
Software architecture 



Topics 

• architectural design  

– the design process for identifying: 

• the sub-systems making up a system and 

• the framework for sub-system control and 

communication 

• software architecture  

– the output of this design process 



Architectural design 

• early stage of the system design process 

• link between specification and design processes 

• often carried out in parallel with some specification 

activities 

• involves identifying major system components and 

their communications 

 



Why? 

• Explicitly designing and documenting a system 

architecture helps with: 

– Stakeholder communication 

• Architecture may be used as a focus of discussion by system 

stakeholders. 

– System analysis 

• Enables analysis of whether the system can meet its non-

functional requirements. 

– Large-scale reuse 

• The architecture may be reusable across a range of systems. 



Why? 

• Architecture may depend on non-functional system 
requirements: 
– If performance is requested: 

• Localize critical operations and minimize communications. Use 
large rather than fine-grain components. 

– If security is critical: 

• Use a layered architecture with critical assets in the inner layers. 

– If safety is needed: 

• Localize safety-critical features in a small number of sub-systems. 

– If availability is required: 

• Include redundant components and mechanisms for fault tolerance. 

– If maintainability important: 

• Use fine-grain, replaceable components 



Conflicting attributes 

• Using large-grain components 

– improves performance  

– reduces maintainability. 

• Introducing redundant data  

– improves availability  

– makes security more difficult. 

• Localizing safety-related features  

– means more communication 

– degraded performance. 



System structuring 

• decomposing the system into interacting sub-
systems. 

• system architecture – a block diagram 
presenting an overview of the system structure. 

• specific models showing how sub-systems  

– share data,  

– are distributed and  

– interface with each other 

   may also be developed. 
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Architectural design decisions 

• The architect must answer to some fundamental 
questions: 
– Is there a generic application architecture that can be 

used? 

– How will the system be distributed? 

– What architectural styles are appropriate? 

– What approach will be used to structure the system? 

– How will the system be decomposed into modules? 

– What control strategy should be used? 

– How will the architectural design be evaluated? 

– How should the architecture be documented? 



Generic architectures 

• similar architectures shared by systems in 

an application domain 

– reflect domain concepts. 

• application product lines - built around a 

core architecture  

– possible variants for particular customer 

requirements. 



Architectural styles 

• model or style: a pattern of system 

organization 

– large systems usually do not conform to a 

unique style;  

– parts may be designed using different styles 



Architectural models 

• document an architectural design: 

– Static structural model – shows the major system 

components. 

– Dynamic process model – shows the process 

structure of the system (processing steps). 

– Interface model – defines sub-system interfaces. 

– Relationships model – (e.g. data-flow model) shows 

sub-system relationships. 

– Distribution model – shows how sub-systems are 

distributed across computers. 



System organization 



System organization 

• Reflects the basic strategy that is used to 

structure a system. 

• Three important organizational : 

– A shared data repository style 

→ the repository model 

– A shared services and servers style; 

→ the client-server model 

– An abstract machine or layered style 

→ the layered model 

 



The repository model 

Shared data is held in a central 

database or repository and may be 

accessed by all sub-systems; 

• Useful when large amounts of data are to be shared 

• Example: an integrated development environment 



The client-server model 

stand-alone servers 

which provide specific 

services 

clients which call on 

services 

connection infrastructure 
that allows clients to 
access servers 

•  data and processing is distributed across a range of components 



The layered model 

Configuration management system layer

Database system layer

Operating system layer

Object management system layer

• Organizes the system into 

a set of layers (or abstract 

machines) each of which 

provide a set of services. 

 

• Supports the incremental 

development of sub-

systems in different layers. 

When a layer interface 

changes, only the 

adjacent layer is affected. 



Modular decomposition 



Modular decomposition 

• Decompose parts (sub-systems) into modules 

– (no clear distinction between system organization and 

modular decomposition) 

• However... 

– sub-system = a system in its own right  

• its operation is independent of other sub-systems. 

– module = component that provides services to other 

components  

• would not normally be considered as a separate system. 
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Modular decomposition types 

– Object-oriented decomposition  

• decompose the system  into interacting objects 

• modules are objects with state and operations 

– Function-oriented pipelining 

• Decompose the system into functional modules 

which transform inputs to outputs  

• modules are functional transformations 

 



Object models 

• the system is structured as a set of loosely 
coupled objects with well-defined interfaces. 

• OO decomposition: concerned with identifying 
– object classes,  

– their attributes  

– their operations. 

• when implemented, objects are created from 
these classes 

• some control model coordinates object 
operations. 



Object models 

+execute()()

+abort()()

+done()()

Order

-productID : int

-location : string

-position

-nextLocation : string

-nextPosition

-issueDate

-execDate

-status

Product

-ID : int

-article

CraneController

-status

-position

-loadedProductID : int

-runningOrder : int

Deposit

-size

-nrRows : int

-nrColumns : int

• Objects are loosely 
coupled; their 
implementation can 
be modified without 
affecting other 
objects. 

• The objects may reflect real-world entities. 

• OO implementation languages are widely used. 

• However, object interface changes may cause 
problems and complex entities may be hard to 
represent as objects. 



Function-oriented pipelining 
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• Functional transformations process their 
inputs to produce outputs. 

“New product” pipeline 



Control styles 



Control styles 

• refer to control flow between sub-systems 

1. Centralised control 

• One sub-system has overall responsibility for 

control and starts and stops other sub-systems. 

2. Event-based control 

• Each sub-system can respond to externally 

generated events from other sub-systems or the 

system’s environment. 



Centralised control 

• A control sub-system takes responsibility for managing 
the execution of other sub-systems. 

• Call-return model 
– Top-down subroutine model  

• control starts at the top of a subroutine hierarchy and moves 
downwards.  

• applicable to sequential systems. 

• Manager model 
– Applicable to concurrent systems.  

– One system component controls the stopping, starting and 
coordination of other system processes.  

– Can be implemented in sequential systems as a case statement. 



Call-return model 
Centralized control 



Manager model 

• Real-time system control 

Example: BigDog 

Centralized control 



Event-driven systems 

• driven by externally generated events  

• the timing of the event is outside the control of 
the sub-systems which process the event. 

• event-driven models 
– Broadcast models: 

• An event is broadcast to all sub-systems.  

• Any sub-system which can  handle the event may do so; 

– Interrupt-driven models: 
• Used in real-time systems  

• Interrupts are detected by an interrupt handler and passed to 
some other component for processing. 



Selective broadcasting 
Event-driven systems 



Interrupt-driven control 
Event-driven systems 



Homework 

• Work on an object model for Pick-up 

Sticks. Decide on the most important 

attributes and operations for each object.  


