The Design Document

Design phase: deliverables

Main delivery: design document

Design = an activity that gives structure to the solution to a given problem

the design phase starts with the requirements document and maps
the requirements into architecture

the architecture defines the components, their interfaces and
behavior

the design document describes a plan to implement the
requirements

contains details on:
— computer programming languages and environments,
— machines,
— packages,
— application architecture,
— distributed architecture layering, memory size, platform, algorithms, data
structures, global type definitions, interfaces...

may include the usage of existing components

Design document template (1)

Introduction * Policies and Tactics
System Overview — policy/tactic-1 name or
Design Considerations description
—_ Assumptions and — pOIle/taCUC'Z name or
Dependencies description
— General Constraints — e
— Goals and Guidelines * Detailed System Design
— Development Methods — module-1 name or
Architectural Strategies g}eosggigtggame or
gggé(?%{iélnname or description
— strategy-
descr%{ioznname o * Glossary
— « Bibliography
» System Architecture
— component-1 name or
description
— component-2 name or
description

(Software projects survival guide)

Design document template (2)

* Introduction
— Describe the purpose, scope and intended audience

— ldentify the system/product using any applicable names and/or
version numbers.
— Provide references for any other pertinent documents such as:
» Related and/or companion documents
* Prerequisite documents

» Documents which provide background and/or context for this
document

« Documents that result from this document (e.g. a test plan or a
development plan)

— Define any important terms, acronyms, or abbreviations

— Summarize (or give an abstract for) the contents of this
document.

http://www.construx.com/survivalguide/desspec.htm

Design document template (3)

« System Overview

— Provide a general description of the software system:
 functionality and
* matters related to the overall system and its design
« [discussion of the basic design approach or organization]

« Design Considerations

— describes many of the issues which need to be addressed or
resolved before attempting to devise a complete design solution

« Assumptions and Dependencies
— Describe any assumptions or dependencies regarding the
software and its use:
» Related software or hardware
» Operating systems
* End-user characteristics
» Possible and/or probable changes in functionality

http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm

Design document template (4)

 General Constraints
— global limitations or constraints that have a significant impact on
the design:
» Hardware or software environment
« End-user environment
 Availability or volatility of resources
» Standards compliance
* Interoperability requirements
* Interface/protocol requirements
« Data repository and distribution requirements
» Security requirements (or other such regulations)
 Memory and other capacity limitations
» Performance requirements
* Network communications
 Verification and validation requirements (testing)
» Other means of addressing quality goals
» Other requirements described in the requirements specification

http://www.construx.com/survivalguide/desspec.htm

Design document template (5)

« Goals and Guidelines

— goals, guidelines, principles, or priorities which
dominate or embody the design of the system's
software:

« emphasis on speed versus memory use
« working, looking, or "feeling" like an existing product

— for each such goal or guideline, unless it is implicitly
obvious, describe the reason for its desirability

 Development Methods

— describe the method or approach used for this
software design

— Include a reference to a more detailed description of
formal or published methods

http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm

Design document template (6)

« Architectural Strategies

decisions and/or strategies that affect the overall organization of the system and
its higher-level structures

should provide insight into the key abstractions and mechanisms used in the
system architecture

the reasoning employed for each decision and/or strategy and how any design
goals or priorities were balanced or traded-off

Use of a particular type of product (programming language, database, library, etc. ...)

Reuse of existing software components to implement various parts/features of the
system

Future plans for extending or enhancing the software

User interface paradigms (or system input and output models)
Hardware and/or software interface paradigms

Error detection and recovery

Memory management policies

External databases and/or data storage management and persistence
Distributed data or control over a network

Generalized approaches to control

Concurrency and synchronization

Communication mechanisms

Management of other resources

http://www.construx.com/survivalguide/desspec.htm

Design document template (7)

e System Architecture

— high-level overview of how the functionality and responsibilities of the system
were partitioned and then assigned to subsystems or components

— not too much detail about the individual components themselves

— main purpose: to gain a general understanding of how and why the system was
decomposed, and how the individual parts work together to provide the desired
functionality

— major responsibilities that the software must undertake and the various roles that
the system (or portions of the system) must play

— how the system was broken down into its components/subsystems

— how the higher-level components collaborate with each other

— provide some sort of rationale for choosing this particular decomposition
— make use of design patterns

— include any diagrams, models, flowcharts, documented scenarios or use-cases
of the system behavior and/or structure

« Subsystem Architecture
— more detailed discussion of particular components

— how the component was further divided into subcomponents, and the
relationships and interactions between the subcomponents

— recurse if necessary, but leave the details for the Detailed System Design section

http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm

Design document template (8)

« Policies and Tactics

Choice of which specific product to use (compiler, interpreter, database,
library, etc. ...)

Engineering trade-offs
Coding guidelines and conventions
The protocol of one or more subsystems, modules, or subroutines

The choice of a particular algorithm or programming idiom (design
pattern) to implement portions of the system's functionality

Plans for ensuring requirements traceability

Plans for testing the software

Plans for maintaining the software

Interfaces for end-users, software, hardware, and communications

Hierarchical organization of the source code into its physical
components (files and directories).

How to build and/or generate the system's deliverables (how to compile,
link, load, etc. ...)

http://www.construx.com/survivalguide/desspec.htm

Design document template (9)

Detailed System Design

detailed description of the components introduced in “System Architecture”
chapter
Classification

» kind of component, such as a subsystem, module, class, package, function, file, etc.
Definition

» specific purpose and semantic meaning of the component.
Responsibilities

« primary responsibilities and/or behavior of this component:

— What does this component accomplish? What roles does it play?
— What kinds of services does it provide to its clients?

Constraints

* relevant assumptions, limitations, or constraints for this component: on timing, storage,
or state

* might include rules for interacting with this component (preconditions, postconditions,
invariants, data formats and data access, synchronization, exceptions, etc.)

Composition

» description of the use and meaning of the subcomponents that are a part of this
component.

http://www.construx.com/survivalguide/desspec.htm

Design document template (10)

« Detailed System Design (continuation)

— Uses/Interactions

» collaborations with other components:
— What other components is this entity used by?
— What other components does this entity use?

« known or anticipated subclasses, superclasses.
— Resources

* resources that are managed, affected, or needed by this entity. memory, processors,
printers, databases, or a software library

» discussion of any possible race conditions and/or deadlock situations, and how they
might be resolved.

— Processing
* how this components goes about performing the duties necessary to fulfill its
responsibilities
* encompass a description of any algorithms used; changes of state; relevant time or

space complexity; concurrency; methods of creation, initialization, and cleanup; and
handling of exceptional conditions.

— Interface/Exports

* services (resources, data, types, constants, subroutines, and exceptions) provided by
this component

http://www.construx.com/survivalguide/desspec.htm

Design document template (11)

« Detailed Subsystem Design

— detailed description of this software component (or a reference to such
a description)

— Include diagrams showing the details of component structure, behavior,
or information/control flow

» Glossary

— ordered list of defined terms and concepts used throughout the
document.

 Bibliography

— list of referenced and/or related publications.

http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm
http://www.construx.com/survivalguide/desspec.htm

Development

Development

Development = writing a program based on a design
specification

* Types of development

— Traditional — waterfall model - coding starts after the
system is fully specified and models have been
designed

— Incremental — produce & deliver software In
Increments

Traditional development

Requirements
definition
System and
software design
Implementation
and unit testing |

Integration and
system testing

Operation and
maintenance

Incremental development

Concwrent
activities

Tnitial
VEers1on

Outline Devel ¢ Inter mediate
description cvelopiien Versions
o Fimal
Validation —_— version

Specification

Coding

Coding

« Coding: the process of writing programs

« Coding conventions
— Set of rules that guide the shape of written code

— Important for improving the readability and
understandability

— almost always company-specific

« each software company has its own guidelines and
conventions for writing code

Code conventions

* File organization

* Naming conventions

* Formatting

« Statements and declarations

File organization

* A file should contain one class

* There should be a specific order:
— Beginning comments
— [file guard — for header files in C++]
— Include / import / using
— Class declarations / definitions

File structure conventions

* Beginning comments:

/**

* File : Graph.cs

* Classes : Graph

* Namespaces : CombinatorialOptimization.GraphBase
* Author : Petru Pau

* Initial author : Petru Pau

* Date : 24 May 2006

* Copyright (c) : 2006 RISC Software GmbH

IR A g b b b d b b A b b b d b b b A b b I i b i b d A b b A b b A b b b i i b b g b b G A b b i A i b b G b b b i b i g g 4

*

* Description: class Graph contains the abstract data type

* graph: A collection of nodes and edges.
*

**/

File structure conventions (2)
* File guards (for C++ header files)

#ifndef FILENAME H
#define FILENAME H

#endif // FILENAME H

File structure conventions

» Class declarations / definitions; example:
— Public methods
— Protected methods
— Private methods

— [Public variables] — should not exist
— Protected variables
— Private variables

Naming conventions

* Depend on the programming language

« Examples:

— Descriptive names: meaningful, self-
explanatory, in English

— Avoid abbreviations (unless necessary: URL)

— Positive meaning
 isEmpty (), Ot isNotEmpty (),
e« isEnabled () not isDisabled())

— Differentiate individual words by capitalizing:
shortestPath, not shortest path

— Class names capitalized

Style conventions

* Lines:
— Not too long (max 120 characters)
— One statement per line

— If breaks are necessary:.
« After a comma
« Before an operator
* Align the new line
* Indent

— Align code sequences with similar structure

Style conventions

 Methods:

— Not too long (max 25 lines)
* |f longer, split into more methods

— Single-purpose
— Not too many parameters
— Avoid side-effects

Style conventions

« Document the code:

DescCrl
DesCrl

DesCrl

e each class
e methods

e statements (trailing comments)

Commenting code

/// <summary>
/// Class Graph represents an immutable graph.
/7
/// </summary>
public class Graph : IGraph
{
/// <summary>
/// Computes a string representation of the graph.
/// The string contains the adjacency lists of each node.
/// </summary>
/// <returns>the string representation of a graph</returns>
public override string ToString()
{
StringBuilder myString = new StringBuilder(); // use this to speed up

// concatenations

Formatting

* Use blank lines to separate groups of code
* Use consistent spacing around operators

 Use Indentations
* Align braces (“{")

| Formatting |

#include <stdio.h>

main(t, ,a)

char *a;

{return!0<t?t<3?main(-79,-13,a+main(-87,1- ,main(-86, 0, a+1)+a)):1,t<_?main(t+1,
_,a):3,main (-94, -27+t, a)&&t==2 ? <13 ?main (2, _+1, "%s %d %d\n"
):9:16:t<0?t<-

727?main(_t,"@n'+,# *w+/wgcdnr/+ {}r/Fde}+, < {*+,/w{%+,/w#g#n+,[#{l,+,/n{n+\,/+#n
+,[##g8n+ [+k#*+, 't d¥ 3, {w+K w'K:'+}e#';dg#l

g#'+d'K# \+k#;g# rle KK#w'r}e KK{nl]' /#;#g#n Y #wW)){nl]' /+#n";d}rw' i;#){n\[]!/n{n#";
r{fH#W'r nc{nl]'/#{,+'K {rw" iK{;[{nl]'/w#g#\n'wk nw" iwk{KK{nI]!/w{%'l##W#" i,
Anl]'/*{g#'Ild;r'}{niwb!/*de}'c \

s{nl-{rw]' [+ RN, #nw]'[+kd'+e - \# rdg#w! nr'/) JHHriE{N" Y Y HER(1) t<-

50?7 _==*a ?putchar(a[31]):main(-65, ,a+1):main((*a =="/")+t,_,a\+1):0<t?main (2, 2,
"%s").*a=="/"||main(0,main(-61,*a, "lek;dc \i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m
.vpbks,fxntdCeghiry"),a+1);}

Consistency

e recommendation:

— Invent or choose a style, regarding:
* class names
 class members
« constants, local variables
* spacing
 alignments . . .

— stick to it!
* use it consistently in all your code files.

Published guidelines

* A beautiful list of guidelines for C#
code can be downloaded from:

http://csharpquidelines.codeplex.com/downloads/qet/540283

http://csharpguidelines.codeplex.com/downloads/get/540283

* Third delivery

— A prototype of your application
« An archive with the source files for a running version of your
software, with more or less full functionality
— The solution/project/workspace folders/files will be provided
— No compiled objects (.class, .dll, .obj, .exe, etc.), but
— | should be able to compile your sources.

— A description/documentation of classes

* as a separate archive containing
— document (Word, PDF) or
— HTML page, or
— MS Help file.

« Deadline: Friday June 22.

C# lecture

Class libraries

« Class Libraries - DLL files (Dynamic Link Libraries)

— Help to organize things by grouping related classes and
interfaces

— not executable (cannot be started as programs/applications)
 their content is used by other libraries or executables

— easily created and used in .NET, with Visual Studio

both executable programs and class libraries created in .NET
are “assemblies”

- they are described by some specific information (name,
version, company, etc.)

APIs

* “Application Programming Interface”

— The set of classes and/or their public methods
that are offered by an application or library.

Documenting code

« Similar to C++
— [* ... */ for comments that span more lines
— /I for comments that go to the end of current line

« Special comments: ///
— contain text enclosed in XML tags (<summary>)

— VisualStudio code editor generates automatically
tags for relevant information (method
parameters, return values)

Documenting code

* check the documentation in Help to see the
most important XML tags

 these special comments can be exported as

an XML file

—in Visual Studio, check “XML documentation file”
in the “Properties” dialog of the project (page
“Build”)

Documenting code

* Use e.g. Sandcastle or Doxygen to generate
the final documentation (in MS Help format,
or HTML).

https://github.com/EWSoftware/SHFB
http://www.stack.nl/~dimitri/doxygen/

O 00 N O VT A W N

P P RPR PR PR RL PR
W 0O NOOU D WNRO -

Homework

pinpoint possible problems and style inconsistencies in the following C# code snippet:

List<bool> restricted;
List<string> Liste_Bedingung;
SocketComm m_socket;
private bool SetConstraint(int _ndx){
if (restricted[_ndx]) Liste Bedingung[_ndx] = "OK";
else
Liste_Bedingung[_ndx] = "nicht erfullt";

return m_socket.communicate(_ndx + + Liste Bedingung[_ndx]);

}

public bool SetConstraints(int nrConstraints)

{

bool ret_val = true;
0; i< 8; i++)

for (int i

{

bool b = SetConstraint(i);
ret_val = ret_val && b;

}

return ret_val;

