Algebraic and Discrete Methods in Biology

First-Order Predicate Logic

Nikolaj Popov

Research Institute for Symbolic Computation, Linz
popov@risc.uni-linz.ac.at

Outline

Motivation

Example

Everything greater than 0 has a square root.
This statement can be interpreted, for example, in arithmetic on \mathbb{R}, the set of real numbers, where it is true.

It can be also interpreted, for axample, in arithmetic on Q, the set of rational numbers, where it is false.

Motivation

Example

Everything greater than 0 has a square root.
This statement can be interpreted, for example, in arithmetic on \mathbb{R}, the set of real numbers, where it is true.

It can be also interpreted, for example, in arithmetic on \mathbb{Q}, the set of rational numbers, where it is false.

Formalization
For all $x(0<x=$ there is some y such that $x=y \cdot y)$

Motivation

Example

Everything greater than 0 has a square root.
This statement can be interpreted, for example, in arithmetic on \mathbb{R}, the set of real numbers, where it is true.

It can be also interpreted, for example, in arithmetic on \mathbb{Q}, the set of rational numbers, where it is false.

Formalization Forall $x(0<x=$ theref ssomey such hat $x=y$ y $)$ Better Formalization

Motivation

Example

Everything greater than 0 has a square root.
This statement can be interpreted, for example, in arithmetic on \mathbb{R}, the set of real numbers, where it is true.

It can be also interpreted, for example, in arithmetic on \mathbb{Q}, the set of rational numbers, where it is false.

Formalization
For all $x(0<x \Longrightarrow$ there is some y such that $x=y \cdot y)$.

Motivation

Example

Everything greater than 0 has a square root.
This statement can be interpreted, for example, in arithmetic on \mathbb{R}, the set of real numbers, where it is true.

It can be also interpreted, for example, in arithmetic on \mathbb{Q}, the set of rational numbers, where it is false.

Formalization

For all $x(0<x \Longrightarrow$ there is some y such that $x=y \cdot y)$.
Better Formalization
$\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))$

Terms and Formulae

Terms

Formulae

Terms and Formulae

Terms

- Constants: 0, 1, 230, John, \mathbb{N}, \ldots;
- Function symbols: + , -, Son_of,

Formulae

Terms and Formulae

Terms

- Constants: 0, 1, 230, John, \mathbb{N}, \ldots;
- Variables: x, y, z, \ldots;
- Function symbols: +, - Son_of,

Formulae
> Predicates: $=,>, \neq$ IS_Son_of,

Terms and Formulae

Terms

- Constants: 0, 1, 230, John, \mathbb{N}, \ldots;
- Variables: x, y, z, \ldots;
- Function symbols: +, -, Son_of,

Formulae
> Predicates: $=,>, \notin, \mid s _S o n _o f$ - Connectives:

Terms and Formulae

Terms

- Constants: 0, 1, 230, John, \mathbb{N}, \ldots;
- Variables: x, y, z, \ldots;
- Function symbols: +, -, Son_of,

Formulae

- Predicates: $=,>, \not \equiv$, Is_Son_of, \ldots;
- Connectives
- Quantifiers: \forall, \exists.

Terms and Formulae

Terms

- Constants: 0, 1, 230, John, \mathbb{N}, \ldots;
- Variables: x, y, z, \ldots;
- Function symbols: +, -, Son_of,

Formulae

- Predicates: $=,>, \not \equiv$, Is_Son_of, ... ;
- Connectives: $\wedge, \vee, \neg, \Longrightarrow, \Longleftrightarrow$;
- Quantifiers:

Terms and Formulae

Terms

- Constants: 0, 1, 230, John, \mathbb{N}, \ldots;
- Variables: x, y, z, \ldots;
- Function symbols: +, -, Son_of,

Formulae

- Predicates: $=,>, \not \equiv$, Is_Son_of, ... ;
- Connectives: $\wedge, \vee, \neg, \Longrightarrow, \Longleftrightarrow$;
- Quantifiers: \forall, \exists.

Language of Terms

Definition

- Constants are terms.
- Variables are terms.

Language of Terms

Definition

- Constants are terms.
- Variables are terms.
- If f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.

Language of Terms

Definition

- Constants are terms.
- Variables are terms.
\rightarrow If f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- All terms are cenerated by applying the above rules.

Language of Terms

Definition

- Constants are terms.
- Variables are terms.
- If f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.

Language of Terms

Definition

- Constants are terms.
- Variables are terms.
- If f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- All terms are generated by applying the above rules.

Examples

Language of Terms

Definition

- Constants are terms.
- Variables are terms.
- If f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- All terms are generated by applying the above rules.

Examples

> $x, z+32, f(7, a, x(y+3))$ are terms;

- $x+5 \not \equiv 7, \forall x \exists y(x=y)$ are not terms.

Language of Terms

Definition

- Constants are terms.
- Variables are terms.
- If f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- All terms are generated by applying the above rules.

Examples

- $x, z+32, f(7, a, x(y+3))$ are terms;

Language of Terms

Definition

- Constants are terms.
- Variables are terms.
- If f is a function symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $f\left(t_{1}, \ldots, t_{n}\right)$ is a term.
- All terms are generated by applying the above rules.

Examples

- $x, z+32, f(7, a, x(y+3))$ are terms;
- $x+5 \not \equiv 7, \forall x \exists y(x=y)$ are not terms.

Language of Formulae

Definition

```
The logical constants \mathbb{T}}\mathrm{ and }\mathbb{F}\mathrm{ are formulae.
If p is a predicate symbol of arity n and t}\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{n}{}\mathrm{ are terms, then
p(t. , .., tr) is a formula.
```


Language of Formulae

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $p\left(t_{1}, \ldots, t_{n}\right)$ is a formula.

Language of Formulae

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $p\left(t_{1}, \ldots, t_{n}\right)$ is a formula.
$\varphi \Longleftrightarrow \psi$ are formulae.
- If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.

Language of Formulae

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $p\left(t_{1}, \ldots, t_{n}\right)$ is a formula.
- If φ and ψ are formulae, then $\neg \varphi, \varphi \wedge \psi, \varphi \vee \psi, \varphi \Longrightarrow \psi$, $\varphi \Longleftrightarrow \psi$ are formulae.

Language of Formulae

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $p\left(t_{1}, \ldots, t_{n}\right)$ is a formula.
- If φ and ψ are formulae, then $\neg \varphi, \varphi \wedge \psi, \varphi \vee \psi, \varphi \Longrightarrow \psi$, $\varphi \Longleftrightarrow \psi$ are formulae.
- If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.

Language of Formulae

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $p\left(t_{1}, \ldots, t_{n}\right)$ is a formula.
- If φ and ψ are formulae, then $\neg \varphi, \varphi \wedge \psi, \varphi \vee \psi, \varphi \Longrightarrow \psi$, $\varphi \Longleftrightarrow \psi$ are formulae.
- If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.
- All formulae are generated by applying the above rules.

Language of Formulae

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $p\left(t_{1}, \ldots, t_{n}\right)$ is a formula.
- If φ and ψ are formulae, then $\neg \varphi, \varphi \wedge \psi, \varphi \vee \psi, \varphi \Longrightarrow \psi$, $\varphi \Longleftrightarrow \psi$ are formulae.
- If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.
- All formulae are generated by applying the above rules.

Examples

- $x+5 \not \equiv 7, \forall x \exists y(x=y)$ are formulae;

Language of Formulae

Definition

- The logical constants \mathbb{T} and \mathbb{F} are formulae.
- If p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $p\left(t_{1}, \ldots, t_{n}\right)$ is a formula.
- If φ and ψ are formulae, then $\neg \varphi, \varphi \wedge \psi, \varphi \vee \psi, \varphi \Longrightarrow \psi$, $\varphi \Longleftrightarrow \psi$ are formulae.
- If φ is a formula and x is a variable, then $\forall x \varphi$ and $\exists x \varphi$ are formulae.
- All formulae are generated by applying the above rules.

Examples

- $x+5 \not \equiv 7, \forall x \exists y(x=y)$ are formulae;
- $x, z+32, f(7, a, x(y+3))$ are not formulae;

Terms and Formulae

Example

In the formula:

$$
\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))
$$

-What are the constants?
What are the variables?

Terms and Formulae

Example

In the formula:

$$
\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))
$$

- What are the constants?
- What are the variables?
-What are the function symbols?

Terms and Formulae

Example

In the formula:

$$
\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))
$$

- What are the constants?
- What are the variables?
- What are the function symbols?

What are the predicates?

Terms and Formulae

Example

In the formula:

$$
\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))
$$

- What are the constants?
- What are the variables?
- What are the function symbols?
- What are the predicates?

What are the connectives?

Terms and Formulae

Example

In the formula:

$$
\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))
$$

- What are the constants?
- What are the variables?
- What are the function symbols?
- What are the predicates?
- What are the connectives?
- What are the quantifiers?

Terms and Formulae

Example

In the formula:

$$
\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))
$$

- What are the constants?
- What are the variables?
- What are the function symbols?
- What are the predicates?
- What are the connectives?
- What are the quantifiers?

Terms and Formulae

Example

In the formula:

$$
\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))
$$

- What are the constants?
- What are the variables?
- What are the function symbols?
- What are the predicates?
- What are the connectives?
- What are the quantifiers?

Outline

Motivation

Example

Everything greater than 0 has a square root.
Formalization
$\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))$
What is the semantical meaning of the formula? Does it express what
we want?

Motivation

Example

Everything greater than 0 has a square root.
Formalization
$\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))$
What is the semantical meaning of the formula? Does it express what
we want?
When internreted in arithmetic on \mathbb{R}, is it really true?

Motivation

Example

Everything greater than 0 has a square root.
Formalization
$\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))$
What is the semantical meaning of the formula? Does it express what we want?

When interpreted in arithmetic on \mathbb{R}, is it really true?
When interpreted in arithmetic on \mathbb{Q}, is it really false?

Motivation

Example

Everything greater than 0 has a square root.
Formalization
$\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))$
What is the semantical meaning of the formula? Does it express what we want?

When interpreted in arithmetic on \mathbb{R}, is it really true?
When interpreted in arithmetic on \mathbb{Q}, is it really false?

Motivation

Example

Everything greater than 0 has a square root.
Formalization
$\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))$
What is the semantical meaning of the formula? Does it express what we want?

When interpreted in arithmetic on \mathbb{R}, is it really true?
When interpreted in arithmetic on \mathbb{Q}, is it really false?

Domain and Interpretation

Domain

Any non-empty set D can be domain.
Intuitively: it is the place where everything happens.
All constant symbols from the language will be interpreted as some elements from D.
All variables from the language will range over D, etc.
Interpretation
Intuitively: it is the one that gives meaning to the symbols from the languages.
Constant symbois become constantis from -
Functional symbols become functions defined on D.
Predicate symbols become predicates defined on D, etc.

Domain and Interpretation

Domain

Any non-empty set D can be domain.
Intuitively: it is the place where everything happens.
All constant symbols from the language will be interpreted as some elements from D.
All variables from the language will range over D, etc.

Interpretation

Intuitively: it is the one that gives meaning to the symbols from the languages.
Constant symbols become constants from D.
Functional symbols become functions defined on D.
Predicate symbols become predicates defined on D, etc.

Domain and Interpretation

Definition

Let D be non-empty set. Interpretation I over D is a function defined in the following way:

- for any constant symbol $c, c^{\prime} \in D$;
- for any function symbol f of arity $n, f^{\prime}: D^{n} \rightarrow D$;
- for any predicate symbol p of arity $n, p^{\prime}: D^{n} \rightarrow\{\mathbb{T}, \mathbb{F}\}$.

Truth Evaluation Under Interpretation

Definition

Let D be a domain and I be an interpretation over D. Then:

Truth Evaluation Under Interpretation

Definition

Let D be a domain and I be an interpretation over D. Then:

- $\langle\mathbb{T}\rangle^{\prime}=\mathbb{T}$ and $\langle\mathbb{F}\rangle^{\prime}=\mathbb{F}$.

Truth Evaluation Under Interpretation

Definition

Let D be a domain and I be an interpretation over D. Then:

- $\langle\mathbb{T}\rangle^{\prime}=\mathbb{T}$ and $\langle\mathbb{F}\rangle^{\prime}=\mathbb{F}$.
- If p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $\left\langle p\left(t_{1}, \ldots, t_{n}\right)\right\rangle^{\prime}=p^{\prime}\left(\left\langle t_{1}\right\rangle^{\prime}, \ldots,\left\langle t_{n}\right\rangle^{\prime}\right)$.

Truth Evaluation Under Interpretation

Definition

Let D be a domain and I be an interpretation over D. Then:

- $\langle\mathbb{T}\rangle^{\prime}=\mathbb{T}$ and $\langle\mathbb{F}\rangle^{\prime}=\mathbb{F}$.
- If p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $\left\langle p\left(t_{1}, \ldots, t_{n}\right)\right\rangle^{\prime}=p^{\prime}\left(\left\langle t_{1}\right\rangle^{\prime}, \ldots,\left\langle t_{n}\right\rangle^{\prime}\right)$.
- If φ and ψ are formulae, then:
$\langle\neg \varphi\rangle^{\prime}=\neg\langle\varphi\rangle^{\prime}$,
$\langle\varphi \wedge \psi\rangle^{\prime}=\langle\varphi\rangle^{\prime} \wedge\langle\psi\rangle^{\prime}$,
$\langle\varphi \vee \psi\rangle^{\prime}=\langle\varphi\rangle^{\prime} \vee\langle\psi\rangle^{\prime}$, etc.
- If φ is a formula and x is a variable, then $\langle\exists x \varphi\rangle^{\prime}=\mathbb{T}$ iff for some $d \in D$,

Truth Evaluation Under Interpretation

Definition

Let D be a domain and I be an interpretation over D. Then:

- $\langle\mathbb{T}\rangle^{\prime}=\mathbb{T}$ and $\langle\mathbb{F}\rangle^{\prime}=\mathbb{F}$.
- If p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $\left\langle p\left(t_{1}, \ldots, t_{n}\right)\right\rangle^{\prime}=p^{\prime}\left(\left\langle t_{1}\right\rangle^{\prime}, \ldots,\left\langle t_{n}\right\rangle^{\prime}\right)$.
- If φ and ψ are formulae, then:
$\langle\neg \varphi\rangle^{\prime}=\neg\langle\varphi\rangle^{\prime}$,
$\langle\varphi \wedge \psi\rangle^{\prime}=\langle\varphi\rangle^{\prime} \wedge\langle\psi\rangle^{\prime}$,
$\langle\varphi \vee \psi\rangle^{\prime}=\langle\varphi\rangle^{\prime} \vee\langle\psi\rangle^{\prime}$, etc.
- If φ is a formula and x is a variable, then $\langle\forall x \varphi\rangle^{\prime}=\mathbb{T}$ iff for all $d \in D,\langle\varphi\rangle_{\{x \leftarrow d\}}^{\prime}=\mathbb{T}$.

Truth Evaluation Under Interpretation

Definition

Let D be a domain and I be an interpretation over D. Then:

- $\langle\mathbb{T}\rangle^{\prime}=\mathbb{T}$ and $\langle\mathbb{F}\rangle^{\prime}=\mathbb{F}$.
- If p is a predicate symbol of arity n and t_{1}, \ldots, t_{n} are terms, then $\left\langle p\left(t_{1}, \ldots, t_{n}\right)\right\rangle^{\prime}=p^{\prime}\left(\left\langle t_{1}\right\rangle^{\prime}, \ldots,\left\langle t_{n}\right\rangle^{\prime}\right)$.
- If φ and ψ are formulae, then:
$\langle\neg \varphi\rangle^{\prime}=\neg\langle\varphi\rangle^{\prime}$,
$\langle\varphi \wedge \psi\rangle^{\prime}=\langle\varphi\rangle^{\prime} \wedge\langle\psi\rangle^{\prime}$, $\langle\varphi \vee \psi\rangle^{\prime}=\langle\varphi\rangle^{\prime} \vee\langle\psi\rangle^{\prime}$, etc.
- If φ is a formula and x is a variable, then $\langle\forall x \varphi\rangle^{\prime}=\mathbb{T}$ iff for all $d \in D,\langle\varphi\rangle_{\{x \leftarrow d\}}^{\prime}=\mathbb{T}$.
- If φ is a formula and x is a variable, then $\langle\exists x \varphi\rangle^{\prime}=\mathbb{T}$ iff for some $d \in D,\langle\varphi\rangle_{\{x \leftarrow d\}}^{\prime}=\mathbb{T}$.

Truth Evaluation Under Interpretation

Example

Consider the formula $\forall x \exists y(x \leqq y)$.

Truth Evaluation Under Interpretation

Example

Consider the formula $\forall x \exists y(x \leqq y)$.
Let $D=\{0,1\}$ and I be an interpretation over D, such that $\langle\leqq\rangle^{\prime}=\leqq$.

Truth Evaluation Under Interpretation

Example

Consider the formula $\forall x \exists y(x \leqq y)$.
Let $D=\{0,1\}$ and I be an interpretation over D, such that $\langle\leqq\rangle^{\prime}=\leqq$.
$\langle\forall x \exists y(x \leqq y)\rangle^{\prime}=\mathbb{T}$ iff for all $d \in D,\langle\exists y(d \leqq y)\rangle^{\prime}=\mathbb{T}$

Truth Evaluation Under Interpretation

Example

Consider the formula $\forall x \exists y(x \leqq y)$.
Let $D=\{0,1\}$ and I be an interpretation over D, such that $\langle\leqq\rangle^{\prime}=\leqq$.
$\langle\forall x \exists y(x \leqq y)\rangle^{\prime}=\mathbb{T}$ iff for all $d \in D,\langle\exists y(d \leqq y)\rangle^{\prime}=\mathbb{T}$

- case 1: $d=0$

$$
\langle\exists y(0 \leqq y)\rangle^{\prime}=\mathbb{T} \text { iff for some } e \in D,\langle(0 \leqq e)\rangle^{\prime}=\mathbb{T} .
$$

$$
\text { Let } e=0 \text {. }
$$

$$
\langle(0 \leqq 0)\rangle^{\prime}=\mathbb{T} \text { iff }\left(0 \leqq{ }^{\prime} 0\right)=\mathbb{T} \text { iff }(0 \leqq 0)=\mathbb{T} \text {, which holds. }
$$

Truth Evaluation Under Interpretation

Example

Consider the formula $\forall x \exists y(x \leqq y)$.
Let $D=\{0,1\}$ and I be an interpretation over D, such that $\langle\leqq\rangle^{\prime}=\leqq$.
$\langle\forall x \exists y(x \leqq y)\rangle^{\prime}=\mathbb{T}$ iff for all $d \in D,\langle\exists y(d \leqq y)\rangle^{\prime}=\mathbb{T}$

- case 1: $d=0$

$$
\langle\exists y(0 \leqq y)\rangle^{\prime}=\mathbb{T} \text { iff for some } e \in D,\langle(0 \leqq e)\rangle^{\prime}=\mathbb{T} .
$$

Let $e=0$.
$\langle(0 \leqq 0)\rangle^{\prime}=\mathbb{T}$ iff $\left(0 \leqq{ }^{\prime} 0\right)=\mathbb{T}$ iff $(0 \leqq 0)=\mathbb{T}$, which holds.

- case 2: $d=1$

Truth Evaluation Under Interpretation

Example

Consider again the formula $\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))$ on two different domains \mathbb{Q} and \mathbb{R} under standard interpretation.

Truth Evaluation Under Interpretation

Example

Consider again the formula $\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))$ on two different domains \mathbb{Q} and \mathbb{R} under standard interpretation.

An interpretation I is normally called standard for a domain when it interprets the constants, the function symbols and predicate symbols with their standard meaning, e.g.,

$$
\begin{aligned}
& \langle 0\rangle^{\prime}=0, \\
& \langle 1\rangle^{\prime}=1, \\
& \langle+\rangle^{\prime}=+, \\
& \langle\leqq\rangle^{\prime}=\leqq, \text { etc. }
\end{aligned}
$$

Truth Evaluation Under Interpretation

Example

Let $D=\mathbb{R}$ and $/$ be standard.

Truth Evaluation Under Interpretation

Example

Let $D=\mathbb{R}$ and I be standard.
$\langle\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))\rangle^{\prime}=\mathbb{T}$ iff
for all $r_{1} \in \mathbb{R},\left\langle\left(0<r_{1} \Longrightarrow \exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$

Truth Evaluation Under Interpretation

Example

Let $D=\mathbb{R}$ and I be standard.
$\langle\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))\rangle^{\prime}=\mathbb{T}$ iff
for all $r_{1} \in \mathbb{R},\left\langle\left(0<r_{1} \Longrightarrow \exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$
Let r_{1} be arbitrary but fixed real, such that $r_{1}>0$. $\left\langle\left(0<r_{1} \Longrightarrow \exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$ iff $\left\langle\left(\exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$.

Truth Evaluation Under Interpretation

Example

Let $D=\mathbb{R}$ and I be standard.
$\langle\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))\rangle^{\prime}=\mathbb{T}$ iff
for all $r_{1} \in \mathbb{R},\left\langle\left(0<r_{1} \Longrightarrow \exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$
Let r_{1} be arbitrary but fixed real, such that $r_{1}>0$. $\left\langle\left(0<r_{1} \Longrightarrow \exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$ iff $\left\langle\left(\exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$.
$\left\langle\left(\exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$ iff for some $r_{2} \in \mathbb{R},\left\langle\left(r_{1}=r_{2} \cdot r_{2}\right)\right\rangle^{\prime}=\mathbb{T}$.

Truth Evaluation Under Interpretation

Example

Let $D=\mathbb{R}$ and I be standard.
$\langle\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))\rangle^{\prime}=\mathbb{T}$ iff
for all $r_{1} \in \mathbb{R},\left\langle\left(0<r_{1} \Longrightarrow \exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$
Let r_{1} be arbitrary but fixed real, such that $r_{1}>0$. $\left\langle\left(0<r_{1} \Longrightarrow \exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$ iff $\left\langle\left(\exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$.
$\left\langle\left(\exists y\left(r_{1}=y \cdot y\right)\right)\right\rangle^{\prime}=\mathbb{T}$ iff for some $r_{2} \in \mathbb{R},\left\langle\left(r_{1}=r_{2} \cdot r_{2}\right)\right\rangle^{\prime}=\mathbb{T}$.
Let $r_{2}=\sqrt{r_{1}}$.
Then $\left(r_{1}=\sqrt{r_{1}} \cdot \sqrt{r_{1}}\right)=\mathbb{T}$,
$\left(r_{1}\langle=\rangle^{\prime} \sqrt{r_{1}}\langle\cdot\rangle^{\prime} \sqrt{r_{1}}\right)=\mathbb{T}$,
$\left\langle\left(r_{1}=\sqrt{r_{1}} \cdot \sqrt{r_{1}}\right)\right\rangle^{\prime}=\mathbb{T}$, and thus
there exists $r_{2} \in \mathbb{R},\left\langle\left(r_{1}=r_{2} \cdot r_{2}\right)\right\rangle^{\prime}=\mathbb{T}$.

Truth Evaluation Under Interpretation

Example

Consider again the formula $\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))$ this time on \mathbb{Q} under standard interpretation.

Does the formula hold? May we use the same proof as in the other domain to show it holds?

Truth Evaluation Under Interpretation

Example

Consider again the formula $\forall x(0<x \Longrightarrow \exists y(x=y \cdot y))$ this time on \mathbb{Q} under standard interpretation.

Does the formula hold? May we use the same proof as in the other domain to show it holds?

