Exercises

Lecture for March 5, 2024
HW 1. Try to apply the Gauß-method to sum

1. $\sum_{k=0}^{n}(2 k+1)$
2. $\sum_{k=1}^{n} k^{2}$
3. $\sum_{k=1}^{n} k^{3}$

Find and prove a formula for (a), (b) and (c).
HW 2. Prove for all $n \in \mathbb{N}$ that

$$
\sum_{k=0}^{n-1} \frac{k}{(k+1)(k+2)}=H_{n}-\frac{2 n}{n+1} .
$$

HW 3. Let $f: \mathbb{Z} \rightarrow \mathbb{C}$ and $a, b \in \mathbb{Z}$ with $a \leq b$.

1. For

$$
S(a, b):=\sum_{k=a}^{b}(f(k+1)-f(k))
$$

show that

$$
S(a, b)=f(b+1)-f(a) .
$$

2. Suppose in addition that $f(k) \neq 0$ for all k with $a \leq k \leq b$. For

$$
P(a, b):=\prod_{k=a}^{b}(f(k+1)-f(k))
$$

show that

$$
P(a, b)=\frac{f(b+1)}{f(a)} .
$$

HW 4. Use the previous homework to find a closed form for

$$
a_{n}:=\prod_{k=2}^{n}\left(1-\frac{1}{k^{2}}\right)
$$

BP 1. Consider the function $\exp : \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
x \mapsto \sum_{n=0}^{\infty} \frac{x^{n}}{n!} .
$$

Prove: there is no rational function $r(x) \in \mathbb{R}(x)$ (i.e., $r(x)=\frac{p(x)}{q(x)}$ for polynomials $\left.p, q \in \mathbb{R}[x]\right)$ such that

$$
\exp (x)=r(x) \quad \forall x \in U
$$

where $U \subseteq \mathbb{R}$ is some non-empty open interval.
HW 5. Given a tower of n discs, initially stacked in decreasing size on one of three pegs. Transfer the entire tower to one of the other pegs, moving only one disc at each step and never moving a larger one onto a smaller one. Find a_{n}, the minimal number of moves $(n \geq 0)$.

HW 6. How many slices of pizza can a person maximally obtain by making n straight cuts with a pizza knife. Let $P_{n}(n \geq 0)$ be that number.

BP 2. Prove that there is no rational function $r(x) \in \mathbb{C}(x)$ such that

$$
H_{n}=r(n)
$$

holds for all $n \in \mathbb{N}$ with $n \geq \lambda$ for some $\lambda \in \mathbb{N}$.

Lecture from March 12, 2024

HW 7. Show that $H_{n} \sim \log (n)$.

Lecture from March 19, 2024

HW 8. Let $P(n)$ be defined by $P(1)=1$ and

$$
P(n)=\sum_{i=0}^{n-1} \frac{1}{n}\left(1+\frac{i}{n} P(i)+\frac{n-i-1}{n} P(n-i-1)\right) .
$$

Show that $P(n)=1+\frac{2}{n^{2}} \sum_{i=0}^{n-1} i P(i)$.
HW 9. Let $P(n)$ be the sequence from the previous homework. Show for $n \geq 2$ that

$$
n^{2} P(n)-(n-1)(n+1) P(n-1)=2 n-1 .
$$

HW 10. Find a representation of $P(n)$ in terms of H_{n}.
HW 11. Show that

1. $P(n) \in O(\log (n))$;
2. $P(n) \sim 2 \log (n)$.

Lecture from April 9, 2024

BP 3. Show that $\left(\mathbb{K}^{\mathbb{N}},+, \cdot\right)$ as defined in the lecture is a vector space over \mathbb{K}.
BP 4. Show that $\left(\mathbb{K}^{\mathbb{N}},+, \odot\right)$ with the Hadamard product \odot is a commutative ring with 1 , but not an integral domain.

BP 5. Show that $\left(\mathbb{K}^{\mathbb{N}},+, \cdot\right)$ with the Cauchy product \cdot is a commutative ring with 1.
HW 12. Show that $\left(\mathbb{K}^{\mathbb{N}},+, \cdot\right)$ with the Cauchy product \cdot has no zero-divisors.
HW 13. Show: For $\lambda \in \mathbb{K}$ and $m \in \mathbb{N}$ we have

$$
\left(\lambda x^{m}\right) \cdot\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=\sum_{n=0}^{\infty} \lambda a_{n} x^{n+m}=\sum_{n=m}^{\infty} \lambda a_{n-m} x^{n}
$$

here the multiplication on the left hand side is the standard Cauchy product.
HW 14. For $k \in \mathbb{N}$ and $a(x), b(x) \in \mathbb{K}[[x]]$ show

$$
\begin{aligned}
{\left[x^{k}\right](a(x)+b(x)) } & =\left[x^{k}\right] a(x)+\left[x^{k}\right] b(x), \\
{\left[x^{k}\right](\lambda a(x)) } & =\lambda\left[x^{k}\right] a(x) .
\end{aligned}
$$

Lecture from April 16, 2024

HW 15. In $(\mathbb{K}[x],+, \cdot)$ prove

1. $\left(\sum_{n=0}^{\infty} c^{n} x^{n}\right)(1-c x)=1 \quad(c \in \mathbb{K})$
2. $\left(\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}\right)\left(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!} x^{n}\right)=1$.

HW 16. Show for all $z \in \mathbb{C}$ and $k \in \mathbb{Z}$ that

$$
\binom{z+1}{k}=\binom{z}{k}+\binom{z}{k-1} .
$$

HW 17. Consider $D_{x}: \mathbb{K}[[x]] \rightarrow \mathbb{K}[[x]]$ with

$$
D_{x}\left(\sum_{n=0}^{\infty} a_{n} x^{k}\right)=\sum_{n=0}^{\infty} a_{n+1}(n+1) x^{n} .
$$

Show that ($\mathbb{K}[[x]], D_{x}$) forms a differential ring, i.e., the following two rules hold: for all $a, b \in$ $\mathbb{K}[[x]]$,

1. $D_{x}(a+b)=D_{x}(a)+D_{x}(b)$
2. $D_{x}(a \cdot b)=D_{x}(a) b+a D_{x}(b)$.

Lecture from April 23, 2024

HW 18. Let $\exp (c x):=\sum_{n=0}^{\infty} \frac{c^{n}}{n!} x^{n}$. For $a, b \in \mathbb{K}$ show:

$$
\exp (a x) \exp (b x)=\exp ((a+b) x)
$$

HW 19. Find a closed form for the coefficients in the multiplicative inverse of $(1-2 x)^{2} \in \mathbb{K}[[x]]$.
HW 20. Find a closed form for the coefficients in the multiplicative inverse of $(1-x)^{3} \in \mathbb{K}[[x]]$.
HW 21. Find a closed form for the coefficients in the multiplicative inverse of $\exp (2 x) \in \mathbb{K}[[x]]$.
HW 22. Consider the formal power series $f(x)=\frac{1}{(1-x)^{2}} \log (1-x) \in \mathbb{Q}[[x]]$. Express the coefficients $f_{n} \in \mathbb{Q}$ of $f(x)=\sum_{k=0}^{\infty} f_{n} x^{n}$ in terms of the harmonic numbers H_{n}.

HW 23. Let $g(x) \in \mathbb{K}[[x]]$ with $g(0)=1$. Show that there is an $f(x) \in \mathbb{K}[[x]]$ with $f(x)^{2}=g(x)$ and $f(0)=1$. (Hint: adapt the construction to invert a formal power series.) Further, conclude (during your construction of $f(x)$) that there is exactly one other solution, namely $-f(x)$.

