Algebraic and Discrete Methods in Biology
 Propositional Logic. Syntax and Semantics

Nikolaj Popov

Research Institute for Symbolic Computation, Linz

```
popov@risc.uni-linz.ac.at
```


Outline

Syntax

Semantics

Syntax

The syntax of propositional logic consists in the definition of the set of all propositional logic formulae, or the language of propositional logic formulae, which will contain formulae like:
$\neg A$
$A \wedge B$
$A \wedge \neg B$
$(\neg A \wedge B) \Leftrightarrow(A \Rightarrow B)$
$A \wedge \neg A$

The language \mathfrak{L}
Ω is defined nuer a certain set \sum of symbols
the parentheses, the logical connectives, the logical constants, and
an infinite set Θ of propositional variables.
Set of symbols: alphabet

Syntax

The syntax of propositional logic consists in the definition of the set of all propositional logic formulae, or the language of propositional logic formulae, which will contain formulae like:
$\neg A$
$A \wedge B$
$A \wedge \neg B$
$(\neg A \wedge B) \Leftrightarrow(A \Rightarrow B)$
$A \wedge \neg A$
The language \mathfrak{L}
\mathfrak{L} is defined over a certain set Σ of symbols: the parentheses, the logical connectives, the logical constants, and an infinite set Θ of propositional variables.

Syntax

The syntax of propositional logic consists in the definition of the set of all propositional logic formulae, or the language of propositional logic formulae, which will contain formulae like:
$\neg A$
$A \wedge B$
$A \wedge \neg B$
$(\neg A \wedge B) \Leftrightarrow(A \Rightarrow B)$
$A \wedge \neg A$
The language \mathfrak{L}
\mathfrak{L} is defined over a certain set Σ of symbols: the parentheses, the logical connectives, the logical constants, and an infinite set Θ of propositional variables.

Set of symbols: alphabet
$\Sigma=\{(),\} \cup\{\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow\} \cup\{\mathbb{T}, \mathbb{F}\} \cup \Theta$

Syntax

Set of propositional variables Θ

For instance this could be $\left\{A, B, C, P, Q, \ldots, A_{1}, A_{2}, \ldots\right\}$. This set Θ is infinite, but enumerable.
\square Generalized inductive definition of \mathfrak{L} - The logical constants \mathbb{T}, \mathbb{F} are formulae, i.e., $\{\mathbb{T}, \mathbb{F}\} \subset \mathfrak{L}$. - All the variables $v \in \Theta$ are formulae, i.e.

Syntax

Set of propositional variables Θ

For instance this could be $\left\{A, B, C, P, Q, \ldots, A_{1}, A_{2}, \ldots\right\}$. This set Θ is infinite, but enumerable.

Generalized inductive definition of \mathfrak{L}

- The logical constants \mathbb{T}, \mathbb{F} are formulae, i.e., $\{\mathbb{T}, \mathbb{F}\} \subset \mathfrak{L}$.

Syntax

Set of propositional variables Θ

For instance this could be $\left\{A, B, C, P, Q, \ldots, A_{1}, A_{2}, \ldots\right\}$.
This set Θ is infinite, but enumerable.

Generalized inductive definition of \mathfrak{L}

- The logical constants \mathbb{T}, \mathbb{F} are formulae, i.e., $\{\mathbb{T}, \mathbb{F}\} \subset \mathfrak{L}$.
- All the variables $\vartheta \in \Theta$ are formulae, i.e.,
$\left\{\vartheta_{1}, \vartheta_{2}, \ldots A, B, C, P, Q, \ldots\right\} \subset \mathfrak{L}$.
- These are all the formulae.

Syntax

Set of propositional variables Θ

For instance this could be $\left\{A, B, C, P, Q, \ldots, A_{1}, A_{2}, \ldots\right\}$.
This set Θ is infinite, but enumerable.

Generalized inductive definition of \mathfrak{L}

- The logical constants \mathbb{T}, \mathbb{F} are formulae, i.e., $\{\mathbb{T}, \mathbb{F}\} \subset \mathfrak{L}$.
- All the variables $\vartheta \in \Theta$ are formulae, i.e.,
$\left\{\vartheta_{1}, \vartheta_{2}, \ldots A, B, C, P, Q, \ldots\right\} \subset \mathfrak{L}$.
- If φ and ψ are formulae, then
$\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \Rightarrow \psi),(\varphi \Leftrightarrow \psi)$ are formulae.
- These are all the formulae.

Syntax

Set of propositional variables Θ

For instance this could be $\left\{A, B, C, P, Q, \ldots, A_{1}, A_{2}, \ldots\right\}$.
This set Θ is infinite, but enumerable.

Generalized inductive definition of \mathfrak{L}

- The logical constants \mathbb{T}, \mathbb{F} are formulae, i.e., $\{\mathbb{T}, \mathbb{F}\} \subset \mathfrak{L}$.
- All the variables $\vartheta \in \Theta$ are formulae, i.e.,
$\left\{\vartheta_{1}, \vartheta_{2}, \ldots A, B, C, P, Q, \ldots\right\} \subset \mathfrak{L}$.
- If φ and ψ are formulae, then
$\neg \varphi,(\varphi \wedge \psi),(\varphi \vee \psi),(\varphi \Rightarrow \psi),(\varphi \Leftrightarrow \psi)$ are formulae.
- These are all the formulae.

Outline

Syntax

Semantics

Semantics

Semantics provides the "meaning" of propositional logic formulae. It is defined very precisely in a mathematical way.

Semantics

Semantics provides the "meaning" of propositional logic formulae. It is defined very precisely in a mathematical way.

The semantics allows us to identify correct inference rules, for instance transformations of formulae which preserve the meaning.

The precise semantics of the logical connectives NOT
OR
MPLIEs is defined by Truth Tables.

Semantics

Semantics provides the "meaning" of propositional logic formulae. It is defined very precisely in a mathematical way.
The semantics allows us to identify correct inference rules, for instance transformations of formulae which preserve the meaning.

Example:

Intuitively, the meaning of " $A \wedge B$ " is that "this is only true if both A and B are true".

Semantics

Semantics provides the "meaning" of propositional logic formulae. It is defined very precisely in a mathematical way.
The semantics allows us to identify correct inference rules, for instance transformations of formulae which preserve the meaning.

Example:

Intuitively, the meaning of " $A \wedge B$ " is that "this is only true if both A and B are true".

The precise semantics of the logical connectives
NOT ᄀ
AND \wedge
OR
IMPLIES \Rightarrow
IFF \Leftrightarrow
is defined by Truth Tables.

Semantics

Truth table for negation

$\neg A$	A
\mathbb{F}	\mathbb{T}
\mathbb{T}	\mathbb{F}

[^0]

Semantics

Truth table for negation

$\neg A$	A
\mathbb{F}	\mathbb{T}
\mathbb{T}	\mathbb{F}

Truth table for conjunction

$A \wedge B$	A	B
\mathbb{T}	\mathbb{T}	\mathbb{T}
\mathbb{F}	\mathbb{T}	\mathbb{F}
\mathbb{F}	\mathbb{F}	\mathbb{T}
\mathbb{F}	\mathbb{F}	\mathbb{F}

Semantics

Truth table for disjunction

$A \vee B$	A	B
\mathbb{T}	\mathbb{T}	\mathbb{T}
\mathbb{T}	\mathbb{T}	\mathbb{F}
\mathbb{T}	\mathbb{F}	\mathbb{T}
\mathbb{F}	\mathbb{F}	\mathbb{F}

Semantics

Truth table for disjunction

$A \vee B$	A	B
\mathbb{T}	\mathbb{T}	\mathbb{T}
\mathbb{T}	\mathbb{T}	\mathbb{F}
\mathbb{T}	\mathbb{F}	\mathbb{T}
\mathbb{F}	\mathbb{F}	\mathbb{F}

Truth table for implication

$A \Rightarrow B$	A	B
\mathbb{T}	\mathbb{T}	\mathbb{T}
\mathbb{F}	\mathbb{T}	\mathbb{F}
\mathbb{T}	\mathbb{F}	\mathbb{T}
\mathbb{T}	\mathbb{F}	\mathbb{F}

Interpretation

Let $\operatorname{Var}(\varphi)$ be a set of boolean variables, e.g., $\{A, B, C\}$, and let $/$ be a function $I: \operatorname{Var}(\varphi) \rightarrow\{\mathbb{T}, \mathbb{F}\}$.

The function I is called an "interpretation". It assigns value to the variables.

Interpretation

Let $\operatorname{Var}(\varphi)$ be a set of boolean variables, e.g., $\{A, B, C\}$, and let $/$ be a function $I: \operatorname{Var}(\varphi) \rightarrow\{\mathbb{T}, \mathbb{F}\}$.

The function I is called an "interpretation". It assigns value to the variables.

Interpretation

Example

Consider the formula $(A \wedge B) \vee(C \wedge B)$.

Let l_{0} be an interpretation defined as follows:
$I_{0}[A]=\mathbb{T}, I_{0}[B]=\mathbb{F}$, and $I_{0}[C]=\mathbb{T}$.

Compute the evaluation of the formula under the interpretation 10 .

Interpretation

Example
Consider the formula $(A \wedge B) \vee(C \wedge B)$.

Let l_{0} be an interpretation defined as follows: $I_{0}[A]=\mathbb{T}, I_{0}[B]=\mathbb{F}$, and $I_{0}[C]=\mathbb{T}$.

Compute the evaluation of the formula under the interpretation I_{0}.

Interpretation

Example
Consider the formula $(A \wedge B) \vee(C \wedge B)$.

Let I_{0} be an interpretation defined as follows: $I_{0}[A]=\mathbb{T}, I_{0}[B]=\mathbb{F}$, and $I_{0}[C]=\mathbb{T}$.

Compute the evaluation of the formula under the interpretation I_{0}.

Interpretation

Example
Consider the formula $(A \wedge B) \vee(C \wedge B)$.

Let I_{0} be an interpretation defined as follows:
$I_{1}[A]=\mathbb{F}, I_{1}[B]=\mathbb{T}$, and $I_{1}[C]=\mathbb{F}$.

Compute the evaluation of the formula under the interpretation I_{1}

Interpretation

Example
Consider the formula $(A \wedge B) \vee(C \wedge B)$.

Let I_{0} be an interpretation defined as follows:
$I_{1}[A]=\mathbb{F}, I_{1}[B]=\mathbb{T}$, and $I_{1}[C]=\mathbb{F}$.

Compute the evaluation of the formula under the interpretation I_{1}.

Interpretation

Example
Consider the formula $(A \wedge B) \vee(C \wedge B)$.

Construct its truth table.

Interpretation

Example
Consider the formula $(A \wedge B) \vee(C \wedge B)$.

Construct its truth table.

Interpretation

Example
Consider the formula $(A \wedge(A \Rightarrow B)) \Rightarrow B$.

Construct its truth table.

Interpretation

Example
 Consider the formula $(A \wedge(A \Rightarrow B)) \Rightarrow B$.

Construct its truth table.

Model, validity, satisfiability

Let φ be a formula and I be an interpretation of its variables. If φ evaluates to true under I, we write $\langle\varphi\rangle_{I}=\mathbb{T}$, and we say "I satisfies φ " or "I is a model of φ ".

If for any interpretation $I,\langle\varphi\rangle_{I}=\mathbb{T}$, then we say " φ is valid",
(otherwise it is "invalid") If for any interpretation $I,\langle\varphi\rangle_{I}=\mathbb{F}$, then we say " φ is unsatisfiable",
(otherwise it is "satisfiable")

Model, validity, satisfiability

Let φ be a formula and I be an interpretation of its variables. If φ evaluates to true under I, we write $\langle\varphi\rangle_{I}=\mathbb{T}$, and we say "I satisfies φ " or "I is a model of φ ".

If for any interpretation $I,\langle\varphi\rangle_{I}=\mathbb{T}$, then we say " φ is valid", (otherwise it is "invalid")

Model, validity, satisfiability

Let φ be a formula and I be an interpretation of its variables. If φ evaluates to true under I, we write $\langle\varphi\rangle_{I}=\mathbb{T}$, and we say "I satisfies φ " or "I is a model of φ ".

If for any interpretation $I,\langle\varphi\rangle_{I}=\mathbb{T}$, then we say " φ is valid", (otherwise it is "invalid")

If for any interpretation $I,\langle\varphi\rangle_{I}=\mathbb{F}$, then we say " φ is unsatisfiable", (otherwise it is "satisfiable")

Model, validity, satisfiability

Valid
The formula $(A \wedge(A \Rightarrow B)) \Rightarrow B$ is valid.
Under all the interpretations it evaluates to true.
Unsatisfiable
The formula $A \wedge \neg A$ is unsatisfiable.
There is no interpretation such that it evaluates to true.
Satisfiable
The formula $(A \wedge B) \vee(C \wedge B)$ is satisfiable
There exists an interpretation such that it evaluates to true.

Model, validity, satisfiability

Valid
The formula $(A \wedge(A \Rightarrow B)) \Rightarrow B$ is valid.
Under all the interpretations it evaluates to true.

Unsatisfiable

The formula $A \wedge \neg A$ is unsatisfiable.
There is no interpretation such that it evaluates to true.
Satisfiable
The formula $(A \wedge B) \vee(C \wedge B)$ is satisfiable.
There exists an interpretation such that it evaluates to true.
Invalid
The formula is $(A \wedge B) \vee(C \wedge B)$ is invalid.
There exists an interpretation such that it evaluates to false.

Model, validity, satisfiability

Valid

The formula $(A \wedge(A \Rightarrow B)) \Rightarrow B$ is valid.
Under all the interpretations it evaluates to true.

Unsatisfiable

The formula $A \wedge \neg A$ is unsatisfiable.
There is no interpretation such that it evaluates to true.
Satisfiable
The formula $(A \wedge B) \vee(C \wedge B)$ is satisfiable.
There exists an interpretation such that it evaluates to true.
Invalid
The formula is $(A \wedge B) \vee(C \wedge B)$ is invalid.
There exists an interpretation such that it evaluates to false.

Model, validity, satisfiability

Valid

The formula $(A \wedge(A \Rightarrow B)) \Rightarrow B$ is valid.
Under all the interpretations it evaluates to true.

Unsatisfiable

The formula $A \wedge \neg A$ is unsatisfiable.
There is no interpretation such that it evaluates to true.
Satisfiable
The formula $(A \wedge B) \vee(C \wedge B)$ is satisfiable.
There exists an interpretation such that it evaluates to true.
Invalid
The formula is $(A \wedge B) \vee(C \wedge B)$ is invalid.
There exists an interpretation such that it evaluates to false.

Logical consequence

We say "the formula ψ is a logical consequence of the formula φ " (also denoted as $\varphi \vDash \psi$), if and only if:
for all the interpretations I, whenever $\langle\varphi\rangle_{I}=\mathbb{T}$, then also $\langle\psi\rangle_{I}=\mathbb{T}$.

We say "the formula ψ is a logical consequence of the set of formulae
(a'so denoted as $\varphi_{1} \ldots . . \varphi_{n}$ ' $川$) if and only if. for all the interpretations I, whenever $\left\langle\varphi_{1}\right\rangle_{1}=\ldots=\left\langle\varphi_{n}\right\rangle_{l}=\mathbb{T}$, then

Logical consequence

We say "the formula ψ is a logical consequence of the formula φ " (also denoted as $\varphi \vDash \psi$), if and only if: for all the interpretations I, whenever $\langle\varphi\rangle_{I}=\mathbb{T}$, then also $\langle\psi\rangle_{I}=\mathbb{T}$.

We say "the formula ψ is a logical consequence of the set of formulae $\varphi_{1}, \ldots, \varphi_{n}{ }^{\prime \prime}$
(also denoted as $\varphi_{1}, \ldots, \varphi_{n} \vDash \psi$), if and only if:
for all the interpretations I, whenever $\left\langle\varphi_{1}\right\rangle_{I}=\ldots=\left\langle\varphi_{n}\right\rangle_{I}=\mathbb{T}$, then also $\langle\psi\rangle_{I}=\mathbb{T}$.

Logical consequence

The notion of logical consequence captures the essence of logical thinking.
It is basis for characterizing "correct" operations in logic.

We "transport" the truth from some facts to other facts by logical means. If the original facts are true, than anything obtained by logical methods from them will also be true.

An inference rule is correct if the result of transformation is a logical consequence of the formulae which are transformed.

Logical consequence

The notion of logical consequence captures the essence of logical thinking.
It is basis for characterizing "correct" operations in logic.

We "transport" the truth from some facts to other facts by logical means.
If the original facts are true, than anything obtained by logical methods from them will also be true.

An inference rule is correct if the result of transformation is a logical consequence of the formulae which are transformed.

Logical consequence

The notion of logical consequence captures the essence of logical thinking.
It is basis for characterizing "correct" operations in logic.

We "transport" the truth from some facts to other facts by logical means.
If the original facts are true, than anything obtained by logical methods from them will also be true.

An inference rule is correct if the result of transformation is a logical consequence of the formulae which are transformed.

Using this principle we can construct syntactical methods (which can
also be implemented on computer) for the systematic transformation of formulae in a correct way.

Logical consequence

The notion of logical consequence captures the essence of logical thinking.
It is basis for characterizing "correct" operations in logic.

We "transport" the truth from some facts to other facts by logical means.
If the original facts are true, than anything obtained by logical methods from them will also be true.

An inference rule is correct if the result of transformation is a logical consequence of the formulae which are transformed.

Using this principle we can construct syntactical methods (which can also be implemented on computer) for the systematic transformation of formulae in a correct way.

[^0]: Truth table for conjunction

