greater than 0 has a square root.

This statement can be interpreted, for example, in arithmetic on \mathbb{R} , the set of real numbers, where it is true.

It can be also interpreted, for example, in arithmetic on \mathbb{Q} , the set of rational numbers, where it is false.

Formalization

For all *x* ($0 < x \implies$ there is some y such that $x = y \cdot y$).

Better Formalization

 $\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$

Terms

- ▶ Constants: 0, 1, 230, *John*, ℕ, ...;
- ► Variables: x, y, z, ... ;
- Function symbols: +, −, Son_of,

Formulae

- ▶ Predicates: =, >, \leq , *Is_Son_of*, ... ;
- Connectives: \land , \lor , \neg , \Longrightarrow , \iff ;
- ► Quantifiers: ∀, ∃.

Terms

- ▶ Constants: 0, 1, 230, *John*, N, ...;
- Variables: x, y, z, \ldots
- ▶ Function symbols: +, -, Son_of,

Formulae

▶ Predicates: =, >, \leq , *Is_Son_of*, ... ;

・ロト・日本・日本・日本・日本

- Connectives: \land , \lor , \neg , \Longrightarrow , \iff ;
- ► Quantifiers: ∀, ∃.

Terms

- ▶ Constants: 0, 1, 230, *John*, N, ... ;
- ► Variables: x, y, z, ... ;
- Function symbols: +, −, Son_of,

Formulae

▶ Predicates: =, >, \leq , *Is_Son_of*, ... ;

・ロト・日本・モト・モト モ

- Connectives: \land , \lor , \neg , \Longrightarrow , \iff ;
- ► Quantifiers: ∀, ∃.

Terms

- ▶ Constants: 0, 1, 230, *John*, N, ... ;
- ► Variables: x, y, z, ... ;
- ► Function symbols: +, -, *Son_of*,

Formulae

▶ Predicates: =, >, \leq , *Is_Son_of*, ... ;

- Connectives: \land , \lor , \neg , \Longrightarrow , \iff ;
- ► Quantifiers: ∀, ∃.

Terms

- ▶ Constants: 0, 1, 230, *John*, N, ... ;
- ► Variables: x, y, z, ... ;
- ► Function symbols: +, -, *Son_of*,

Formulae

• Predicates: =, >, \leq , Is_Son_of , ... ;

• Connectives: \land , \lor , \neg , \Longrightarrow , \iff ;

▶ Quantifiers: ∀, ∃.

Terms

- ▶ Constants: 0, 1, 230, *John*, N, ... ;
- ► Variables: x, y, z, ... ;
- ► Function symbols: +, -, *Son_of*,

Formulae

- ▶ Predicates: =, >, \nleq , *Is_Son_of*, ... ;
- Connectives: \land , \lor , \neg , \Longrightarrow , \iff ;

► Quantifiers: ∀, ∃.

Terms

- ▶ Constants: 0, 1, 230, *John*, N, ... ;
- ► Variables: x, y, z, ... ;
- ► Function symbols: +, -, *Son_of*,

Formulae

▶ Predicates: =, >, \nleq , *Is_Son_of*, ... ;

・ロト・日本・モト・モト モ

- Connectives: \land , \lor , \neg , \Longrightarrow , \iff ;
- ► Quantifiers: ∀, ∃.

Definition

- ► Constants are terms.
- Variables are terms.
- ▶ If *t* is a function symbol of arity *n* and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.
- ► All terms are generated by applying the above rules.

- ▶ x; z + 32; f(7, a, x(y + 3)) are terms;
- $x + 5 \notin 7$, $\forall x \exists y (x = y)$ are not terms.

Definition

Constants are terms.

- Variables are terms
- ▶ If *f* is a function symbol of arity *n* and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

・ ロ ト ・ 雪 ト ・ ヨ ト ・ 日 ト

э

All terms are generated by applying the above rules.

- x, z+32, f(7, a, x(y+3)) are terms;
- $x + 5 \not\leq 7$, $\forall x \exists y (x y)$ are not terms.

Definition

- Constants are terms.
- Variables are terms.
- ▶ If *f* is a function symbol of arity *n* and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.
- All terms are generated by applying the above rules.

- x, z + 32, f(7, a, x(y + 3)) are terms;
- $x + 5 \not \in 7$, $\forall x \exists y (x y)$ are not terms.

Definition

- Constants are terms.
- Variables are terms.
- ▶ If *f* is a function symbol of arity *n* and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.
- All terms are generated by applying the above rules.

- ► x, z + 32, f(7, a, x(y + 3)) are terms;
- x + 5 , 27 , $7x \exists y$ (x = y) are not terms.

Definition

- Constants are terms.
- Variables are terms.
- ▶ If *f* is a function symbol of arity *n* and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.
- All terms are generated by applying the above rules.

Examples

▶ x, z + 32, f(7, a, x(y + 3)) are terms;
▶ x + 5 ∉ 7, ∀x ∃y (x = y) are not terms.

Definition

- Constants are terms.
- Variables are terms.
- ▶ If *f* is a function symbol of arity *n* and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

All terms are generated by applying the above rules.

- ▶ x, z + 32, f(7, a, x(y + 3)) are terms;
- ► $x + 5 \notin 7$, $\forall x \exists y (x = y)$ are not terms.

Definition

- Constants are terms.
- Variables are terms.
- ▶ If *f* is a function symbol of arity *n* and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

◆□ ▶ ◆ @ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ≧

All terms are generated by applying the above rules.

- ▶ x, z + 32, f(7, a, x(y + 3)) are terms;
- ► $x + 5 \leq 7$, $\forall x \exists y (x = y)$ are not terms.

Definition

- Constants are terms.
- Variables are terms.
- ▶ If *f* is a function symbol of arity *n* and t_1, \ldots, t_n are terms, then $f(t_1, \ldots, t_n)$ is a term.

◆□ ▶ ◆ @ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ≧

All terms are generated by applying the above rules.

- x, z + 32, f(7, a, x(y + 3)) are terms;
- ▶ $x + 5 \notin 7$, $\forall x \exists y (x = y)$ are not terms.

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- ▶ If *p* is a predicate symbol of arity *n* and t_1, \ldots, t_n are terms, then $p(t_1, \ldots, t_n)$ is a formula.
- If φ and ψ are formulae, then $\neg \varphi, \ \varphi \land \psi, \ \varphi \lor \psi, \ \varphi \Longrightarrow \psi,$ $<math>\varphi \Longleftrightarrow \psi$ are formulae.
- ▶ If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.
- ► All formulae are generated by applying the above rules.

- $x \rightarrow 5 \notin 7$, $\forall x \exists y (x = y)$ are formulae;
- ▶ x, z + 32, /(7, a, x(y + 3)) are not formulae;

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- ▶ If *p* is a predicate symbol of arity *n* and $t_1, ..., t_n$ are terms, then $p(t_1, ..., t_n)$ is a formula.
- ▶ If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.
- ► All formulae are generated by applying the above rules.

- $x + 5 \not\leq 7$, $\forall x \exists y (x y)$ are formulae;
- ▶ x, z + 32, /(7, a, x(y + 3)) are not formulae;

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- ▶ If *p* is a predicate symbol of arity *n* and $t_1, ..., t_n$ are terms, then $p(t_1, ..., t_n)$ is a formula.
- If φ and ψ are formulae, then $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \Longrightarrow \psi$, $\varphi \Longleftrightarrow \psi$ are formulae.
- ▶ If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.
- ► All formulae are generated by applying the above rules.

- $x \rightarrow 5 \not\leq 7$; $\forall x \exists y (x = y)$ are formulae;
- > x, z + 32, f(7, a, x(y+3)) are not formulae;

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If *p* is a predicate symbol of arity *n* and *t*₁,..., *t_n* are terms, then *p*(*t*₁,..., *t_n*) is a formula.
- ▶ If φ and ψ are formulae, then $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \Longrightarrow \psi$, $\varphi ⇔ \psi$, $\varphi ⇔ \psi$ are formulae.
- ▶ If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.
- ► All formulae are generated by applying the above rules.

Examples

∞ x + 5 ≤ 7, ∀x ∃y (x = y) are formulae;
∞ x, z + 82, I(7, a, x(y + 3)) are not formulae;

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If *p* is a predicate symbol of arity *n* and *t*₁,..., *t_n* are terms, then *p*(*t*₁,..., *t_n*) is a formula.
- ▶ If φ and ψ are formulae, then $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \Longrightarrow \psi$, $\varphi ⇔ \psi$, $\varphi ⇔ \psi$ are formulae.
- ▶ If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

All formulae are generated by applying the above rules.

Examples

▶ $x + 5 \notin 7$, $\forall x \exists y (x = y)$ are formulae; ▶ x, z + 32, f(7, a, x(y + 3)) are not formulae;

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If *p* is a predicate symbol of arity *n* and *t*₁,..., *t_n* are terms, then *p*(*t*₁,..., *t_n*) is a formula.
- ▶ If φ and ψ are formulae, then $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \Longrightarrow \psi$, $\varphi ⇔ \psi$, $\varphi ⇔ \psi$ are formulae.
- ▶ If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.

All formulae are generated by applying the above rules.

Examples

▶ $x + 5 \notin 7$, $\forall x \exists y (x = y)$ are formulae; ▶ x, z + 32, f(7, a, x(y + 3)) are not formulae;

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If *p* is a predicate symbol of arity *n* and *t*₁,..., *t_n* are terms, then *p*(*t*₁,..., *t_n*) is a formula.
- ▶ If φ and ψ are formulae, then $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \Longrightarrow \psi$, $\varphi ⇔ \psi$, $\varphi ⇔ \psi$ are formulae.
- ▶ If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.

All formulae are generated by applying the above rules.

Examples

►
$$x + 5 \notin 7$$
, $\forall x \exists y (x = y)$ are formulae;

▶ x, z + 32, f(7, a, x(y + 3)) are not formulae;

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If *p* is a predicate symbol of arity *n* and *t*₁,..., *t_n* are terms, then *p*(*t*₁,..., *t_n*) is a formula.
- ▶ If φ and ψ are formulae, then $\neg \varphi$, $\varphi \land \psi$, $\varphi \lor \psi$, $\varphi \Longrightarrow \psi$, $\varphi ⇔ \psi$, $\varphi ⇔ \psi$ are formulae.
- ▶ If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.

< ロ > < 同 > < 臣 > < 臣 > 三 · の <

All formulae are generated by applying the above rules.

Examples

►
$$x + 5 \leq 7$$
, $\forall x \exists y (x = y)$ are formulae;

▶ x, z + 32, f(7, a, x(y + 3)) are not formulae;

Example In the formula:

$\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$

- What are the constants?
- What are the variables?
- What are the function symbols?
- What are the predicates?
- What are the connectives?
- What are the quantifiers?

Example

In the formula:

$$\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$$

What are the constants?

- What are the variables?
- What are the function symbols?
- What are the predicates?
- What are the connectives?
- What are the quantifiers?

Example

In the formula:

$$\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$$

- What are the constants?
- What are the variables?
- What are the function symbols?
- What are the predicates?
- What are the connectives?
- What are the quantifiers?

Example

In the formula:

$$\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$$

・ロン ・四 と ・ 回 と ・ 回 と

3

- What are the constants?
- What are the variables?
- What are the function symbols?
- What are the predicates?
- What are the connectives?
- What are the quantifiers?

Example

In the formula:

$$\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$$

- What are the constants?
- What are the variables?
- What are the function symbols?
- What are the predicates?
- What are the connectives?
- What are the quantifiers?

Example

In the formula:

$$\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$$

- What are the constants?
- What are the variables?
- What are the function symbols?
- What are the predicates?
- What are the connectives?
- What are the quantifiers?

Terms and Formulae

Example

In the formula:

$$\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$$

・ ロ ト ・ 雪 ト ・ 目 ト ・

ъ

- What are the constants?
- What are the variables?
- What are the function symbols?
- What are the predicates?
- What are the connectives?
- What are the quantifiers?

Outline

Example Everything greater than 0 has a square root.

Formalization

 $\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$

What is the semantical meaning of the formula? Does it express what we want?

When interpreted in arithmetic on \mathbb{R} , is it really true?

When interpreted in arithmetic on Q, is it really false?

Example

Everything greater than 0 has a square root.

Formalization

$\forall x \; (0 < x \implies \exists y \; (x = y \cdot y))$

What is the semantical meaning of the formula? Does it express what we want?

When interpreted in arithmetic on \mathbb{R} , is it really true?

When interpreted in arithmetic on Q, is it really false?

Example

Everything greater than 0 has a square root.

Formalization

 $\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$

What is the semantical meaning of the formula? Does it express what we want?

When interpreted in arithmetic on \mathbb{R} , is it really true?

When interpreted in arithmetic on \mathbb{Q} , is it really false?

Example

Everything greater than 0 has a square root.

Formalization

 $\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$

What is the semantical meaning of the formula? Does it express what we want?

When interpreted in arithmetic on \mathbb{R} , is it really true?

When interpreted in arithmetic on \mathbb{Q} , is it really false?

Example

Everything greater than 0 has a square root.

Formalization

 $\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$

What is the semantical meaning of the formula? Does it express what we want?

When interpreted in arithmetic on \mathbb{R} , is it really true?

When interpreted in arithmetic on \mathbb{Q} , is it really false?

Domain and Interpretation

Domain

Any non-empty set D can be domain. Intuitively: it is the place where everything happens. All constant symbols from the language will be *interpreted* as some elements from D. All variables from the language will range over D, etc.

Interpretation

Intuitively: it is the one that gives meaning to the symbols from the languages.

Constant symbols become constants from *D*.

Functional symbols become functions defined on *D*.

Predicate symbols become predicates defined on *D*, etc.

Domain and Interpretation

Domain

Any non-empty set D can be domain. Intuitively: it is the place where everything happens. All constant symbols from the language will be *interpreted* as some elements from D. All variables from the language will range over D, etc.

Interpretation

Intuitively: it is the one that gives meaning to the symbols from the languages.

< □ > < @ > < ≥ > < ≥ > < Ξ

Constant symbols become constants from *D*.

Functional symbols become functions defined on *D*.

Predicate symbols become predicates defined on D, etc.

Domain and Interpretation

Definition

Let *D* be non-empty set.

Interpretation *I* over *D* is a function defined in the following way:

- for any constant symbol c, $c' \in D$;
- ▶ for any function symbol *f* of arity *n*, $f': D^n \rightarrow D$;
- ▶ for any predicate symbol *p* of arity *n*, $p' : D^n \rightarrow \{\mathbb{T}, \mathbb{F}\}$.

Definition

Let D be a domain and I be an interpretation over D. Then:

- $\blacktriangleright \langle \mathbb{T} \rangle' = \mathbb{T} \text{ and } \langle \mathbb{F} \rangle' = \mathbb{F}.$
- ▶ If *p* is a predicate symbol of arity *n* and $t_1, ..., t_n$ are terms, then $\langle p(t_1,...,t_n)\rangle^I = p^I(\langle t_1\rangle^I,...,\langle t_n\rangle^I)$.

• If
$$\varphi$$
 and ψ are formulae, then:
 $\langle \neg \varphi \rangle^{I} = \neg \langle \varphi \rangle^{I},$
 $\langle \varphi \wedge \psi \rangle^{I} = \langle \varphi \rangle^{I} \wedge \langle \psi \rangle^{I},$
 $\langle \varphi \vee \psi \rangle^{I} = \langle \varphi \rangle^{I} \vee \langle \psi \rangle^{I},$ etc.

- If φ is a formula and x is a variable, then $\langle \forall x \varphi \rangle^l = \mathbb{T}$ iff for all $d \in D$, $\langle \varphi \rangle^l_{\{x \leftarrow d\}} = \mathbb{T}$.
- If φ is a formula and x is a variable, then (∃xφ)^l = T iff for some d ∈ D, (φ)^l_{x←d} = T.

Definition

Let D be a domain and I be an interpretation over D. Then:

- $\blacktriangleright \ \langle \mathbb{T} \rangle^{\prime} = \mathbb{T} \text{ and } \langle \mathbb{F} \rangle^{\prime} = \mathbb{F}.$
- ▶ If *p* is a predicate symbol of arity *n* and t_1, \ldots, t_n are terms, then $\langle p(t_1, \ldots, t_n) \rangle^I = p^I(\langle t_1 \rangle^I, \ldots, \langle t_n \rangle^I)$.
- If φ and ψ are formulae, then $\langle \neg \varphi \rangle^I = \neg \langle \varphi \rangle^I$, $\langle \varphi \land \psi \rangle^I = \langle \varphi \rangle^I \land \langle \psi \rangle^I$, $\langle \varphi \lor \psi \rangle^I = \langle \varphi \rangle^I \lor \langle \psi \rangle^I$, etc.
- If φ is a formula and x is a variable, then $\langle \forall x \varphi \rangle^l = \mathbb{T}$ iff for all $d \in D$, $\langle \varphi \rangle^l_{\{x \leftarrow d\}} = \mathbb{T}$.
- If φ is a formula and x is a variable, then (∃xφ)^l = T iff for some d ∈ D, (φ)^l_{x←d} = T.

Definition

Let *D* be a domain and *I* be an interpretation over *D*. Then:

•
$$\langle \mathbb{T} \rangle' = \mathbb{T}$$
 and $\langle \mathbb{F} \rangle' = \mathbb{F}$.

▶ If *p* is a predicate symbol of arity *n* and t_1, \ldots, t_n are terms, then $\langle p(t_1, \ldots, t_n) \rangle^I = p^I(\langle t_1 \rangle^I, \ldots, \langle t_n \rangle^I)$.

► If
$$\varphi$$
 and ψ are formulae, then:
 $\langle \neg \varphi \rangle^I = \neg \langle \varphi \rangle^I$,
 $\langle \varphi \land \psi \rangle^I = \langle \varphi \rangle^I \land \langle \psi \rangle^I$,
 $\langle \varphi \lor \psi \rangle^I = \langle \varphi \rangle^I \lor \langle \psi \rangle^I$, etc.

- ▶ If φ is a formula and x is a variable, then $\langle \forall x \varphi \rangle^l = \mathbb{T}$ iff for all $d \in D$, $\langle \varphi \rangle_{\{x \leftarrow d\}}^l = \mathbb{T}$.
- If φ is a formula and x is a variable, then (∃xφ)^l = T iff for some d ∈ D, (φ)^l_{x←d} = T.

Definition

Let *D* be a domain and *I* be an interpretation over *D*. Then:

•
$$\langle \mathbb{T} \rangle' = \mathbb{T}$$
 and $\langle \mathbb{F} \rangle' = \mathbb{F}$.

- ▶ If *p* is a predicate symbol of arity *n* and t_1, \ldots, t_n are terms, then $\langle p(t_1, \ldots, t_n) \rangle^I = p^I(\langle t_1 \rangle^I, \ldots, \langle t_n \rangle^I)$.
- If φ and ψ are formulae, then: $\langle \neg \varphi \rangle^{I} = \neg \langle \varphi \rangle^{I},$ $\langle \varphi \land \psi \rangle^{I} = \langle \varphi \rangle^{I} \land \langle \psi \rangle^{I},$ $\langle \varphi \lor \psi \rangle^{I} = \langle \varphi \rangle^{I} \lor \langle \psi \rangle^{I},$ etc.
- ▶ If φ is a formula and x is a variable, then $\langle \forall x \varphi \rangle^l = \mathbb{T}$ iff for all $d \in D$, $\langle \varphi \rangle_{\{x \leftarrow d\}}^l = \mathbb{T}$.
- If φ is a formula and x is a variable, then (∃xφ)^I = T iff for some d ∈ D, (φ)^I_{x←d} = T.

Definition

Let *D* be a domain and *I* be an interpretation over *D*. Then:

•
$$\langle \mathbb{T} \rangle' = \mathbb{T}$$
 and $\langle \mathbb{F} \rangle' = \mathbb{F}$.

- ▶ If *p* is a predicate symbol of arity *n* and t_1, \ldots, t_n are terms, then $\langle p(t_1, \ldots, t_n) \rangle^I = p^I(\langle t_1 \rangle^I, \ldots, \langle t_n \rangle^I)$.
- ► If φ and ψ are formulae, then: $\langle \neg \varphi \rangle^{I} = \neg \langle \varphi \rangle^{I}$, $\langle \varphi \land \psi \rangle^{I} = \langle \varphi \rangle^{I} \land \langle \psi \rangle^{I}$, $\langle \varphi \lor \psi \rangle^{I} = \langle \varphi \rangle^{I} \lor \langle \psi \rangle^{I}$, etc.
- If φ is a formula and x is a variable, then (∀xφ)^I = T iff for all d ∈ D, (φ)^I_{x←d} = T.
- If φ is a formula and x is a variable, then (∃xφ)^I = T iff for some d ∈ D, (φ)^I_{x←d} = T.

Definition

Let *D* be a domain and *I* be an interpretation over *D*. Then:

•
$$\langle \mathbb{T} \rangle' = \mathbb{T}$$
 and $\langle \mathbb{F} \rangle' = \mathbb{F}$.

- ▶ If *p* is a predicate symbol of arity *n* and t_1, \ldots, t_n are terms, then $\langle p(t_1, \ldots, t_n) \rangle^I = p^I(\langle t_1 \rangle^I, \ldots, \langle t_n \rangle^I)$.
- ► If φ and ψ are formulae, then: $\langle \neg \varphi \rangle^{I} = \neg \langle \varphi \rangle^{I}$, $\langle \varphi \land \psi \rangle^{I} = \langle \varphi \rangle^{I} \land \langle \psi \rangle^{I}$, $\langle \varphi \lor \psi \rangle^{I} = \langle \varphi \rangle^{I} \lor \langle \psi \rangle^{I}$, etc.
- If φ is a formula and x is a variable, then (∀xφ)^I = T iff for all d ∈ D, (φ)^I_{x←d} = T.
- If φ is a formula and x is a variable, then (∃xφ)^I = T iff for some d ∈ D, (φ)^I_{x←d} = T.

▲□▶ ▲@▶ ▲≧▶ ▲≧▶ = ≧

Example

Consider the formula $\forall x \exists y (x \leq y)$. Let $D = \{0, 1\}$ and *l* be an interpretation over *D*, such that $\langle \leq \rangle^l = \leq$. $\langle \forall x \exists y (x \leq y) \rangle^l = \mathbb{T}$ iff for all $d \in D$, $\langle \exists y (d \leq y) \rangle^l = \mathbb{T}$

 $(\exists y(0 \le y))' = \pi$ iff for some a = D, $((0 \le a))' = \pi$. Let a = 0. $((0 \le a))' = \pi$ iff $(0 \le b) = \pi$ iff $(0 \le a) = \pi$, which holds holds to bold the bold to bold to bold to bold the bold to bold

Example

Consider the formula $\forall x \exists y(x \leq y)$. Let $D = \{0, 1\}$ and I be an interpretation over D, such that $\langle \leq \rangle^I = \leq$. $\langle \forall x \exists y(x \leq y) \rangle^I = \mathbb{T}$ iff for all $d \in D$, $\langle \exists y(d \leq y) \rangle^I = \mathbb{T}$

Example

Consider the formula $\forall x \exists y (x \leq y)$. Let $D = \{0, 1\}$ and I be an interpretation over D, such that $\langle \leq \rangle^I = \leq$. $\langle \forall x \exists y (x \leq y) \rangle^I = \mathbb{T}$ iff for all $d \in D$, $\langle \exists y (d \leq y) \rangle^I = \mathbb{T}$ \triangleright case 1: d = 0 $\langle \exists y (0 \leq y) \rangle^I = \mathbb{T}$ iff for some $e \in D$, $\langle (0 \leq e) \rangle^I = \mathbb{T}$. Let e = 0. $\langle (0 \leq 0) \rangle^I = \mathbb{T}$ iff $(0 \leq I) = \mathbb{T}$ iff $(0 \leq 0) = \mathbb{T}$, which holds.

Example

Consider the formula $\forall x \exists y (x \leq y)$. Let $D = \{0, 1\}$ and I be an interpretation over D, such that $\langle \leq \rangle^I = \leq$. $\langle \forall x \exists y (x \leq y) \rangle^I = \mathbb{T}$ iff for all $d \in D$, $\langle \exists y (d \leq y) \rangle^I = \mathbb{T}$ \blacktriangleright case 1: d = 0 $\langle \exists y (0 \leq y) \rangle^I = \mathbb{T}$ iff for some $e \in D$, $\langle (0 \leq e) \rangle^I = \mathbb{T}$. Let e = 0. $\langle (0 \leq 0) \rangle^I = \mathbb{T}$ iff $(0 \leq^I 0) = \mathbb{T}$ iff $(0 \leq 0) = \mathbb{T}$, which holds. \triangleright case 2: d = 1

< ロ > < @ > < E > < E > E の <</p>

Example

· · ·

Consider the formula $\forall x \exists y (x \leq y)$. Let $D = \{0, 1\}$ and I be an interpretation over D, such that $\langle \leq \rangle^I = \leq$. $\langle \forall x \exists y (x \leq y) \rangle^I = \mathbb{T}$ iff for all $d \in D$, $\langle \exists y (d \leq y) \rangle^I = \mathbb{T}$ \blacktriangleright case 1: d = 0 $\langle \exists y (0 \leq y) \rangle^I = \mathbb{T}$ iff for some $e \in D$, $\langle (0 \leq e) \rangle^I = \mathbb{T}$. Let e = 0. $\langle (0 \leq 0) \rangle^I = \mathbb{T}$ iff $(0 \leq I) = \mathbb{T}$ iff $(0 \leq 0) = \mathbb{T}$, which holds. \blacktriangleright case 2: d = 1

Example

Consider again the formula $\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$ on two different domains \mathbb{Q} and \mathbb{R} under *standard* interpretation.

An interpretation *I* is normally called *standard* for a domain when it interprets the constants, the function symbols and predicate symbols with their standard meaning, e.g.,

$$\begin{array}{l} \langle 0 \rangle' = 0, \ \langle 1 \rangle' = 1, \ \langle + \rangle' = +, \ \langle \leq \rangle' = \leq, \ {
m etc} \end{array}$$

Example

Consider again the formula $\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$ on two different domains \mathbb{Q} and \mathbb{R} under *standard* interpretation.

An interpretation *I* is normally called *standard* for a domain when it interprets the constants, the function symbols and predicate symbols with their standard meaning, e.g.,

$$\begin{array}{l} \langle 0 \rangle^{\prime} = 0, \\ \langle 1 \rangle^{\prime} = 1, \\ \langle + \rangle^{\prime} = +, \\ \langle \leq \rangle^{\prime} = \leq, \, \text{etc} \end{array}$$

Example

Let $D = \mathbb{R}$ and *I* be standard.

 $\langle \forall x \ (0 < x \implies \exists y \ (x = y \cdot y)) \rangle' = \mathbb{T} \text{ iff}$ for all $r_1 \in \mathbb{R}, \ \langle (0 < r_1 \implies \exists y \ (r_1 = y \cdot y)) \rangle' = \mathbb{T}$

Let r_1 be arbitrary but fixed real, such that $r_1 > 0$. $\langle (0 < r_1 \implies \exists y \ (r_1 = y \cdot y)) \rangle^I = \mathbb{T}$ iff $\langle (\exists y \ (r_1 = y \cdot y)) \rangle^I = \mathbb{T}$. $\langle (\exists y \ (r_1 = y \cdot y)) \rangle^I = \mathbb{T}$ iff for some $r_2 \in \mathbb{R}$, $\langle (r_1 = r_2 \cdot r_2) \rangle^I = \mathbb{T}$.

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

Let $r_2 = \sqrt{r_1}$. Then $(r_1 = \sqrt{r_1} \cdot \sqrt{r_1}) = \mathbb{T}$, $(r_1 \langle = \rangle^l \sqrt{r_1} \langle \cdot \rangle^l \sqrt{r_1}) = \mathbb{T}$, $\langle (r_1 = \sqrt{r_1} \cdot \sqrt{r_1}) \rangle^l = \mathbb{T}$, and thus there exists $r_2 \in \mathbb{R}$, $\langle (r_1 = r_2 \cdot r_2) \rangle^l = \mathbb{T}$

Example

Let $D = \mathbb{R}$ and *I* be standard.

$$\langle \forall x \ (0 < x \implies \exists y \ (x = y \cdot y)) \rangle^{l} = \mathbb{T} \text{ iff}$$

for all $r_{1} \in \mathbb{R}, \ \langle (0 < r_{1} \implies \exists y \ (r_{1} = y \cdot y)) \rangle^{l} = \mathbb{T}$

Let r_1 be arbitrary but fixed real, such that $r_1 > 0$. $\langle (0 < r_1 \implies \exists y \ (r_1 = y \cdot y)) \rangle^l = \mathbb{T}$ iff $\langle (\exists y \ (r_1 = y \cdot y)) \rangle^l = \mathbb{T}$. $\langle (\exists y \ (r_1 = y \cdot y)) \rangle^l = \mathbb{T}$ iff for some $r_2 \in \mathbb{R}$, $\langle (r_1 = r_2 \cdot r_2) \rangle^l = \mathbb{T}$.

• □ ▶ • @ ▶ • 图 ▶ • 图 ▶ · 图

Let
$$r_2 = \sqrt{r_1}$$
.
Then $(r_1 = \sqrt{r_1} \cdot \sqrt{r_1}) = \mathbb{T}$,
 $(r_1 \langle = \rangle^l \sqrt{r_1} \langle \cdot \rangle^l \sqrt{r_1}) = \mathbb{T}$,
 $\langle (r_1 = \sqrt{r_1} \cdot \sqrt{r_1}) \rangle^l = \mathbb{T}$, and thus
there exists $r_2 \in \mathbb{R}$, $\langle (r_1 = r_2 \cdot r_2) \rangle^l = \mathbb{T}$.

Example

Let $D = \mathbb{R}$ and *I* be standard.

$$\langle \forall x \ (0 < x \implies \exists y \ (x = y \cdot y)) \rangle^{l} = \mathbb{T} \text{ iff}$$

for all $r_{1} \in \mathbb{R}, \ \langle (0 < r_{1} \implies \exists y \ (r_{1} = y \cdot y)) \rangle^{l} = \mathbb{T}$

Let r_1 be arbitrary but fixed real, such that $r_1 > 0$. $\langle (0 < r_1 \implies \exists y \ (r_1 = y \cdot y)) \rangle' = \mathbb{T}$ iff $\langle (\exists y \ (r_1 = y \cdot y)) \rangle' = \mathbb{T}$. $\langle (\exists y \ (r_1 = y \cdot y)) \rangle' = \mathbb{T}$ iff for some $r_2 \in \mathbb{R}$, $\langle (r_1 = r_2 \cdot r_2) \rangle' = \mathbb{T}$. Let $r_2 = \sqrt{r_1}$. Then $(r_1 = \sqrt{r_1} \cdot \sqrt{r_1}) = \mathbb{T}$,

・ロット (雪) ・ (ヨ) ・ (ヨ) ・ ヨ

 $(r_1 \langle = \rangle' \sqrt{r_1} \langle \cdot \rangle' \sqrt{r_1}) = \mathbb{T},$ $\langle (r_1 = \sqrt{r_1} \cdot \sqrt{r_1}) \rangle' = \mathbb{T},$ and thus there exists $r_2 \in \mathbb{R}, \langle (r_1 = r_2 \cdot r_2) \rangle' = \mathbb{T}.$

Example

Let $D = \mathbb{R}$ and *I* be standard.

$$\langle \forall x \ (0 < x \implies \exists y \ (x = y \cdot y)) \rangle^{l} = \mathbb{T} \text{ iff}$$

for all $r_{1} \in \mathbb{R}, \ \langle (0 < r_{1} \implies \exists y \ (r_{1} = y \cdot y)) \rangle^{l} = \mathbb{T}$

Let r_1 be arbitrary but fixed real, such that $r_1 > 0$. $\langle (0 < r_1 \implies \exists y \ (r_1 = y \cdot y)) \rangle^l = \mathbb{T}$ iff $\langle (\exists y \ (r_1 = y \cdot y)) \rangle^l = \mathbb{T}$. $\langle (\exists y \ (r_1 = y \cdot y)) \rangle^l = \mathbb{T}$ iff for some $r_2 \in \mathbb{R}$, $\langle (r_1 = r_2 \cdot r_2) \rangle^l = \mathbb{T}$.

Let $r_2 = \sqrt{r_1}$. Then $(r_1 = \sqrt{r_1} \cdot \sqrt{r_1}) = \mathbb{T}$, $(r_1 \langle = \rangle^l \sqrt{r_1} \langle \cdot \rangle^l \sqrt{r_1}) = \mathbb{T}$, $\langle (r_1 = \sqrt{r_1} \cdot \sqrt{r_1}) \rangle^l = \mathbb{T}$, and thus there exists $r_2 \in \mathbb{R}$, $\langle (r_1 = r_2 \cdot r_2) \rangle^l = \mathbb{T}$

Example

Let $D = \mathbb{R}$ and *I* be standard.

$$\langle \forall x \ (0 < x \implies \exists y \ (x = y \cdot y)) \rangle' = \mathbb{T} \text{ iff}$$

for all $r_1 \in \mathbb{R}$, $\langle (0 < r_1 \implies \exists y \ (r_1 = y \cdot y)) \rangle' = \mathbb{T}$

Let r_1 be arbitrary but fixed real, such that $r_1 > 0$. $\langle (0 < r_1 \implies \exists y \ (r_1 = y \cdot y)) \rangle^l = \mathbb{T}$ iff $\langle (\exists y \ (r_1 = y \cdot y)) \rangle^l = \mathbb{T}$. $\langle (\exists y \ (r_1 = y \cdot y)) \rangle^l = \mathbb{T}$ iff for some $r_2 \in \mathbb{R}$, $\langle (r_1 = r_2 \cdot r_2) \rangle^l = \mathbb{T}$.

(日) (同) (三) (三)

э

Let
$$r_2 = \sqrt{r_1}$$
.
Then $(r_1 = \sqrt{r_1} \cdot \sqrt{r_1}) = \mathbb{T}$,
 $(r_1 \langle = \rangle^l \sqrt{r_1} \langle \cdot \rangle^l \sqrt{r_1}) = \mathbb{T}$,
 $\langle (r_1 = \sqrt{r_1} \cdot \sqrt{r_1}) \rangle^l = \mathbb{T}$, and thus
there exists $r_2 \in \mathbb{R}$, $\langle (r_1 = r_2 \cdot r_2) \rangle^l = \mathbb{T}$

Example

Consider again the formula $\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$ this time on \mathbb{Q} under *standard* interpretation.

Does the formula hold? May we use the same proof as in the other domain to show it holds?

Example

Consider again the formula $\forall x \ (0 < x \implies \exists y \ (x = y \cdot y))$ this time on \mathbb{Q} under *standard* interpretation.

Does the formula hold? May we use the same proof as in the other domain to show it holds?

