
Requirements

Concepts

• Requirement:

– Abstract statement of a service or constraint

– Formal definition of a system function

• Expressed in natural language + diagrams to detailed

mathematical functional specifications

• Types:

– User requirements and system requirements

(allso called system specifications)

– Functional, non-functional, and domain requirements;

• Software that controls the cooling area

(deposit) of a steel factory

Case study: ADMSys

crane

production

delivery

grid for positions of steel ingots

Example: ADMSys

Advanced Deposit Management System

• User requirement definition
1. ADMSys shall consistently operate the crane of the deposit.

• System requirement definition
1.1 ADMSys shall operate in manual and automatic modes.

1.1.1. In automatic mode, ADMSys shall issue orders for the crane and shall be

notified when changes in the crane status occur. Orders are for depositing an

ingot of metal and for delivering it.

1.1.1.1. For depositing a ingot, ADMSys shall decide on the position of that ingot on

the deposit floor.

1.1.1.2. ADMSys shall issue an order “Go and get ingot” to the crane.

1.1.1.3 ADMSys shall wait for the crane to notify that it has loaded the ingot.

. . .

Classification of requirements

• Functional requirements

– Services, Reaction to inputs, Behaviour in
particular situations

• Non-functional requirements

– Constraints: timing, standards, constraints on
development

• Domain requirements

– Characteristics of the application domain

– Functional and non-functional

Functional requirements

• describe what the system should do

• should be:

– complete (contain all services requested)

– consistent (no contradictory definitions)

• are:

– ambiguous

– imprecise

Example: ADMSys

1. ADMSys shall store information about all blooms

in a database.

2. The system shall update this information

according to the changes in the status of the

ingots.

3. The system shall execute orders from operators, in

manual mode.

4. The system shall send orders to, and wait for

events from, the crane controller.

1. needs further specifications (what information, database technology, etc.).

2. list with possible status values needed.

3. what are the orders? what does “execute” mean?

4. communication interface with the crane controller needs to be defined.

Non-functional requirements

• Relate to system properties (performance,

reliability, availability, safety, response

time, use of storage space)

• Define constraints on the software (e.g.,

data representation)

• Define constraints on the software process

• Sometimes critical

Non-functional requirements

Example: ADMSys

Product requirements

7.3. The user interface for ADMSys shall be suited for

screens with resolution 1024x768 or larger.

Organisational requirements

12.1.1. The system shall be delivered as a package

compatible with Microsoft Installer.

External requirements

5.4. The system shall allow operators to change a limited

range of attributes of pieces, as given in Appendix 5.

Non-functional requirements

• Goal:

– a general intention of the user, e.g. ease of use.

– convey the intentions of the system users

attributes (usability, efficiency, resilience, etc.)

• Should be verifiable

– define some measure that can be objectively

tested.

Example: ADMSys

System goal

ADMSys should be easy to use by an experienced

operator and should be organised such that the user

errors are minimised.

Verifiable non-functional requirement

Experienced operators should be able to use ADMSys

after two days of training. The average of errors, after

this training, should not exceed two per operator per

shift.

Non-functional requirements: metrics

Property Measure

Speed Processed transactions/second

User/Event response time

Screen refresh time

Size M Bytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems

Domain requirements

• Come from the application domain

• Very specialized, very specific terminology

• Hard to grasp

• Difficult to relate with other system requirements

The communication with the crane will use TWINCat,

the Beckhoff standard protocol for accessing and

controlling Beckhoff PLC.

User requirements

• provide a description of the problem from the

user’s point of view.

• describe functional and non-functional

requirements in such a way that they are

understandable by users without detailed

technical knowledge.

• defined using natural language, tables and

diagrams.

User requirements: problems

• Lack of clarity

– Precision is difficult without making the
document hard to read.

• Confusion

– Functional and non-functional requirements
tend to be mixed-up.

• Amalgamation

– Several different requirements may be
expressed together.

Example: ADMSys

3.1. ADMSys shall provide an automated system for

operating the deposit, as well as an operating

environment with which the deposit operator shall be

able to operate the crane and supervise the deposit. It

shall give information about each bloom stored on the

deposit floor in a “Properties” dialog.

3.2. ADMSys shall interact with the PLC of the crane by

means of the TWINCat PLC server. ADMSys shall

issue a limited set of commands, and shall be notified

about events from a limited set.

Guidelines for expressing

User Requirements
• Invent a standard format and stick to it

• Use language consistently to distinguish

between mandatory and desirable

requirements

• Use text editors features

• Avoid computer/software technical terms

Example: ADMSys

3.1 ADMSys features
ADMSys shall provide an automated system for operating the deposit, and an

operating environment for the operator. The system shall
- decide the position in the deposit of a new ingot,

- decide the position in the deposit from where a stored ingot shall be

delivered,

- ensure that the crane executes the necessary operations to carry the ingot at /

from that position.

The operator shall be able to operate the crane and supervise the deposit.

3.1.1. In automatic mode, the system shall be notified that a new ingot is ready for

depositing. It shall use an optimisation algorithm to choose the position of the

new ingot on the deposit floor. It shall issues orders for the crane to move to

the ingot, load it and carry it to the calculated position.

3.1.2. In manual mode, the operator shall control the system.

– The decision on the position of the new ingot shall remain to the operator.

– It shall be possible for the operator to order the crane to move and take the

ingot.

System requirements

• Expanded, structured, detailed versions of

user requirements

• Used as basis for system design

• Specify how the user requirements should

be provided by the system

• May be incorporated into the system

contract.

Gathering requirements

• Meetings with the customer

• Minutes of the meeting
 (Besprechungsprotokoll)

• Content:
– Project name

– Place of the meeting

– Date and time of the meeting

– Writer of the document (minutes)

– Date of issue of the document

– Version of the document

– Participants to the meeting

– Contributors (companies)

– Topics discussed

Example: ADMSys

Besprechungsprotokoll
Projekt

ADMSys

Ort

Leopoldschlag

Datum

14.03.2009

Zeit

09:45 – 15:00

 Verfasser

Karl Mair

Erstellungsdatum

15.03.2009

Version

1.0

Teilnehmer

Robert Haider Stahl AG
Wolfgang Aigner Stahl AG
Martina Schwarz Stahl AG
Karl Mair IT CompSys
Friedrich Samal IT CompSys

Verteiler

Stahl AG, IT CompSys

Inhaltsverzeichnis

Inhaltsverzeichnis ... 1

1 Überblick ... 3

...

The Software Requirements Document

• Official statement of what is required of the

system developers

• Includes

– a definition of user requirements

– a specification of the system requirements.

• It is NOT a design document

– it should set WHAT the system should do

rather than HOW it should do it

Intended audience

Structure (IEEE standard)

• A generic structure for a requirements document

that must be instantiated for each specific system

• A general framework: to be adapted!

– Introduction.

– General description.

– Specific requirements.

– Appendices.

– Index.

Recommended Structure

• Introduction

• Glossary

• User requirements definition

• System architecture

• System requirements specification

• System models

• System evolution

• Appendices

• Index

Introductory part

• Introduction

– Describe the need for the system

– Briefly describe the functions

– Explain how it will work with other systems

Introductory part

• Glossary

– Define technical terms used in the document

Do not make assumptions

 about users’ expertise!

Specifications

• User requirements definition

– Services provided for the user

– Non-functional system requirements

– Product and process standards

• Use natural language, diagrams, etc.

Specifications

• System architecture (a diagram)

– High-level overview of the anticipated system

architecture

– Show distribution of functions across modules

– Should be understood by the client as well!

Specifications

• System requirements specifications

– Describe functional and non-functional

requirements in more detail

• Describe user interactions, possibly as a set of

scenarios.

Specifications

[

• System models

– Contains one or more models

– Show relationships

• Between components

• Between the system and its environment

• Types of models

– Object

– Data flow

– …

]

Specifications

[

• System evolution

– Describe fundamental assumptions on which

the system is based

– Anticipate changes (hardware evolution, user

needs changing, etc.)

]

Final part

• Appendices

– Specific information related to the system, in

detail

• Hardware requirements: minimal/optimal

configurations

• Database requirements: logical organisation of

data

Final part

• Indices:

– Term index (alphabetic)

– Diagram index

– Table index

– etc.

C# Lecture 2

Language basics. Classes. Interfaces.

Language basics

• Variables

– Data types (double, int, …)

– Arrays

• Operators (*, -, &&, …)

• Expressions, statements, blocks

• Control flow statements

Language basics

• Methods

• Properties
class Polygon

{

 private double[][] points;

 public double[][] Points

 {

 get { return points; }

 set { points = value;}

 }

. . .

}

Syntax highlights

• The “.” operator

• The “this” keyword

• The “base” keyword

• Interface:
– defines a contract that all implementing classes must

comply to.

– The contract: basically, a set of functions / properties;
• all classes that implement the interface are expected to have

those functions. They must be public.

C# classes

• Concepts:

– Class – a means to define your own types.

– Instances of the class - objects

– Members of an object

• Data → states

• Functions → behaviour

– Class members vs. instance members

– Access modifiers (public, internal, protected,

private)

Classes: an example

1. Create a new C# project GeoTools

– Add a folder BasicShapes.

• Shall contain geometric objects that can be e.g.

drawn.

– Add a reference to System.Drawing

– Most geometric objects should:

• Contain some points,

• Be able to respond to some queries (parameter,

area, etc.),

• Be able to export a string representation,

• Be able to draw themselves.

Interfaces

All geometry objects should expose a common interface

 Add a new item to folder BasicShapes – an interface file named

IGeoObject.

using System;

namespace GeoTools.BasicShapes

{

 using System.Drawing;

 public interface IGeoObject

 {

 double[][] Points { get; }

 double Perimeter { get; }

 double Area { get; }

 void Draw(Graphics g);

 }

}

Classes implement interfaces

– Add a new item to folder BasicShapes – an Class file named Square.

using System;

namespace GeoTools.BasicShapes

{

 using System.Drawing;

 public Square: IGeoTools {

 . . .

 public Square(double[] upperLeftCorner,

 double width)

 {

 . . .

 }

 public double[][] Points

 {

 get { . . . }

 }

. . .

}

Homework

• Identify problems (undefined/unclear concepts, questions, documents

needed, different levels of abstraction, etc.) in the following user

requirements:

All finalized orders are collected in the warehouse and the delivery

companies in charge with the transport of these orders are notified. The

following information shall be displayed on the screen for the definition of

loading orders: order number, client number, client name, PO code of the

delivery address, delivery date, number of pallets, total weight, whether

the client order is complete. When the truck driver arrives at the reception,

the corresponding orders are selected and a delivery document with all of

them shall be generated, with a specific delivery number.

