Exercises

Lecture for March 5, 2024

HW 1. Try to apply the Gauß-method to sum

- 1. $\sum_{k=0}^{n} (2k+1)$
- 2. $\sum_{k=1}^{n} k^2$
- 3. $\sum_{k=1}^{n} k^3$

Find and prove a formula for (a), (b) and (c).

HW 2. Prove for all $n \in \mathbb{N}$ that

$$\sum_{k=0}^{n-1} \frac{k}{(k+1)(k+2)} = H_n - \frac{2n}{n+1}.$$

HW 3. Let $f : \mathbb{Z} \to \mathbb{C}$ and $a, b \in \mathbb{Z}$ with $a \leq b$.

1. For

$$S(a,b) := \sum_{k=a}^{b} (f(k+1) - f(k))$$

show that

$$S(a,b) = f(b+1) - f(a).$$

2. Suppose in addition that $f(k) \neq 0$ for all k with $a \leq k \leq b$. For

$$P(a,b) := \prod_{k=a}^{b} (f(k+1) - f(k))$$

show that

$$P(a,b) = \frac{f(b+1)}{f(a)}.$$

HW 4. Use the previous homework to find a closed form for

$$a_n := \prod_{k=2}^n \left(1 - \frac{1}{k^2}\right).$$

BP 1. Consider the function $\exp : \mathbb{R} \to \mathbb{R}$ defined by

$$x \mapsto \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Prove: there is no rational function $r(x) \in \mathbb{R}(x)$ (i.e., $r(x) = \frac{p(x)}{q(x)}$ for polynomials $p, q \in \mathbb{R}[x]$) such that

$$\exp(x) = r(x) \quad \forall x \in U$$

where $U \subseteq \mathbb{R}$ is some non-empty open interval.

HW 5. Given a tower of n discs, initially stacked in decreasing size on one of three pegs. Transfer the entire tower to one of the other pegs, moving only one disc at each step and never moving a larger one onto a smaller one. Find a_n , the minimal number of moves $(n \ge 0)$.

HW 6. How many slices of pizza can a person maximally obtain by making n straight cuts with a pizza knife. Let P_n $(n \ge 0)$ be that number.

BP 2. Prove that there is no rational function $r(x) \in \mathbb{C}(x)$ such that

$$H_n = r(n)$$

holds for all $n \in \mathbb{N}$ with $n \ge \lambda$ for some $\lambda \in \mathbb{N}$.

Lecture from March 12, 2024

HW 7. Show that $H_n \sim \log(n)$.

Lecture from March 19, 2024

HW 8. Let P(n) be defined by P(1) = 1 and

$$P(n) = \sum_{i=0}^{n-1} \frac{1}{n} \Big(1 + \frac{i}{n} P(i) + \frac{n-i-1}{n} P(n-i-1) \Big).$$

Show that $P(n) = 1 + \frac{2}{n^2} \sum_{i=0}^{n-1} i P(i).$

HW 9. Let P(n) be the sequence from the previous homework. Show for $n \ge 2$ that

$$n^{2} P(n) - (n-1)(n+1)P(n-1) = 2n - 1.$$

HW 10. Find a representation of P(n) in terms of H_n .

HW 11. Show that

- 1. $P(n) \in O(\log(n));$
- 2. $P(n) \sim 2 \log(n)$.

Lecture from April 9, 2024

BP 3. Show that $(\mathbb{K}^{\mathbb{N}}, +, \cdot)$ as defined in the lecture is a vector space over \mathbb{K} .

BP 4. Show that $(\mathbb{K}^{\mathbb{N}}, +, \odot)$ with the Hadamard product \odot is a commutative ring with 1, but not an integral domain.

BP 5. Show that $(\mathbb{K}^{\mathbb{N}}, +, \cdot)$ with the Cauchy product \cdot is a commutative ring with 1.

HW 12. Show that $(\mathbb{K}^{\mathbb{N}}, +, \cdot)$ with the Cauchy product \cdot has no zero-divisors.

HW 13. Show: For $\lambda \in \mathbb{K}$ and $m \in \mathbb{N}$ we have

$$(\lambda x^m) \cdot \left(\sum_{n=0}^{\infty} a_n x^n\right) = \sum_{n=0}^{\infty} \lambda a_n x^{n+m} = \sum_{n=m}^{\infty} \lambda a_{n-m} x^n;$$

here the multiplication on the left hand side is the standard Cauchy product.

HW 14. For $k \in \mathbb{N}$ and $a(x), b(x) \in \mathbb{K}[[x]]$ show

$$[x^{k}](a(x) + b(x)) = [x^{k}]a(x) + [x^{k}]b(x),$$
$$[x^{k}](\lambda a(x)) = \lambda [x^{k}]a(x).$$

Lecture from April 16, 2024

HW 15. In $(\mathbb{K}[x], +, \cdot)$ prove

1. $\left(\sum_{n=0}^{\infty} c^n x^n\right) (1 - cx) = 1$ $(c \in \mathbb{K})$ 2. $\left(\sum_{n=0}^{\infty} \frac{1}{n!} x^n\right) \left(\sum_{n=0}^{\infty} \frac{(-1)^n}{n!} x^n\right) = 1.$

HW 16. Show for all $z \in \mathbb{C}$ and $k \in \mathbb{Z}$ that

$$\binom{z+1}{k} = \binom{z}{k} + \binom{z}{k-1}.$$

HW 17. Consider $D_x : \mathbb{K}[[x]] \to \mathbb{K}[[x]]$ with

$$D_x(\sum_{n=0}^{\infty} a_n x^k) = \sum_{n=0}^{\infty} a_{n+1}(n+1)x^n.$$

Show that $(\mathbb{K}[[x]], D_x)$ forms a differential ring, i.e., the following two rules hold: for all $a, b \in \mathbb{K}[[x]]$,

- 1. $D_x(a+b) = D_x(a) + D_x(b)$
- 2. $D_x(a \cdot b) = D_x(a)b + aD_x(b).$

Lecture from April 23, 2024

HW 18. Let $\exp(c x) := \sum_{n=0}^{\infty} \frac{c^n}{n!} x^n$. For $a, b \in \mathbb{K}$ show:

 $\exp(a x) \exp(b x) = \exp((a+b)x).$

HW 19. Find a closed form for the coefficients in the multiplicative inverse of $(1-2x)^2 \in \mathbb{K}[[x]]$.

HW 20. Find a closed form for the coefficients in the multiplicative inverse of $(1-x)^3 \in \mathbb{K}[[x]]$.

HW 21. Find a closed form for the coefficients in the multiplicative inverse of $\exp(2x) \in \mathbb{K}[[x]]$.

HW 22. Consider the formal power series $f(x) = \frac{1}{(1-x)^2} \log(1-x) \in \mathbb{Q}[[x]]$. Express the coefficients $f_n \in \mathbb{Q}$ of $f(x) = \sum_{k=0}^{\infty} f_n x^n$ in terms of the harmonic numbers H_n .

HW 23. Let $g(x) \in \mathbb{K}[[x]]$ with g(0) = 1. Show that there is an $f(x) \in \mathbb{K}[[x]]$ with $f(x)^2 = g(x)$ and f(0) = 1. (Hint: adapt the construction to invert a formal power series.) Further, conclude (during your construction of f(x)) that there is exactly one other solution, namely -f(x).

Lecture from April 30, 2024

HW 24. Show that

$$\frac{(-1)^n}{2} \binom{\frac{1}{2}}{n+1} 4^{n+1} = \frac{1}{n+1} \binom{2n}{n}.$$

HW 25. Simplify

- 1. $\sum_{k=0}^{n} k k!;$
- 2. $\sum_{k=0}^{n} (-1)^k \binom{m}{k};$
- 3. $\sum_{k=0}^{n} (-1)^k \binom{m}{k} H_k.$

HW 26. Simplify

- 1. $\sum_{k=0}^{n} H_k^2;$
- 2. $\sum_{k=0}^{n} (H_{m+k})^2;$
- 3. $\sum_{k=0}^{n} H_k^3$.

HW 27. Prove correctness for the found simplification of $\sum_{k=0}^{n} H_k^2$ (part (a) in HW 26).

HW 28. Given the sequence a(n) defined by

$$-2(2n+1)a(n) + (n+2)a(n+1) = 0$$

and a(0) = 1. Show that $a(n) = \frac{1}{n+1} \binom{2n}{n}$ holds.

HW 29. Consider the quicksort recurrence

$$(n+1)F_{n+1} - (n+2)F_n = 2n, \quad n \ge 0$$

and transform it to a homogeneous recurrence (of higher order). Hint use the trick from the lecture (shift and subtract) twice.

HW 30. Compute a differential equation for the generating function $Q(x) = \sum_{n=0}^{\infty} F_n x^n$ where F_n are the average comparisons to quicksort an array with *n* elements. Hint: use, e.g., the homogeneous recurrence from HW 29.

HW 31. Compute a differential equation for the generating function $H(x) = \sum_{n=0}^{\infty} H_n x^n$ (e.g., with RE2DE) and solve it (e.g., with DSolve). Compare your result with $H(x) = -\frac{1}{1-x} \log(1-x)$ from the lecture notes.

Lecture from May 7, 2024

HW 32. For the function $f(x) = \frac{1+2x}{1-2x}$ there exists a complex series expansion. Find it. **HW 33.** For the function $f(x) = \left(\frac{1+x}{1-x}\right)^2$ there exists a complex series expansion. Find it. **HW 34.** For the function $f(x) = \sqrt{\frac{1+x}{1-x}}$ there exists a complex series expansion. Find it. **HW 35.** For the function $f(x) = \log(\frac{1+x}{1-x})$ there exists a complex series expansion. Find it. **HW 36.** For the function $f(x) = \log(\frac{1+x}{1-x})$ there exists a complex series expansion. Find it. **BP 6.** For the above functions f(x) and complex series expansions find (the maximal) r > 0 such that

$$f(x) = \sum_{n=0}^{\infty} f_n x^n \quad |x| < r.$$

HW 36. Verify that the real function $A:]-1, 1[\to \mathbb{R}$ with $x \mapsto \frac{e^{-x}}{1-x}$ satisfies

$$A'(x) = \frac{x}{1-x}A(x), \quad A(0) = 1.$$

Note: By the same rules it follows that A (as complex function with inputs inside of the unit circle) satisfies this differential equation.

BP 7. Prove the identity

$$(n+1)\sum_{k=0}^{n+1}\frac{(-1)^k}{k!} = \sum_{k=0}^{n-1}\sum_{i=0}^k\frac{(-1)^i}{i!}$$

without analysis arguments (e.g., with symbolic summation).

HW 37. Show that the ring of formal Laurent series $(\mathbb{K}((x)), +, \cdot)$ is a field.

HW 38. Let $f(x) = \sum_{n=0}^{\infty} f_n x^n \in \mathbb{K}[[x]]$ and define its truncated version $F_n(x) = f_0 + f_1 x + \cdots + f_n x^n \in \mathbb{K}[[x]]$. Show that

$$f(x) = \lim_{n \to \infty} F_n(x).$$

BP 8. Suppose that $(a_k(x))_{k\geq 0}$ and $(b_k(x))_{k\geq 0}$ from $\mathbb{K}[[x]]$ are convergent. Show that $(a_k(x) + b_k(x))_{k\geq 0}$ is convergent.