
Software architecture

Topics

• architectural design

– the design process for identifying:

• the sub-systems making up a system and

• the framework for sub-system control and

communication

• software architecture

– the output of this design process

Architectural design

• early stage of the system design process

• link between specification and design processes

• often carried out in parallel with some specification

activities

• involves identifying major system components and

their communications

Why?

• Explicitly designing and documenting a system

architecture helps with:

– Stakeholder communication

• Architecture may be used as a focus of discussion by system

stakeholders.

– System analysis

• Enables analysis of whether the system can meet its non-

functional requirements.

– Large-scale reuse

• The architecture may be reusable across a range of systems.

Why?

• Architecture may depend on non-functional system
requirements:
– If performance is requested:

• Localize critical operations and minimize communications. Use
large rather than fine-grain components.

– If security is critical:

• Use a layered architecture with critical assets in the inner layers.

– If safety is needed:

• Localize safety-critical features in a small number of sub-systems.

– If availability is required:

• Include redundant components and mechanisms for fault tolerance.

– If maintainability important:

• Use fine-grain, replaceable components

Conflicting attributes

• Using large-grain components

– improves performance

– reduces maintainability.

• Introducing redundant data

– improves availability

– makes security more difficult.

• Localizing safety-related features

– means more communication

– degraded performance.

System structuring

• decomposing the system into interacting sub-
systems.

• system architecture – a block diagram
presenting an overview of the system structure.

• specific models showing how sub-systems

– share data,

– are distributed and

– interface with each other

 may also be developed.

Example: ADMSys

Database

Subsystem

Activity Log

Subsystem

Deposit

Subsystem

Communication Layer

User interfaces

Architectural design decisions

• The architect must answer to some fundamental
questions:
– Is there a generic application architecture that can be

used?

– How will the system be distributed?

– What architectural styles are appropriate?

– What approach will be used to structure the system?

– How will the system be decomposed into modules?

– What control strategy should be used?

– How will the architectural design be evaluated?

– How should the architecture be documented?

Generic architectures

• similar architectures shared by systems in

an application domain

– reflect domain concepts.

• application product lines - built around a

core architecture

– possible variants for particular customer

requirements.

Architectural styles

• model or style: a pattern of system

organization

– large systems usually do not conform to a

unique style;

– parts may be designed using different styles

Architectural models

• document an architectural design:

– Static structural model – shows the major system

components.

– Dynamic process model – shows the process

structure of the system (processing steps).

– Interface model – defines sub-system interfaces.

– Relationships model – (e.g. data-flow model) shows

sub-system relationships.

– Distribution model – shows how sub-systems are

distributed across computers.

System organization

System organization

• Reflects the basic strategy that is used to

structure a system.

• Three important organizational :

– A shared data repository style

→ the repository model

– A shared services and servers style;

→ the client-server model

– An abstract machine or layered style

→ the layered model

The repository model

Shared data is held in a central

database or repository and may be

accessed by all sub-systems;

• Useful when large amounts of data are to be shared

• Example: an integrated development environment

The client-server model

stand-alone servers

which provide specific

services

clients which call on

services

connection infrastructure
that allows clients to
access servers

• data and processing is distributed across a range of components

The layered model

Configuration management system layer

Database system layer

Operating system layer

Object management system layer

• Organizes the system into

a set of layers (or abstract

machines) each of which

provide a set of services.

• Supports the incremental

development of sub-

systems in different layers.

When a layer interface

changes, only the

adjacent layer is affected.

Modular decomposition

Modular decomposition

• Decompose parts (sub-systems) into modules

– (no clear distinction between system organization and

modular decomposition)

• However...

– sub-system = a system in its own right

• its operation is independent of other sub-systems.

– module = component that provides services to other

components

• would not normally be considered as a separate system.

Example: ADMSys

Main

Order Manager

Take piece fom Unit1

Database Manager

Log Manager

Deposit Floor

Manager

Log file

Production

Crane PLC

Communication

Module

Product Delivery

Comm

Product Delivery

Production

Comm

Crane controller

Configurator

deposit.config

Placement

Strategy

Module

GUI

Modular decomposition types

– Object-oriented decomposition

• decompose the system into interacting objects

• modules are objects with state and operations

– Function-oriented pipelining

• Decompose the system into functional modules

which transform inputs to outputs

• modules are functional transformations

Object models

• the system is structured as a set of loosely
coupled objects with well-defined interfaces.

• OO decomposition: concerned with identifying
– object classes,

– their attributes

– their operations.

• when implemented, objects are created from
these classes

• some control model coordinates object
operations.

Object models

+execute()()

+abort()()

+done()()

Order

-productID : int

-location : string

-position

-nextLocation : string

-nextPosition

-issueDate

-execDate

-status

Product

-ID : int

-article

CraneController

-status

-position

-loadedProductID : int

-runningOrder : int

Deposit

-size

-nrRows : int

-nrColumns : int

• Objects are loosely
coupled; their
implementation can
be modified without
affecting other
objects.

• The objects may reflect real-world entities.

• OO implementation languages are widely used.

• However, object interface changes may cause
problems and complex entities may be hard to
represent as objects.

Function-oriented pipelining

Choose position

In the deposit

Product Deposit module

Issue order

Order manager

Order

Execute order

Update database

Database manager

Update UI

GUI manager

Crane controller

• Functional transformations process their
inputs to produce outputs.

“New product” pipeline

Control styles

Control styles

• refer to control flow between sub-systems

1. Centralised control

• One sub-system has overall responsibility for

control and starts and stops other sub-systems.

2. Event-based control

• Each sub-system can respond to externally

generated events from other sub-systems or the

system’s environment.

Centralised control

• A control sub-system takes responsibility for managing
the execution of other sub-systems.

• Call-return model
– Top-down subroutine model

• control starts at the top of a subroutine hierarchy and moves
downwards.

• applicable to sequential systems.

• Manager model
– Applicable to concurrent systems.

– One system component controls the stopping, starting and
coordination of other system processes.

– Can be implemented in sequential systems as a case statement.

Call-return model
Centralized control

Manager model

• Real-time system control

Example: BigDog

Centralized control

Event-driven systems

• driven by externally generated events

• the timing of the event is outside the control of
the sub-systems which process the event.

• event-driven models
– Broadcast models:

• An event is broadcast to all sub-systems.

• Any sub-system which can handle the event may do so;

– Interrupt-driven models:
• Used in real-time systems

• Interrupts are detected by an interrupt handler and passed to
some other component for processing.

Selective broadcasting
Event-driven systems

Interrupt-driven control
Event-driven systems

Homework

• Work on an object model for Pick-up

Sticks. Decide on the most important

attributes and operations for each object.

